Reconstructing a Function from its V-line Radon Transform in a Disc

Gaik Ambartsoumian

University of Texas at Arlington

Inverse Problems and Application Linköping, Sweden April 5, 2013

Acknowledgements

- The talk is based on results of collaborative work with
 - Sunghwan Moon, Texas A&M University
- Some current work is being done with
 - Venky Krishnan, Tata Institute of Fundamental Research
- The work is partially supported by
 - NSF DMS-1109417
 - NHARP 003656-0109-2009

Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples

Single Scattering Optical Tomography (SSOT)

- Uses light, transmitted and scattered through an object, to determine the interior features of that object.
- If the object has moderate optical thickness it is reasonable to assume the majority of photons scatter once.
- Using collimated emitters/receivers one can measure the intensity of light scattered along various broken rays.
- Need to recover the spatially varying coefficients of light absorption and/or light scattering.

Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples

Florescu, Schotland and Markel (2009, 2010, 2011)

Mesoscopic Radiative Transport.

$$\left[\hat{\mathbf{s}} \cdot \nabla + \mu_{\boldsymbol{s}}(\mathbf{r}) + \mu_{\boldsymbol{s}}(\mathbf{r})\right] I(\mathbf{r}, \hat{\mathbf{s}}) = \mu_{\boldsymbol{s}}(\mathbf{r}) \int A(\hat{\mathbf{s}}, \hat{\mathbf{s}}') I(r, \hat{\mathbf{s}}') \, d\hat{\mathbf{s}}'. \quad (1)$$

 $I(\mathbf{r}, \hat{\mathbf{s}})$ is the light intensity at point \mathbf{r} in the direction $\hat{\mathbf{s}}$.

 $\mu_a(\mathbf{r})$ and $\mu_s(\mathbf{r})$ are the absorption and scattering coefficients.

 $A(\hat{\mathbf{s}}, \hat{\mathbf{s}}')$ is the probability that a photon travelling in the direction of $\hat{\mathbf{s}}$ is scattered in the direction of $\hat{\mathbf{s}}'$.

$$I(\mathbf{r}, \hat{\mathbf{s}}) = I_0(\mathbf{r}, \hat{\mathbf{s}}), \quad \hat{\mathbf{s}} \cdot \hat{\mathbf{n}}(\mathbf{r}) < 0, \quad \mathbf{r} \in \partial V.$$
(2)

Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples

Florescu, Schotland and Markel (2009, 2010, 2011)

Using Born approximation (1), (2) can be reduced to an integral geometry problem:

$$\phi(\mathbf{r}_{2}, \hat{\mathbf{s}}_{2}, \mathbf{r}_{1}, \hat{\mathbf{s}}_{1}) = \int_{\mathrm{BR}(\mathbf{r}_{2}, \hat{\mathbf{s}}_{2}, \mathbf{r}_{1}, \hat{\mathbf{s}}_{1})} \mu_{t}[\mathbf{r}(I)] dI - \ln\left[\frac{\mu_{s}(\mathbf{R}_{21})}{\bar{\mu}_{s}}\right], \quad (3)$$

where

$$\phi(\mathbf{r}_2, \hat{\mathbf{s}}_2, \mathbf{r}_1, \hat{\mathbf{s}}_1) = -\ln\left[\frac{r_{21}\sin\theta_1\sin\theta_2\int I_s(\mathbf{r}_2, \hat{\mathbf{s}}_2, \mathbf{r}_1, \hat{\mathbf{s}}_1)d\varphi_{\hat{\mathbf{s}}_2}}{I_0\,\bar{\mu}_s\,A(\hat{\mathbf{s}}_2, \hat{\mathbf{s}}_1)}\right].$$
(4)

Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples

Florescu, Schotland and Markel (2009, 2010, 2011)

So if the scattering coefficient is known, then the reconstruction of the absorption coefficient is reduced to inversion of a generalized Radon transform integrating along the broken rays.

Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples

Compton Scattering

$$\cos\beta = 1 - \frac{mc^2 \,\Delta E}{(E - \Delta E)E}$$

- R. Basko, G. Zeng, and G. Gullberg (1997, 1998)
- M. Nguyen, T. Truong, et al (2000's)

Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples

Broken Rays and Broken Geodesics

- M. Hubenthal
- J. Ilmavirta
- M. Lassas
- M. Salo

...

G. Uhlmann

Full Data Partial Data

V-line Radon Transform (VRT) in 2D

Definition

The V-line Radon transform of function f(x, y) is the integral

$$\mathcal{R}f(\beta,t) = \int\limits_{BR(\beta,t)} f \, ds,$$
 (5)

of f along the broken ray $BR(\beta, t)$ with respect to line measure ds.

The problem of inversion is over-determined, so it is natural to consider a restriction of $\mathcal{R}f$ to a two-dimensional set.

⁻ull Data Partial Data

Geometry: Slab vs Disc

- Available directions
- Stability of reconstruction
- Hardware implementation (?)

Full Data Partial Data

Full Data (G.A. 2012)

Theorem

If f(x, y) is a smooth function supported in the disc $D(0, R \sin \theta)$, then f is uniquely determined by $\mathcal{R}f(\phi, d)$, $\phi \in [0, 2\pi]$, $d \in [0, 2R]$.

Inversion Formula

$$\widetilde{\mathcal{R}}f(\psi_{\phi}, t_{d}) = \mathcal{R}f(\phi, d) + \mathcal{R}f(\phi + \pi, 2R - d) - \mathcal{R}f(\phi, 2R), \quad (6)$$

for all values $\phi \in [0, 2\pi]$ and $d \in [0, 2R].$

$$f(x,y) = \frac{1}{4\pi} \int_{0}^{2\pi} \mathcal{H}\left(\widetilde{\mathcal{R}}f'_{t}\right) \left(\psi, x\cos\psi + y\sin\psi\right) d\psi \qquad (7)$$

where $\ensuremath{\mathcal{H}}$ is the Hilbert transform defined by

$$\mathcal{H}h(t) = -\frac{i}{\sqrt{2\pi}} \int_{\mathbb{R}} \operatorname{sgn}(r) \, \widehat{h}(r) \, e^{irt} \, dr. \tag{8}$$

and $\hat{h}(r)$ is the Fourier transform of h(t), i.e.

$$\widehat{h}(r) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} h(t) \ e^{-irt} \ dt.$$
(9)

Full Data Partial Data

Inversion Formula

- Issues with the support
- Interior problem
- Other methods without loss of information
- Rotation invariance

Full Data Partial Data

Partial Data (G.A., S. Moon 2013)

Theorem

If f(x, y) is a smooth function supported in the disc D(0, R), then f is uniquely determined by $\mathcal{R}f(\phi, d)$, $\phi \in [0, 2\pi]$, $d \in [0, R]$.

Full Data Partial Data

Denote $g(\beta, t) := \mathcal{R}f(\beta, t)$.

$$f(\phi,\rho) = \sum_{n=-\infty}^{\infty} f_n(\rho) e^{in\phi}, \qquad g(\beta,t) = \sum_{n=-\infty}^{\infty} g_n(t) e^{in\beta},$$

where the Fourier coefficients are given by

$$f_n(\rho) = \frac{1}{2\pi} \int_0^{2\pi} f(\phi,\rho) e^{-in\phi} d\phi, \qquad g_n(t) = \frac{1}{2\pi} \int_0^{2\pi} g(\beta,t) e^{-in\beta} d\beta.$$

Full Data Partial Data

Inversion Formula

$$\mathcal{M}f_n(s) = \frac{\mathcal{M}g_n(s-1)}{1/(s-1) + \mathcal{M}h_n(s-1)}, \quad \Re(s) > 1 \quad (10)$$

where $\mathcal{M}F$ denotes the Mellin transform of function F

$$\mathcal{M}F(s)=\int_{0}^{\infty}p^{s-1}F(p)\,dp,$$

and h_n is some fixed function. Hence for any t > 1 we have

$$f_n(\rho) = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{t-Ti}^{t+Ti} \rho^{-s} \frac{\mathcal{M}g_n(s-1)}{1/(s-1) + \mathcal{M}h_n(s-1)} \, ds. \quad (11)$$

If
$$1 < t < rac{1}{\sin heta}$$
 then

$$h_n(t) = (-1)^n e^{in\psi(t)} \frac{1 + t\cos[\psi(t)] + t^2\sin[\psi(t)] \frac{\sin\theta}{\sqrt{1 - t^2\sin^2\theta}}}{\sqrt{1 + t^2 + 2t\cos(\psi(t))}}$$

$$-e^{in[2\theta-\psi(t)]}\frac{1-t\cos[2\theta-\psi(t)]+t^{2}\sin[2\theta-\psi(t)]\frac{\sin\theta}{\sqrt{1-t^{2}\sin^{2}\theta}}}{\sqrt{1+t^{2}-2t\cos[2\theta-\psi(t)]}},$$

$$h_n(t) = (-1)^n e^{in\psi(t)} \frac{1 + t\cos[\psi(t)] + t^2\sin[\psi(t)]\frac{\sin\theta}{\sqrt{1 - t^2\sin^2\theta}}}{\sqrt{1 + t^2 + 2t\cos[\psi(t)]}}, \ 0 < t \le 1$$

and $h_n(t) \equiv 0$, for all $t > \frac{1}{\sin \theta}$. Here $\psi(t) = \arcsin(t \sin \theta) + \theta$.

Full Data Partial Data

Current Work and Open Problems

- Numerical implementation
- Stability and microlocal analysis
- Range description
- Over-determined setups

Thanks for Your Attention!

- Ambartsoumian, G., Inversion of the V-line Radon transform in a disc and its applications in imaging, *Computers and Mathematics with Application*, (2013).
- Ambartsoumian, G., Moon, S., A series formula for inversion of the V-line Radon transform in a disc, *Computers and Mathematics with Application*, (2012).
- Florescu, L., Schotland, J.C., Markel, V.A., Single scattering optical tomography, *Phys. Rev. E* **79**, 036607 (2009).
- Florescu, L., Markel, V.A., Schotland, J.C., Single-scattering optical tomography: Simultaneous reconstruction of scattering and absorption, *Phys. Rev. E* **81**, 016602 (2010).
- Florescu, L., Markel, V.A., Schotland, J.C., Inversion formulas for the broken-ray Radon transform, *Inverse Problems* 27, 025002 (2011).