An inverse problem for the wave equation with one measurement

Tapio Helin
Department of Mathematics and Statistics University of Helsinki
Linköping, April 5, 2013

Joint work with

Tapio Helin

Matti Lassas

Lauri Oksanen

An inverse problem for the wave equation with one measurement and the pseudorandom noise.
in Analysis and PDE 5 (2012), 887-912.

An inverse problem with a single measurement

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\Delta_{g}\right) u=f \quad \text { in } \mathbb{R}^{n} \times(0, T), \\
& \left.u\right|_{t<0}=0 . \\
& \text { Assume }\left.g\right|_{\mathbb{R}^{n} \backslash M} \text { is known. }
\end{aligned}
$$

Measure $\left.u\right|_{\partial M \times(0, T)}$ for a single source f supported on ∂M.

How to choose f to get useful information about $\left.g\right|_{M}$?

Single vs. many measurements

The problem of many measurements:
find g given the hyperbolic Dirichlet-to-Neumann map (DN-map).
$\Longrightarrow g$ is determined up to an isometry [Belishev, Kurylev '92 \& Tataru '95].
The problem is overdetermined, since, formally,

$$
\operatorname{dim}\left(\operatorname{ker}\left(\Lambda_{D N}\right)\right)=2 n-1 \quad \text { and } \quad \operatorname{dim}(g)=n
$$

Single measurement: $\left.u\right|_{\partial M \times(0, T)}$ depends on n variables. The problem here is formally determined.

Pseudo-random source and the measurement

We let

- $\left(x_{j}\right)_{j=1}^{\infty} \subset \partial M$ be a dense sequence of distinct points in ∂M and
- $\left(a_{j}\right)_{j=1}^{\infty} \subset \mathbb{R}$ such that $\sum_{j=1}^{\infty}\left|a_{j}\right|<\infty$.

We define the pseudo-random source by

$$
f(x, t)=\sum_{j=1}^{\infty} a_{j} \delta\left(x-x_{j}, t\right)=\sum_{j=1}^{\infty} a_{j} \delta_{j}, \quad(x . t) \in \mathbb{R}^{n+1}
$$

\Longrightarrow For any $p \in\left(1, \frac{n}{n-1}\right)$ and $\epsilon>0, f$ satisfies

$$
f \in H^{-1}(-\epsilon, \epsilon) \otimes H_{p}^{-1}\left(\mathbb{R}^{n}\right)
$$

- Compressed in time.
- In practise, could be imitated by a random point process.

Some notations and assumptions

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\Delta_{g}\right) u=\sum_{j=1}^{\infty} a_{j} \delta_{j} \quad \text { in } \mathbb{R}^{n} \times\left(T_{0}, T\right), \\
& \left.u\right|_{t<T_{0}}=0, T_{0}<0
\end{aligned}
$$

Here $g(x)=\left(g_{j k}(x)\right)_{j=1}^{n}$ is a smooth Riemannian metric:

- $|g|=\operatorname{det}(g)$,
- $g^{-1}=\left(g^{j k}(x)\right)_{j=1}^{n}$ and
- $\Delta_{g} u=|g|^{-1 / 2} \sum_{j, k=1}^{n} \partial_{j}\left(g^{j k}|g|^{1 / 2} \partial_{k} u\right)$.
(i) M is open and bounded and the boundary ∂M is smooth.
(ii) g is smooth and there are $c_{1}, c_{2}>0$ s.t.

$$
c_{1}|\xi|^{2} \leq \sum_{j . k=1}^{n} g_{j k}(x) \xi^{j} \xi^{k} \leq c_{2}|\xi|^{2}, \quad x, \xi \in \mathbb{R}^{n}
$$

The scattering relation and the main result

Denote by $\gamma_{x, \xi}$ the geodesic γ satisfying

$$
\gamma(0)=x, \quad \dot{\gamma}(0)=\xi,
$$

and define the exit time

$$
\tau(x, \xi):=\inf \left\{t \in(0, \infty] ; \gamma_{x, \xi} \in \partial M\right\}
$$

We define the scattering relation Σ on the set of non-trapped inward pointing unit vectors $D(\Sigma)=\left\{(x, \xi) \in \partial_{-} S M ; \tau(x, \xi)<\infty\right\}$ by

$$
\Sigma(x, \xi):=(\gamma(\tau), \dot{\gamma}(\tau), \tau), \quad \gamma=\gamma_{x, \xi}, \tau=\tau(x, \xi)
$$

Theorem

Let $a_{j}=2^{-2^{j}}$. If $T>\sup _{\partial_{-} S M} \tau$, then $\left.u\right|_{\partial M \times(0, T)}$ determines Σ. If there are trapped geodesics, we must take $T=\infty$ to determine $D(\Sigma)$ and Σ.

On the scattering relation

The scattering relation Σ is known to determine g (up to an isometry) in the following classes:

- non-trapping real analytic metrics [Vargo '10],
- non-trapping metrics close to an analytic metric [Stefanov, Uhlmann '09].

If (\bar{M}, g) is simple, Σ determines g using boundary rigidity results known in the following cases:

- dimension $n=2$ [Pestov, Uhlmann '05],
- metrics close to the Euclidean metric [Burago, Ivanov '10].

On the proof: continuation into the exterior domain

Solve u in the exterior domain:

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\Delta_{g}\right) u=0 \quad \text { in } \mathbb{R}^{n} \backslash \bar{M} \times\left(T_{0}, T\right) \\
& \left.u\right|_{\partial M \times\left(T_{0}, T\right)}=\text { measurement } \\
& \left.u\right|_{t=T_{0}}=\left.\partial_{t} u\right|_{t=T_{0}}=0
\end{aligned}
$$

Take w to be any smooth solution of

$$
\left(\partial_{t}^{2}-\Delta_{g}\right) w=0 \quad \text { in } \mathbb{R}^{n} \times\left(T_{0}, t_{0}\right)
$$

with $\operatorname{supp}\left(\left.w\right|_{t=t_{0}}\right), \operatorname{supp}\left(\left.\partial_{t} w\right|_{t=t_{0}}\right) \subset \mathbb{R}^{n} \backslash \bar{M}$.

Then we can determine the right hand side of

$$
\int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{\infty} a_{j} \delta_{j}\right) w d t d V=\int_{\mathbb{R}^{n}} \partial_{t} u w-\left.u \partial_{t} w d V\right|_{t=t_{0}}
$$

for any $t_{0} \leq T$.

Gaussian beams

The Gaussian beam solution $w=w_{\epsilon, y, \eta}$ of

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\Delta_{g}\right) w=0 \quad \text { in } \mathbb{R}^{n} \times\left(T_{0}, t_{0}\right), \\
& w\left(x, t_{0}\right)=\chi_{y}(x) W(0, x), \\
& \partial_{t} w\left(x, t_{0}\right)=-\chi_{y}(x) \partial_{t} W(0, x)
\end{aligned}
$$

satisfies $w\left(x, t_{0}-t\right)=O(\epsilon), x \neq \gamma_{y, \eta}(t)$.

By construction W solves the wave equation up to an error of order ϵ^{N} for a given N and is of form

$$
e^{i \theta(x, t) / \epsilon} a_{\epsilon}(x, t)
$$

The phase function θ satisfies

$$
\theta(\gamma(t), t)=0, \quad \operatorname{Im} \theta(x, t) \geq c_{W}(t) d_{g}(x, \gamma(t))^{2}, \quad c_{W}>0
$$

where $\gamma=\gamma_{y, \eta}$ is the geodesic with initial data (y, η).
To construct $\mathrm{W}(0, \mathrm{x})$ we need to know the metric g only in a neighborhood of x.

Indicator function

We write

$$
I\left(y, \eta, t_{0}\right):=\lim _{\epsilon \rightarrow 0} \int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{\infty} a_{j} \delta_{j}\right) w_{\epsilon, y, \eta} d t d V .
$$

Lemma

One can show that

$$
I\left(y, \eta, t_{0}\right)= \begin{cases}a_{j} b(y, \eta), & \gamma_{y, \eta}\left(t_{0}\right)=x_{j}, \\ 0, & \gamma_{y, \eta}\left(t_{0}\right) \neq x_{j}, \forall j .\end{cases}
$$

Here b is a non-vanishing smooth function depending on $\left.g\right|_{M}$.

Exit times

Denote $\Omega:=\mathbb{R}^{n} \backslash M$ and let
$(y, \eta) \in S \Omega$. We know, if $\gamma_{y, \eta}\left(t_{0}\right)=x_{j}$ for some j.

As $\left.g\right|_{\Omega}$ is known, we get the entering point and direction (x, ξ) and also the entering time of $\gamma_{y, \eta}$.
By varying t_{0} and (y, η), we get $\tau(x, \xi)$ for all geodesics which exit through some source point x_{j}.

We want to use density $\left(x_{j}\right)_{j=1}^{\infty} \subset \partial M$, to get $\tau(x, \xi)$ for all geodesics passing through M.

Exit times (cont.)

- If $\gamma_{x, \xi}$ intersects ∂M tangentially, τ can be discontinuous at (x, ξ).
- However, if $\gamma_{x, \xi}(t)$ is in the interior of M, then $\gamma_{\widetilde{x}, \widetilde{\xi}}(t)$ is also in the interior for nearby $(\widetilde{x}, \widetilde{\xi})$.
- As a limit, intersections may appear, but not disappear.
- This means that τ is lower semi-continuous on $\partial_{-} S M$.
- We get $\tau(x, \xi)$ for all $(x, \xi) \in \partial_{-} S M$ using density of the source points.

Exit point

So far we have only used the information

$$
I\left(y, \eta, t_{0}\right) \begin{cases}\neq 0, & \gamma_{y, \eta}\left(t_{0}\right)=x_{j}, \\ =0, & \gamma_{y, \eta}\left(t_{0}\right) \neq x_{j}, \forall j .\end{cases}
$$

Let us show next that the factor $b(y, \eta)$ can be separated in

$$
I\left(y, \eta, t_{0}\right)=a_{j} b(y, \eta), \quad \gamma_{y, \eta}\left(t_{0}\right)=x_{j},
$$

assuming that the weights of the point sources are $a_{j}=2^{-2^{j}}$.

Exit point (cont.)

- Let $\left(y_{0}, \eta_{0}\right)$ and t_{0} be such that $\gamma_{y_{0}, \eta_{0}}\left(t_{0}\right)=x_{j_{0}}$ for some unknown j_{0}. We want to find j_{0}.
- Choose $\left(y_{k}, \eta_{k}\right)$ and t_{k} converging to $\left(y_{0}, \eta_{0}\right)$ and t_{0} such that
- $\gamma_{y_{k}, \eta_{k}}\left(t_{k}\right)=x_{j_{k}}$ for some unknown j_{k}
- the known numbers $2^{-2^{j} k} b\left(y_{k}, \eta_{k}\right)$ converge to zero.
- Then $j_{k} \rightarrow \infty$, and

$$
\log _{2}\left(2^{-2^{j_{k}}}\left|b\left(y_{k}, \eta_{k}\right)\right|\right)=-2^{j_{k}}+\log _{2}\left|b\left(y_{k}, \eta_{k}\right)\right| .
$$

- $\log _{2}\left|b\left(y_{k}, \eta_{k}\right)\right|$ becomes asymptotically a small perturbation in the grid $\left(-2^{j}\right)_{j=1}^{\infty}$. Thus the limit perturbation $\log _{2}\left|b\left(y_{0}, \eta_{0}\right)\right|$ is determined.
- As $2^{-2^{j} 0} b\left(y_{0}, \eta_{0}\right)$ is known we can solve for j_{0}, whence the exit point $x_{j_{0}}$ is determined.

Exit direction

- If $\tau=\tau\left(x_{0}, \xi_{0}\right)<\infty, \gamma=\gamma_{x_{0}, \xi_{0}}$ is transverse to ∂M and $\gamma(\tau)$ is not conjugate to x_{0} along γ, then the function

$$
\Phi: \xi \mapsto \gamma_{x_{0}, \xi}\left(\tau\left(x_{0}, \xi\right)\right)
$$

is a local diffeomorphism
$S_{x_{0}} M \rightarrow \partial M$ near ξ_{0}, and
$\operatorname{grad}_{\partial M}\left(\left.\tau\left(x_{0}, \Phi^{-1}(z)\right)\right|_{z=\gamma(\tau)}=\left.\dot{\gamma}(\tau)^{\top}\right|_{\partial M}\right.$.

- Transversality is a generic property.
- As conjugate points are discrete on γ, we may choose $(y, \eta) \in S \Omega$ lying on γ, not conjugate to $\gamma(\tau)$, and employ the same construction.

Conclusions

- We have shown that $\left.u\right|_{\partial M \times(0, T)}$ determines
- the exit time τ,
- the exit point $\gamma(\tau)$,
- the exit direction $\dot{\gamma}(\tau)$.
- Thus $\left.u\right|_{\partial M \times(0, T)}$ determines the scattering relation Σ.
- Σ determines the metric g in some classes of metrics.
- Thus the formally determined inverse problem of finding n-dimensional unknown g given n-dimensional data $\left.u\right|_{\partial M \times(0, T)}$ is solvable in some classes of metrics.

