Increasing stability in the continuation and inverse problems

Victor Isakov Wichita State University, USA victor.isakov@wichita.edu

March 28, 2013

Victor Isakov Wichita State University, USAvictor.isakov@wichi Increasing stability in the continuation and inverse problems

The Cauchy Problem

 $(A + ck + k^2)u = f \text{ in } \Omega; \ u = u_0, \ \partial_{\nu}u = u_1 \text{ on } \Gamma \subset \partial \Omega.$ (1)

Here A is the linear partial differential operator of second order. Applications: boundary control and inverse problems. Uniqueness:

Holmgren-John (1900, 1950s): analytic coefficients; Carleman (1938): Carleman type estimates for non analytic coefficients; Calderon, Hörmander (1950-1970): systems, pseudo-convexity; Tataru (1995-2000).

(4月) (1日) (日)

Carleman estimates need pseudo-convexity and imply Hölder type stability.

F. John (1960): when $\Omega = \{1 < |x| < R\}, A = \Delta$ the best stability estimate which is uniform with respect to the wave numbers k is of logarithmic type, i.e. bad for numerics. We will demonstrate that in a certain sense stability is always improving when k grows.

(周) (ヨ) (ヨ)

Let $m \times m$ matrix functions $\mathbf{B}_{l}, l = 1, ..., n$, $\mathbf{C} = \mathbf{C}_{1}k + \mathbf{C}_{0} \in C^{1}(\bar{\Omega})$ and a positive $a \in C^{2}(\bar{\Omega})$. The Cauchy problem for the principally diagonal system

$$(\Delta + a^2 k^2 + \sum_{l=1}^{n} \mathbf{B}_l \partial_1 + \mathbf{C}) \mathbf{u} = \mathbf{f} \text{ in } \Omega, \qquad (2)$$

$$\mathbf{u} = \mathbf{u}_0, \partial_{\nu} \mathbf{u} = \mathbf{u}_1 \text{ on } \Gamma \subset \partial \Omega.$$
 (3)

・ 同 ト ・ ヨ ト ・ ヨ ト

Victor Isakov Wichita State University, USAvictor.isakov@wichi Increasing stability in the continuation and inverse problems

Let bounded $\Omega \subset \{0 < x_n < 1\}$ with Lipschitz $\partial\Omega$, $\bar{\Omega} \subset \{0 < x_n\}$ and $\Gamma = \partial\Omega \cap \{0 < x_n < 1\}$. Let $\Omega(d) = \Omega \cap \{x_n < 1 - d\}$. $\|u\|_{(m)}(\Omega)$ is the norm in the Sobolev space $H^m(\Omega)$. We let $F = \|\mathbf{f}\|(\Omega) + \|\mathbf{u}_0\|_{(1)}(\Gamma) + \|\mathbf{u}_1\|_{(0)}(\Gamma)$ and $F(k, d) = F + (k + d^{-1})\|\mathbf{u}_0\|_{(0)}(\Gamma)$. Constants $C = C(\Omega, \Gamma, a, \mathbf{B}_l, \mathbf{C}_1, \mathbf{C}_0)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Theorem

Let

$$0 < a + \nabla a \cdot x - \beta_n \partial_n a, \ \partial_n a \le 0 \text{ on } \overline{\Omega}. \tag{4}$$

Then there are $C,\lambda(d)\in(0,1)$ such that

$$\| \mathbf{u} \|_{(0)}(\Omega(d)) \leq C(F+k^{-1}(F^{\lambda_0}+d^{2\lambda_0}F^{\lambda_0}(k,d))M_1^{1-\lambda_0}+$$

$$k^{-1}d^{-\lambda_0}M_1^{1-\lambda(d)}F^{\lambda(d)}(k,d))$$
(5)

イロン イヨン イヨン イヨン

for all **u** solving (2), (3). Here $\lambda_0 = \frac{1}{3}$ and $\|\mathbf{u}\|_{(1)}(\Omega) \le M_1$.

Proof: I. (2007, 2009), Aralumallige, I. (2010) Applicable to isotropic elasticity and Maxwell systems. To prove (5) use stable extension of the Cauchy data and subtract it from **u**, then extend as zero onto $\Omega^* \setminus \Omega$, $\Omega^* = \{x : 0 < x_n < 1\}$. First let $a, \mathbf{B}_I, \mathbf{C}_1, \mathbf{C}_0$ depend only on x_n , and apply the Fourier transform **U** of **u** in $x' = (x_1, ..., x_{n-1})$ to obtain from (2)

$$\partial_n^2 \mathbf{U}(\xi', \mathbf{0}) + (a^2 k^2 - |\xi'|^2) \mathbf{U}(\xi', \mathbf{0}) + \dots = \mathbf{F}(\xi', \mathbf{0}) \text{ on } (0, 1),$$
$$\mathbf{U}(\xi', \mathbf{0}) = \partial_n \mathbf{U}(\xi', \mathbf{0}) = 0.$$

高 とう モン・ く ヨ と

(Scalarly) multiplying by
$$\partial_n \bar{\mathbf{U}} e^{-\tau x_n}$$
, using
 $\partial_n^2 \mathbf{U} \cdot \partial_n \bar{\mathbf{U}} + \partial_n^2 \bar{\mathbf{U}} \cdot \partial_n \mathbf{U} + (a^2 k^2 - |\xi'|^2) (\mathbf{U} \cdot \partial_n \bar{\mathbf{U}} + \bar{\mathbf{U}} \cdot \partial_n \mathbf{U}) =$
 $|\partial_n \mathbf{U}|^2 + (a^2 k^2 - |\xi'|^2) \partial_n |\mathbf{U}|^2,$

integrating by parts over (0, 1) and choosing large τ we obtain (Lipschitz) energy estimates

$$|\partial_n \mathbf{U}|^2(\xi, 1)ds + k^2 |\mathbf{U}|^2(\xi, 1) +$$
$$\int_0^1 |\partial_n \mathbf{U}|^2(\xi, s)ds + k^2 \int_0^1 |\mathbf{U}|^2(\xi, s)ds \leq C \int_0^1 |\mathbf{F}|^2(\xi, s)ds,$$
provided $\mathbf{U}(\xi', x_n) = 0$ if $|\xi'|^2 \geq (a^2 - \delta)k^2$ (low frequency part

 \mathbf{u}_{l}). ... denotes first order terms.

伺 と く き と く き と

To handle high frequency part \mathbf{u}_h we use

Theorem

Let the condition (4) be satisfied. Then there are $C, \lambda_1(d) \in (0, 1)$ such that

$$\|\mathbf{u}\|_{(1)}(\Omega(d)) \leq C(d^2F(k,d) + d^{-2}M_1^{1-\lambda_1(d)}F^{\lambda_1(d)}(k,d))$$
 (6)

for all \mathbf{u} solving (2), (3).

Proofs (1.(2009)) use a k independent Carleman type estimate obtained by using an associated with (2) wave equation.

イロン イボン イヨン イヨン

To complete the proof of (5) use that

$$\|\mathbf{u}_h\|_{(0)} \le Ck^{-1} \|\mathbf{u}_h\|_{(1)} \le Ck^{-1} \|\mathbf{u}\|_{(1)}$$

and combine Lipschitz stability for \mathbf{u}_l with (6). To use energy estimates for x'-independent coefficients: freeze coefficients in x' and use partition of the unity.

Let $\Omega = \{x : 1 < |x| < R\}$ in \mathbb{R}^2 and $\Gamma = \{|x| = 1\}$. In polar coordinates (ϕ, r) for a function

$$u(\phi, r) = \sum_{n=0}^{\infty} (u_{n1}(r) cosn\varphi + u_{n2}(r) sinn\phi)$$

we let

$$u^{N}(\phi, r) = \sum_{n=0}^{N} (u_{n1}(r) cosn\phi + u_{n2}(r) sinn\phi)$$

Victor Isakov Wichita State University, USAvictor.isakov@wichi Increasing stability in the continuation and inverse problems

(1日) (日) (日)

Lemma

Let
$$N = \frac{k}{\sqrt{2}}$$
 and $\Gamma_1 = \{x : |x| = R\}$. Then

$$\begin{aligned} R^{-2} \|\partial_{\nu} u^{N}\|_{(0)}^{2}(\Gamma_{R}) + \frac{1}{2}R^{-2} \|\partial_{\phi} u^{N}\|_{(0)}^{2}(\Gamma_{R}) + \frac{1}{4}R^{-2}k^{2}\|u^{N}\|_{(0)}^{2}(\Gamma_{R}) \leq \\ \|u_{1}^{N}\|_{(0)}^{2}(\Gamma) + k^{2}\|u_{0}^{N}\|_{(0)}^{2}(\Gamma). \end{aligned}$$

To prove: use energy estimates (multiply by $r^{-4}\partial_r u_{nj}$ and integrate by parts over Ω) for the Bessel's equations

$$r\partial_r(r\partial_r u_{nj}) + (k^2r^2 - n^2)u_{nj} = 0.$$

Lemma and next numerical examples from I.,Kindermann(2010)

・ロト ・日本 ・モート ・モート

Figure: Recovery of the Heavyside function on a circle for increasing k.

Victor Isakov Wichita State University, USAvictor.isakov@wichi Increasing stability in the continuation and inverse problems

A ■

Figure: Recovery of Gaussian distribution.

Victor Isakov Wichita State University, USAvictor.isakov@wichi Increasing stability in the continuation and inverse problems

< **₩** ► < **⇒** ►

< ∃⇒

æ

Let $\Omega \subset \mathbb{R}^{n-1} \times (0,1)$, $\Gamma = \partial \Omega \cap \{x_n = 0\}$, $\Gamma_1 = \partial \Omega \cap \{x_n = 1\}$. Let V be a neighborhood of $\partial \Omega \cap (\mathbb{R}^{n-1} \times [0,1])$ and $\omega = \Omega \cap V$. Let $\chi \in C^{\infty}$, $\chi = 0$ outside Ω , $\chi = 1$ on $\Omega \setminus V$. We define $v = \chi u$. We consider elliptic $Au = \sum_{j,m=1}^{n} a_{jm} \partial_j \partial_m u + ... + cku$ with C^1 -coefficients. We have $\sum_{j,m=1}^{n-1} a_{jm} \xi_j \xi_m \leq E^2 |\xi|^2$. Let

$$v_l(x) = \mathcal{F}^{-1}\chi(E)\mathcal{F}v(x)$$

where \mathcal{F} is the Fourier transform in $x' = (x_1, ..., x_{n-1})$ and $\chi(E)(\xi') = 1$ if $|\xi'| < (1 - \delta)\frac{k}{E}$ and $\chi(E) = 0$ if $|\xi'| > (1 - \delta)\frac{k}{E}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let u solve (1). Let $\theta > 0$. There are a monotone family of closed subspaces $H_{(2)}(\Omega; k)$ of $H_{(2)}(\Omega)$ with $\bigcup_k H_{(2)}(\Omega; k) = H_{(2)}(\Omega)$, linear continuous operators P_k from $H_{(2)}(\Omega)$ onto $H_{(2)}(\Omega; k)$ with $P_k u_l = u_l$ for $u_l \in H_{(2)}(\Omega; k)$, and a constants $C, C(\theta)$ such that $\|u\|_{(1)}(\Gamma_1 \setminus V) + \|\nabla u\|_{(0)}(\Gamma_1 \setminus V) + \|u\|_{(1)}(\Omega) \le$ $CF + C(\theta)k^{-\frac{1}{2}+\theta}||u - u_I||_{(2)}(\Omega))$ (7)where $u_l = P_k u_l$

 $F = \|f\|_{(0)}(\Omega) + \|u_0\|_{(1)}(\Gamma) + \|u_1\|_{(0)}(\Gamma) + \|u\|_{(1)}(\omega).$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Since conditions are invariant with respect to C^2 -diffeomorphisms, Ω can be replaced by its image under such diffeomorphism A proof of (7) follows from energy integrals: multiply

$$a_{nn}\partial_n^2 v + 2\sum_{j=1}^{n-1} a_{jn}\partial_j\partial_n v + \sum_{j,m=1}^{n-1} a_{jm}\partial_j\partial_m v + \dots + k^2 v = \chi f + A_1 u$$

by $\partial_n v e^{-\tau x_n}$ and integrate by parts over Ω) to yield

$$\begin{split} &\int_{\mathbb{R}^{n-1}}a_{nn}(\partial_n v)^2(,1)e^{-\tau}+k^2\int_{\mathbb{R}^{n-1}}v^2(,1)e^{-\tau}-\\ &\int_{\mathbb{R}^{n-1}}\sum_{j,m=1}^{n-1}a_{jm}\partial_j v\partial_m v(,1)e^{-\tau}+...\leq (data) \end{split}$$

Victor Isakov Wichita State University, USAvictor.isakov@wichi Increasing stability in the continuation and inverse problems

< 同 > < 臣 > < 臣 >

To bound the last term, let $v = v_l + v_h$ and use that

$$-\int_{\mathbb{R}^{n-1}}\sum_{j,m=1}^{n-1}a_{jm}\partial_jv_l\partial_mv_l\geq -(1-\delta)k^2\int_{\mathbb{R}^{n-1}}v_l^2.$$

The terms containing v_h are bounded by $Ck^{-\frac{1}{2}+\theta} ||u||_{(2)}$ by using Extension and Trace theorems and basic Fourier analysis.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Increasing stability for Schrödinger potential

Let Ω be in the unit ball of \mathbb{R}^3 . Assume $c \in L_{\infty}(\Omega)$ The Dirichlet problem

$$-\Delta u - k^2 u + cu = 0 \text{ in } \Omega, \ u = g \text{ on } \partial \Omega,$$

generates the Dirichlet-to-Neumann map $\Lambda_c g = \partial_{\nu} u$ on $\partial\Omega$. Uniqueness of c from Λ_c : Sylvester and Uhlmann (1987). Logarithmic stability (Alessandrini (1987)) is optimal (Mandache (2000)).

 Λ_c is a continuous linear operator from $H^{\frac{1}{2}}(\Gamma)$ into $H^{-\frac{1}{2}}(\Gamma)$ with the norm $||\Lambda_c||$. We assume that *c* is zero near $\partial\Omega$. C_0 generic constants (not depending on *c*, *k*, or Ω). Let $\varepsilon = ||\Lambda_{c_0} - \Lambda_{c_1}||, E = -\log \varepsilon > 2$. Let

$$||c_j||_{\infty}(\Omega) \leq M, \; ||c_j||_{1,\infty}(\Omega) \leq M_1, \; j = 1, 2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Increasing stability for Schrödinger potential

Theorem

There are C_0, C_Ω such that if

$$k \leq \frac{E^2}{2} - \frac{E}{4}, \ C_0^2 M < \sqrt{\frac{E^2}{2} - \frac{E}{4} - k} + 2k^2 + 4,$$

then

$$egin{aligned} ||c_2-c_1||_2(\Omega) &\leq C_0 M^3 (E+k)^{-rac{1}{4}} + rac{M_1}{\sqrt{E+k}} + \ &C_\Omega E^2 (E^2+M^2) arepsilon^{1-rac{1}{\sqrt{2}}}. \end{aligned}$$

If $E \le k, \ C_0^2 M^2 < k^2 + 2$, then

$$||c_2-c_1||_2(\Omega)\leq rac{C_0+M_1}{\sqrt{k+E+1}}+C_\Omega(k+M^2)karepsilon.$$

(4月) (4日) (4日)

Proofs

I.(2011): complex and real geometrical optics.

I., Nagayasu, Uhlmann, and Wang (2013): under additional smoothness of c one can use only complex geometrical optics and get better stability.

Isaev, R. Novikov (2012): use of scattering solutions.

向下 イヨト イヨト

Anisotropic (elasticity and Maxwell) systems can also be handled without convexity conditions.

Further research:

1) numerical evidence of the increasing stability for more complicated geometries and for systems;

2) weaker constraint in (7);

3) without (pseudo)convexity condition (like(4)) replace (6) by a logarithmic type estimate;

4) generalizatons to parabolic and hyperbolic equations (in time-like Cauchy problem);

5) increasing stability for a in $\Delta + k^2 a$ from all boundary measurements; numerical evidence (Natterer, Wubbeling (1995)), first results (Nagayasu, Uhlmann, Wang (2012)).

소리가 소문가 소문가 소문가

Aknowledgement

Supported in part by the Emylou Keith and Betty Dutcher Distinguished Professorship and the NSF grant DMS 10-08902. Papers are on the web site http://www.math.wichita.edu/ isakov/

・ 同 ト ・ ヨ ト ・ ヨ ト