An inverse problem for the wave equation with one measurement

Tapio Helin, University of Helsinki tapio.helin@helsinki.fi

We consider the wave equation $(\partial_t^2 - \Delta_g)u(t, x) = f(t, x)$, in \mathbb{R}^n , $u|_{\mathbb{R}_- \times \mathbb{R}^n} = 0$, where the metric $g = (g_{jk}(x))_{j,k=1}^n$ is known outside a compact set $M \subset \mathbb{R}^n$. The source term f(t, x) is deterministic sum of point sources, $f(t, x) = \sum_{j=1}^{\infty} a_j \delta_{x_j}(x) \delta(t)$ where the points x_j , $j \in \mathbb{Z}_+$ form dense set on ∂M . We call f the pseudorandom noise. It is shown that when a_j are chosen appropriately, then $u|_{\mathbb{R}\times\partial M}$ determines the scattering relation on ∂M . In particular, the distances $d_M(x, y)$ for all boundary points $x, y \in \partial M$ are determined. In the case when $(M, g|_M)$ is a simple Riemannian manifold and g is conformally Euclidian, these distance are known to determine the metric g in M. Finally, we discuss the prospects of applying these ideas to random sources.