On choice of the regularization parameter in ill-posed problems with rough estimate of the noise level of the data

U. Hämarik, R. Palm, T. Raus

University of Tartu, Estonia

Linköping, April 4, 2013

Contents

- Ill-posed problems and regularization
- 2 Rules for parameter choice for exact noise level
- 3 Family of rules for approximate noise level
 - Formulation of the family of rules
 - Stability of parameter choice with respect to noise level inaccuracy
 - Comparison of stability of the family of rules
- 4 Heuristic rules not using noise level
- 5 Test problems

• We consider linear ill-posed problems

$$Ax = y_*, \qquad y_* \in \mathcal{R}(A),$$

where $A: X \to Y$ is a linear continuous operator between Hilbert spaces. The range $\mathcal{R}(A)$ may be non-closed and the kernel $\mathcal{N}(A)$ may be non-trivial.

- Assume that instead of exact data y_{*} only its approximation y is available.
- For approximation of the minimum norm solution x_* of the problem $Ax = y_*$ we use the Tikhonov regularization method

$$x_{\alpha} = (\alpha I + A^* A)^{-1} A^* y.$$

Other methods

• Iterated Tikhonov method: take $x_0 = x_{0;\alpha} \in X$ and compute $x_{\alpha} := x_{m;\alpha}$ iteratively from the equations

$$\alpha x_{n;\alpha} + A^* A x_{n;\alpha} = \alpha x_{n-1;\alpha} + A^* y \qquad (n = 1, ..., m).$$
(1)

Extrapolated Tikhonov method: take Tikhonov approximations x_{α1},
 ..., x_{αm} with different parameters α1, ..., αm and compute

$$x_{\alpha_1,...,\alpha_m} = \sum_{i=1}^m d_i x_{\alpha_i}, \qquad d_i = \prod_{j=1, j \neq i}^m (1 - \alpha_i / \alpha_j)^{-1}.$$
 (2)

We use $x_{\alpha} := x_{\alpha_1,...,\alpha_m}$ with $\alpha_n = \alpha r^{(m+1)/2-n}, n = 1, ..., m; r > 1$.

- If A = A^{*} ≥ 0 then Lavrentiev method x_α = (αI + A)⁻¹y may also be used.
- Landweber iteration method

$$x_n = x_{n-1} - \mu A^* (A x_n - y), \quad \mu \in (0, 1/\|A^*A\|), \quad n = 1, 2, \ldots$$

Choice of the regularization parameter is a compromize between accuracy and stability

Regularization parameter:

 $\alpha > 0$ in Tikhonov method and in its iterated and extrapolated versions (for these 3 methods common name T-method is used) $n \in \mathbb{N}$ in Landweber method

Conflict of interests: Approximation vs Stability

lpha small, <i>n</i> large	$lpha$ large, \emph{n} small
good approximation	bad approximation
bad stability	good stability

We consider three cases of knowledge about noise level for $||y - y_*||$:

- Case 1: exact noise level δ : $||y y_*|| \le \delta$.
- Case 2: no information about $||y y_*||$.
- Case 3: approximate noise level: δ is given but it is not known whether the inequality ||y y_{*}|| ≤ δ holds or not. For example, it may be known that with high probability δ/||y y_{*}|| ∈ [1/10, 10]. This very useful information should be used for choice of α = α(δ) in T-method and n = n(δ) in Landweber method.

General remarks on rules for choice of the regularization parameters α and n

- Rules for the Case 1 (discrepancy principle, etc.) need exact noise level: rules fail for very small underestimation of the noise level and give much large error $||x_{\alpha} x_*||$ and $||x_n x_*||$ than for optimal parameters already for 10% overestimation.
- Heuristic rules for the Case 2 (L-curve, GCV etc) do not guarantee the convergence x_α → x_{*} and x_n → x_{*} for ||y − y_{*}|| → 0.
- Our rules for the Case 3 guarantee $x_{\alpha} \to x_*$ and $x_n \to x_*$ as $\delta \to 0$, if $\lim_{\delta \to 0} \frac{\|y y_*\|}{\delta} \leq \text{const.}$

In the following we consider rules for the choice of the regularization parameters if an estimate δ for the noise level $||y - y_*||$ and an estimate for $\rho := \delta/||y - y_*||$ about the accuracy of the estimate δ are given.

Rules for exact or very slightly overestimated noise level

Case 1) $\|y - y_*\| \le \delta$ where $\rho := \delta / \|y - y_*\|$ is 1 or only slightly larger. **Discrepancy principle (D)** chooses a constant $C \ge 1$ and in the T-method the parameter $\alpha = \alpha_{\rm D}$ as the solution of the equation $||Ax_{\alpha} - y|| = C\delta$, in the Landweber method the stopping index n_{D} as the first *n* with $||r_n|| \leq C\delta$, $r_n := Ax_n - y$. Monotone error rule (ME-rule) chooses in the T-method the parameter $\alpha = \alpha_{ME}$ as the solution of the equation $||B_{\alpha}(Ax_{\alpha}-y)||^{2}/||B_{\alpha}^{2}(Ax_{\alpha}-y)|| = \delta, \quad B_{\alpha} := \sqrt{\alpha}(\alpha I + AA^{*})^{-1/2}, \text{ and in}$ the Landweber method the stopping index n_{ME} as the first *n* with $(r_n + r_{n+1}, r_n)/(2||r_n||) < \delta.$ The name ME-rule is justified by the property $\frac{d}{d\alpha} ||x_{\alpha} - x_{*}||^{2} \ge 0$ for each $\alpha \in [\alpha_{ME}, \infty)$ in the T-method and property $||x_n - x_*|| \leq ||x_{n-1} - x_*||$ for

all $n = 1, 2, ..., n_{ME}$ in the Landweber method. Extensive numerical experiments suggest to use the post-estimated parameters of the **MEe-rule** $\alpha_{MEe} = \alpha_{ME}/2.3$ and $n_{MEe} = \text{round}(2.3n_{ME})$, instead the parameters α_{ME} and n_{ME} , respectively. In average of extensive numerical experiments $||x_{\alpha_{ME}} - x_*|| \approx 1.2 ||x_{\alpha_{MEe}} - x_*||$ $(1 + 1) = 1.2 ||x_{\alpha_{MEE}} - x_*||$ (1 + 1)

Family of rules for T-method for approximate noise level

The estimate δ of the noise level $||y - y_*||$ is given, e.g. $\rho := \delta/||y - y_*|| \in [0.3, 10]$. We propose family of rules. Fix q, l, k such that 2q, 2k, $2l \in N$, $l \ge 0$, $k \ge l/q$ and $\underline{q} \le q < \infty$, where $\underline{q} = (2m+1)/(m+1)$ for the T-method ($\underline{q} = 3/2$ for the Tikhonov method) and $\underline{q} = 2$ for the Landweber method. **R-rule for T-method** Choose $\alpha = \alpha(\delta)$ as the largest solution of

$$d(\alpha \mid q, l, k) := \frac{\kappa(\alpha) \|D_{\alpha}^{k} B_{\alpha}(Ax_{\alpha} - y)\|^{q/(q-1)}}{\|D_{\alpha}^{l} B_{\alpha}^{2q-2}(Ax_{\alpha} - y)\|^{1/(q-1)}} = b\delta,$$

where $B_{\alpha} = \sqrt{\alpha} (\alpha l + AA^{*})^{-1/2}$, $D_{\alpha} = \alpha^{-1} AA^{*} B_{\alpha}^{2}$,

$$b \approx \left(\frac{3}{2}\right)^{\frac{3}{2}} \frac{k^{k}}{(k+3/2)^{k+3/2}} \left(\frac{k^{k}(l+3/2)^{l+3/2}}{l^{l}(k+3/2)^{k+3/2}}\right)^{\frac{1}{q-1}}$$

 $\kappa(\alpha) = 1$, if k = l/q, and $\kappa(\alpha) = (1 + \alpha ||A||^{-2})^{\frac{kq-l+q/2}{q-1}}$, if k > l/q. Note that if k > l/q, then $\kappa(\alpha) \to 1$, as $\alpha \to 0$. Denote this rule by R(q, l, k).

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköp

- Modified discrepancy principle (Raus 1985, Gfrerer 1987): q = 3/2, l = k = 0
- Monotone error rule (Tautenhahn, Hämarik 1999): q = 2, l = k = 0
- Rule R1 (Raus 1992): q = 3/2, k = l > 0
- Balancing principle (Mathé, Pereverzev 2003) can be considered as an approximate variant of rule R1 with k = 1/2.

Fix the parameters q, k: $4/3 \le q < \infty$, $k \ge 0$, $2k \in N$, $3q \in N$. Let the constant b > 1 if k = 0 and b > 0 if k > 0. Choose the regularization parameter $\alpha = \alpha(\delta)$ as the largest solution of the equation

$$d(\alpha \mid q, k) := \frac{\kappa_{\alpha} \|D_{\alpha}^{k} B_{\alpha}(A x_{\alpha} - y)\|^{q/(q-1)}}{\|B_{\alpha}^{3q/2-1}(A x_{\alpha} - y)\|^{1/(q-1)}} = b\delta,$$

where $B_{\alpha} = \alpha(\alpha I + A)^{-1}$, $D_{\alpha} := A(\alpha I + A)^{-1}$ and

$$\kappa_{\alpha} = (1 + \alpha \|A\|^{-1})^{\frac{kq + s_0 q/2}{q-1}}, \qquad s_0 = \begin{cases} 0, & \text{if } k = 0, \\ 1, & \text{if } k > 0. \end{cases}$$

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013 11 / 31,

Choose the stopping index $n = n_R$ as the first index with

$$d(n \mid q, l, k) := \kappa(n) \frac{\|D_n^k(Ax_n - y)\|^{q/(q-1)}}{\|D_n^l(Ax_n - y)\|^{1/(q-1)}} \le b\delta.$$

Here
$$D_n := nAA^*$$
 and
 $\kappa(n) = 1$, if $k = l/q$, and
 $\kappa(n) = (1 + n^{-1} ||A||^{-2})^{(kq - l + q/2)/(q - 1)}$, if $k > l/q$.

- If k > l/q (q ≥ q, l ≥ 0), then for every b = const > 0 there exist a solution of the equation d(α | q, l, k) = bδ in T-method and a stopping index satisfying d(n | q, l, k) ≤ bδ in Landweber method, because lim_{α→∞} d(α | q, l, k) = ∞ and lim_{α→0} d(α | q, l, k) = 0, lim_{n→∞} d(n | q, l, k) = 0.
- If k = l/q (q ≥ q, l ≥ 0), b ≥ b₀(q, l, k) and ||y y_{*}|| ≤ δ, then in the T-method the solution of the equation d(α | q, l, k) = bδ exists and in Landweber method there exists a stopping index satisfying d(n | q, l, k) ≤ bδ.

Results of this and the next slide hold, if in formulations the T-method is replaced by the Lavrentiev method and I = 0.

Convergence and stability

- **Convergence.** Let $\underline{q} \leq q < \infty$, $l \geq 0$, $k \geq l/q$. Let in T-method the parameter $\alpha = \alpha(\delta)$ be the solution of the equation $d(\alpha \mid q, l, k) = b\delta$, $b > b_0(q, l, k)$ or in Landweber method parameter $n = n(\delta)$ stopping index from the condition $d(n \mid q, l, k) \leq b\delta$. If $||y y_*|| \leq \delta$, then $||x_\alpha x_*|| \to 0$ $(\delta \to 0)$ and $||x_n x_*|| \to 0$ $(n \to \infty)$.
- Stability (with respect to the inaccuracy of the noise level). Let <u>q</u> ≤ q < ∞, l ≥ 0, k > l/q. Let in the T-method the parameter α(δ) be the largest solution of the equation d(α | q, l, k) = bδ and in Landweber method n(δ) be the first index satisfying the condition d(n | q, l, k) ≤ bδ. If ||y - y_{*}|| / δ ≤ c = const in the process δ → 0, then ||x_α - x_{*}|| → 0 and ||x_n - x_{*}|| → 0.

Under information $\rho \in [1,5]$ on the accuracy of the noise level (no under-estimation) we recommend the **Me-rule** in the T-method: choose $\alpha_{Me} = \min(\alpha_{MEe}, 1.4\alpha_R)$, where α_R is parameter from rule R(3/2, 1/2, 2) with b = 0.25.

14 / 31

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013

Quasioptimality in T-method

Let $q \leq q < \infty$, $0 \leq l \leq q/2$, $l/q \leq k \leq l$. Let the parameter $\alpha(\delta)$ be the **smallest** solution of the equation $d(\alpha \mid q, l, k) = b\delta$. Then the rule is quasioptimal:

$$\|x_{\alpha}-x_{*}\| \leq C(b) \inf_{\alpha \geq 0} \left\{ \|x_{\alpha}^{+}-x_{*}\| + \gamma_{*} \frac{\delta}{\sqrt{\alpha}} \right\},$$

where x_{α}^+ is the approximate solution with exact right-hand side and $\gamma_*=1/2$ for Tikhonov method, $\gamma_*=m$ for iterated and extrapolated variants of Tikhonov method.

- Largest solution \Rightarrow stability
- Smallest solution \Rightarrow quasi-optimality
- If the solution is unique, quasi-optimality also holds for the largest solution. In most of our numerical experiments the solution was unique.

In the following we choose the largest solution.

The following 3 slides show the behaviour of functions $d(\alpha)$ in the problem 'phillips' from Hansen's Regularization Tools. 🔹 🖘 🖘 🖘 15 / 31

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013

Stability of choice $\alpha = \alpha(\delta)$ from rule $d(\alpha) = \delta$

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013 16 / 31

Behavior of functions $d(\alpha)$ in rules $d(\alpha) = \delta$

On choice of the regularization parameter in U. Hämarik, R. Palm, T. Raus (TÜ) Linköping, April, 2013

Perturbed data and presentation of numerical results

- Numerical experiments on a large set of test problems (to be precisized on a later slide).
- For perturbed data we took y = y_{*} + Δ, ||Δ|| = 0.3, 10⁻¹, ..., 10⁻⁶ with 10 different normally distributed perturbations Δ generated by computer.
- Problems were solved by Tikhonov method, assuming that the noise level is $\delta = \rho ||y y_*||$. Thus $\rho > 1$ corresponds to overestimation of the true noise level, $\rho < 1$ to underestimation.
- To compare the rules, we present averages (over problems, perturbations Δ and runs) of error ratios $||x_{\alpha} x_*||/e_{opt}$ as the function of the argument ρ , where e_{opt} is minimal error in Tikhonov method.

Stability of rule R(q, l, k) increases if k increases

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013 19 / 31

글 🖒 🛛 글

- ∢ ⊒ ▶

Stability of rule R(q, I, k) increases if q decreases

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013 20 / 31

> < = > <

3

l = 0.5 is recommended $(l = 0 \text{ is good if } \delta \gg ||y - y_*||)$

э

-∢ ≣ ▶

Case 2: heuristic rules not using noise level information

- QC-rule for T-method (analog of the quasioptimality criterion Q): Make the computations using the sequence of parameters α_i = r⁻ⁱ, i = 0, 1, ..., r > 1 (for example r = 1.1). Take α_{QC} = α_i as the minimizer of the function ψ(α_i) = (1 + α_i ||A||⁻²) ||x_{m,αi} - x_{m+1,αi}|| in the interval [max(mσ_{min}, <u>α</u>), 1], where σ_{min} is the smallest eigenvalue of the discretized version of the operator A*A and <u>α</u> is the largest α_i, for which the value of ψ(α_i) is C = 5 times larger than its value at its current minimum.
- **QC-rule for Landweber method**: compute $\psi(n) := ||x_n x_{2n+100}||$ for n = 1, 2, ... and take $n = n_{QC}$ as the minimizer of the function $\psi(n)$ for $n \in [1, N]$, where N is the smallest n for which the value of $\psi(n)$ is C = 20 times larger than its value at its current minimum.
- L-curve rule, GCV-rule, Hanke-Raus rule and Brezinski-Rodriguez-Seatzu rule gave in our numerical experiments not so good results as rules Q and QC, especially in case of smooth solutions.

We propose to find the parameter $\boldsymbol{\alpha}$ as the minimizer of the function

$$\bar{g}_k(\alpha) = \alpha^{-2} \sum_{j=0}^{2k} c_j \|D_\alpha^{j/2} B_\alpha(Ax_\alpha - y)\|^2, \quad c_j = j/3 + 1, \ j = 0, \ 1, \ \dots, 2k.$$

We propose to make computations on the sequence of parameters $\alpha_i = r^{-i}$, $i = 0, 1, \ldots, r = 1.1$. The parameter α_i is found as the minimizer of the function $\overline{g}_k(\alpha)$ in the interval $[\underline{\alpha}, 1]$, where $\underline{\alpha}$ is the largest α_i for which the value of $\overline{g}_k(\alpha_i)$ is C times larger than its value at its current minimum. We used the value C = 1.2.

Hansen's test problems used in numerical tests.

Set I of test problems, P. C. Hansen's Regularization Tools.

Nr	Problem	$cond_{100}$	selfadj	Description
1	baart	5e+17	no	(Artificial) Fredholm integral equation
				of the first kind
2	deriv2	1e+4	yes	Computation of the second derivative
3	foxgood	1e+19	yes	A problem that does not satisfy the dis-
				crete Picard condition
4	gravity	3e+19	yes	A gravity surveying problem
5	heat	2e+38	no	Inverse heat equation
6	ilaplace	9e+32	no	Inverse Laplace transform
7	phillips	2e+6	yes	An example problem by Phillips
8	shaw	5e+18	yes	An image reconstruction problem
9	spikes	3e+19	no	Test problem whose solution is a pulse
				train of spikes
10	wing	1e+20	no	Fredholm integral equation with discon-
				tinuous solution

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013 24 / 31

Set II of test problems, Numerical Algorithms 2008, 49, 1-4, pp 85-104.

Nr	Problem	$cond_{100}$	selfadj	Description
11	gauss	6e+18	yes	Test problem with Gauss matrix a_{ij} =
				$\sqrt{rac{\pi}{2\sigma}}e^{-rac{\sigma}{2(i-j)^2}}$, where $\sigma=0.01$
12	hilbert	4e+19	yes	Test problem with Hilbert matrix $a_{ij} =$
				$\frac{1}{i+j-1}$
13	lotkin	2e+21	no	Test problem with Lotkin matrix (same
				as Hilbert matrix, except $a_{1j}=1)$
14	moler	2e+4	yes	Test problem with Moler matrix $A =$
				$B^{T}B$, where $b_{ii} = 1$, $b_{i,i+1} = 1$, and
				$b_{ij} = 0$ otherwise
15	pascal	1e+60	yes	Test problem with Pascal matrix a_{ij} =
				$\binom{i+j-2}{i-1}$
16	prolate	1e+17	yes	Test problem with a symmetric, ill-
				conditioned Toeplitz matrix

Solution vectors for BRS-problems

Description	\overline{X}_i
constant	1
linear	$\frac{i}{N}$
quadratic	$\left(\frac{i-\left\lfloor\frac{N}{2}\right\rfloor}{\left\lceil\frac{N}{2}\right\rceil}\right)^2$
sinusoidal	$\sin \frac{2\pi(i-1)}{N}$
linear+sinusoidal	$\frac{i}{N} + \frac{1}{4}\sin\frac{2\pi(i-1)}{N}$
step function	$\begin{cases} 0, & \text{if } i \leq \lfloor \frac{N}{2} \rfloor \\ 1, & \text{if } i > \lfloor \frac{N}{2} \rfloor \end{cases}$

э

Averages (thick lines) and medians (thin lines) of error ratios in various rules in dependence of $\rho = \delta/||y - y_*||$

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013 27 / 31

Preferences of rules, in dependence of the accuracy of noise level information $\rho = \delta/||y - y_*||$

- T-method
 - If we are sure that $ho \in [1,2]$, then we recommend the rule Me.
 - In case $\rho \in [0.6, 2]$ we recommend the rule R(3/2, 1/2, 2), b = 0.023.
 - For even less information about the noise level, we recommend the rule QC.
- Landweber method
 - If we are sure that $ho \in [1, 1.1]$, then we recommend MEe-rule.
 - Otherwise we recommend the QC-rule.

- We propose for Tikhonov method and its modifications and for the methods of Lavrentiev and Landweber a family of rules R(q, I, k) for approximate noise level, where <u>q</u> ≤ q < ∞, I ≥ 0, k ≥ I/q, 2k, 2I ∈ N, (m+1)q ∈ N for T-method, 3q ∈ N for Lavrentiev method.
- If k > l/q and $\frac{\|y-y_*\|}{\delta} \le C = \text{const} \text{ as } \delta \to 0$, then we have $\|x_{\alpha} x_*\| \to 0 \ (\delta \to 0)$.
- Certain rules from the family gave in numerical experiments good results in case of several times over- or underestimated noise level.

Bibliography

- U. Hämarik, R. Palm, T. Raus. On minimization strategies for choice of the regularization parameter in ill-posed problems. *Numerical Functional Analysis and Optimization*, 30(9&10):924–950, 2009.
- R. Palm. Numerical comparison of regularization algorithms for solving ill-posed problems. PhD thesis, University of Tartu, 2010. http://hdl.handle.net/10062/14623.
- U. Hämarik, R. Palm, T. Raus. A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level. *Journal of Computational and Applied Mathematics*, 236(8):2146–2157, 2012.
- U. Hämarik, R. Palm, T. Raus. A family of rules for the choice of the regularization parameter in Lavrentiev method in the case of rough estimate of the noise level of the data. *Journal of Inverse and Ill-Posed Problems*, 20(5-6), 831 854, 2012.
- U. Hämarik, U. Kangro, R. Palm, T. Raus, U. Tautenhahn. Monotonicity of error of regularized solution and its use for parameter choice. Submitted to *Inverse Problems in Science and Engineering*

U. Hämarik, R. Palm, T. Raus (TÜ) On choice of the regularization parameter in Linköping, April, 2013 30 / 31

18th International Conference Mathematical Modelling and Analysis (MMA2013)

Fourth International Conference Approximation Methods and Orthogonal Expansions (AMOE2013)

May 27 - 30, 2013, Tartu, Estonia (http://www.ut.ee/mma-amoe2013/) The conference is dedicated to the 75th birthday of professor Gennadi Vainikko

Confirmed plenary speakers:

- Hermann Brunner (Hong Kong, China)
- Raimondas Ciegis (Lithuania)
- Zdzislaw Jackiewicz (USA)
- Barbara Kaltenbacher (Austria)
- Rainer Kress (Germany)
- M. Zuhair Nashed (USA)
- Helmut Neunzert (Germany)
- Sergei Pereverzyev (Austria)
- Ian H. Sloan (Australia)
- Gennadi Vainikko (Estonia)