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Inverse problem of thermoacoustic tomography

• In thermoacoustic tomography a short radio frequency pulse is
sent in a biological tissue. Some energy is absorbed. Malignant
legions absorb more energy than healthy ones. Then the tissue
expands and radiates a pressure wave.
Inverse Problem. Let Ω ⊂ R3, ∂Ω ∈ C 4 be a bounded domain,
QT = ∂Ω× (0,T ) ,ST = ∂Ω× (0,T ) .

utt = c2 (x) ∆u, x ∈ R3, t ∈ (0,T ) , (1)

u (x , 0) = f (x) , ut (x , 0) = 0. (2)

f (x) = 0, c (x) = 1, x ∈ Rn�Ω. (3)

Given the function g (x , t) ,

u |ST = g (x , t) , (4)

find the initial condition f (x) .
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Obtaining Neumann boundary condition

Step 1 (elementary). Find the normal derivative at
h (x , t) = ∂νu |ST . Solve the initial boundary value problem

utt = ∆u, x ∈ R3�Ω, t ∈ (0,T ) ,

u (x , 0) = 0, ut (x , 0) = 0, x ∈ Rn�Ω,

u | ST = g (x , t) .

Hence,
‖h‖L2(ST ) ≤ C ‖g‖H2(ST ) . (5)
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Published Results

1. Lipschitz stability via Carleman estimates for hyperbolic
equations and inequalities.

Klibanov and Malinsky, 1991 (the first result); Kazemi and
Klibanov, 1993; Klibanov and Timonov (book), 2004; Klibanov,
2005; Lasiecka, Triggiani and Zhang, 1999, 2004 (two papers;
applications in the control theory); Isakov (book, 2006); Romanov
2006 (two papers); Clason and Klibanov, 2007;Klibanov, survey:
”Carleman estimates for global uniqueness, stability and numerical
methods for coefficient inverse problems”, Journal of Inverse and
Ill-Posed Problems, published online, 2013; preprint is available on
arxiv.
Let x0 ∈ Ω,(

x − x0,∇
(
c−2 (x)

))
≥ α = const. > 0,∀x ∈ Ω. (6)

Particular case: c (x) ≡ 1. A slight modification of (6) implies
non-trapping.
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Lipschitz stability for hyperbolic inequality

Hyperbolic inequality∣∣wtt − c2 (x) ∆w
∣∣ ≤ A [|∇w |+ |wt |+ |w |+ |p|] in QT , (7)

wt (x , 0) = 0.

Then

‖w‖H1(QT ) ≤ C
[
‖w |ST ‖H1(ST ) + ‖∂νw |ST ‖L2(ST ) + ‖p‖L2(QT )

]
.

(8)
The trace theorem (5) and (8) imply that for thermoacoustic
tomography

‖f ‖L2(QT ) ≤ C ‖g‖H2(ST ) .

T = T (c) is sufficiently large. In the case c (x) ≡ 1,
T > diam (Ω) /2.
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Numerical methods

2. Numerical Methods.
Quasi-Reversibility of Lattes and Lions (1969), convergence via

Lipschitz stability: Klibanov and Malinsky, 1991 (theory).
Numerics and convergence: Klibanov and Rakesh, 1992; Clason
and Klibanov, 2007; Klibanov, Kuzhuget, Kabanikhin and
Nechaev, 2008. Agranovsky and Kuchment, 2007.
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Numerical methods

3. Explicit reconstruction formulae for the case of the wave
operator.

Good performance of numerical methods: Finch, Patch and
Rakesh, 2004; Finch, Haltmeier and Rakesh, 2007; Kunyansky,
2008; Kunyansky and Kuchment, 2008 (survey). Good numerical
performances.
• However, in all past publications some restrictive conditions were
imposed on the function c (x) , e.g. (6).
• The case of a general elliptic operator L (x) in utt = L (x) u was
not considered.
• Numerical methods for the case of a general elliptic operator
L (x) were not developed.
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Statements of Inverse Problems

Lu =
n∑

i ,j=1

ai ,j (x) uxixj +
n∑

j=1

bj (x) uxj + c (x) u, x ∈ Rn,(9)

µ1 |η|2 ≤
n∑

i ,j=1

ai ,j (x) ηiηj ≤ µ2 |η|2 ,∀x ∈ Rn,∀η ∈ Rn; (10)

µ1, µ2 = const. > 0, (11)

f ∈ Hs+5 (Rn) , ai ,j , bj , c ∈ C s+3 (Rn) , s =

[
n + 1

2

]
.(12)

Cauchy problem

utt = Lu, x ∈ Rn, t ∈ (0,∞) , (13)

u (x , 0) = f (x) , ut (x , 0) = 0. (14)
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Statements of Inverse Problems

Inverse Problem 1 (IP1, Complete Data Collection). Assume
that the function f (x) is unknown. Determine this function,
assuming that the following function ϕ1 (x , t) is known

u |S∞= ϕ1 (x , t) . (15)

Let
Ω ⊂ {x1 > 0} ,P = {x1 = 0} ,P∞ = P × (0,∞) .
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Statements of Inverse Problems

Inverse Problem 2 (IP2, Incomplete Data Collection).
Assume that the function f (x) is unknown. Determine this
function, assuming that the following function ϕ2 (x , t) is known

u |x∈P∞= ϕ2 (x , t) . (16)

Reznickaya transform (1974)

Lu = v (x , t) =
1√
πt

∞∫
0

exp

(
−τ

2

4t

)
u (x , τ) dτ.

vt = Lv , x ∈ Rn, t ∈ (0, 1) , (17)

v (x , 0) = f (x) . (18)
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Neumann boundary condition

Denote

Lϕ1 = ϕ1 (x , t) = v |S1 , Lϕ2 = ϕ2 (x , t) = v |P1 .

Let
ψ1 (x , t) = ∂νv |S1 , ψ2 (x , t) = ∂x1v |P1 . (19)

We obtain ∥∥ψ1

∥∥
C1+α,α/2(S1) ≤ C ‖ϕ1‖C2+α,1+α/2(S1) ,∥∥ψ2

∥∥
C1+α,α/2(P1) ≤ C ‖ϕ2‖C2+α,1+α/2(P1) ,
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Conclusions

1. Therefore, each problem IP1, IP2 is now replaced with the
Cauchy problem for the parabolic PDE with the lateral data.

2. To estimate f (x) , we now can use logarithmic stability
estimates of initial conditions of parabolic PDEs: Klibanov, 2006
(finite domain) and Klibanov and Tikhonravov, 2007 (infinite
domain).

3. Those estimates in turn were obtained via Carleman estimates.
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The data after the Reznickaya transform.

Let
‖ϕ1‖C4(ST ) ≤ δ exp

(
T 2/8

)
, ∀T > 0

‖ϕ2‖C4(PT ) ≤ δ exp
(
T 2/8

)
,∀T > 0,

where δ ∈ (0, 1) is a sufficiently small number. Then

‖ϕ1‖H1(S1) +
∥∥ψ1

∥∥
L2(S1) ≤ Cδ, (20)

‖ϕ2‖H1(G1) +
∥∥ψ2

∥∥
L2(G1)

≤ Cδ, (21)

where G ⊂ P is an arbitrary bounded domain.
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Logarithmic stability

Theorem 1. IP1 (complete data collection). Assume that the
upper bound C1 of the norm ‖∇f ‖L2(Ω) is given,

‖∇f ‖L2(Ω) ≤ C1.

Then there exists a constant M1 > 0 and a sufficiently small
number δ1 ∈ (0, 1) such that if in (20) the number δ ∈ (0, δ1),
then the following logarithmic stability estimate is valid

‖f ‖L2(Ω) ≤
M1C1√

ln
[
(C1δ)−1

] .
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Logarithmic stability

Theorem 2. IP2 (incomplete data collection). Assume that
the upper bound C1 of the norm ‖f ‖C2+α(Ω) be given, i.e.

‖f ‖C2+α(Ω) ≤ C2.

Then there exists a constant M2 > 0 and a sufficiently small
number δ2 ∈ (0, 1) such that if the number δ in (21) is so small
that δ ∈ (0, δ2), then

‖f ‖L2(Ω) ≤
M2C2√

ln
[
(C2δ)−1

] .
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Extension to the integral inequality

These results are extended via Carleman estimates to the case of
integral inequalities like, e.g.∫∫

Q1

(vt − Lv)2 dxdt ≤ K ,K = const. > 0. (22)

We need (22) for the proof of convergence of the
Quasi-Reversibility Method.
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Quasi-Reversibility Method

Minimize the following Tikhonov functional

Jγ (v) = ‖vt − Lv‖2
L2(Q1) + γ ‖v‖2

H4(Q1) ,

subject to the boundary conditions

v |S1= ϕ1, ∂νv |S1= ψ1.

Assume the existence of the function F ∈ H2,1 (Q1) such that

F |S1= ϕ1, ∂νF |S1= ψ1.
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Quasi-Reversibility Method

Let
w = v − F , F̃ = LF − Ft ,

w |S1= ∂νw |S1= 0.

Then

Jγ (w) =
∥∥∥wt − Lw − F̃

∥∥∥2

L2(Q1)
+ γ ‖w‖2

H4(Q1) → min .

Lemma 1. For every function F̃ ∈ L2 (Q1) and every γ > 0 there

exists unique minimizer wγ = wγ
(

F̃
)
∈ H4

0 (Q1) of the functional

Jγ . Furthermore, the following estimate holds

‖wγ‖H4(Q1) ≤
1√
2γ

∥∥∥F̃
∥∥∥
L2(Q1)

.
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Quasi-Reversibility Method

Let
fγ (x) = wγ (x , 0)

Let w∗ be the exact solution for the exact data F ∗.
Let the error estimate be∥∥∥F̃ − F ∗

∥∥∥
L2(Q1)

≤ ω.
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Quasi-Reversibility Method

Convergence Theorem. Let γ = γ (ω) = ω ∈ (0, 1). Let the
function wγ(ω) ∈ H4

0 (Q1) be the unique minimizer of the

functional Jγ (Lemma 1). Let ‖w∗‖H4(Q1) ≤ Y , where the upper
estimate Y = const. ≥ 1 is given. Then there exist a constant
M3 > 0 and a sufficiently small number ω0 ∈ (0, 1) such that if ω
is so small that

(
Y 2 + 1

)
ω ∈ (0, ω0) , then the following

logarithmic convergence rate is valid∥∥fγ(ω) − w∗ (x , 0)
∥∥
L2(Ω)

≤ M3Y√
ln (ω−1)

.
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Phaseless Inverse Scattering Problems in 3-d

Klibanov: arxiv 1303.0923v1 [math-ph] 5 Mar 2013

∆xu + k2u − q (x) u = −δ (x − x0) , x ∈ R3,

u (x , x0, k) = O

(
1

|x − x0|

)
, |x | → ∞,

3∑
j=1

xj − xj ,0
|x − x0|

∂xj u (x , x0, k)−iku (x , x0, k) = o

(
1

|x − x0|

)
, |x | → ∞.

q (x) ∈ C 2
(
R3
)
, q (x) = 0 for x ∈ R3�G ,

q (x) ≥ 0.

Bε (y) = {x : |x − y | < ε}
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Phaseless Inverse Scattering Problems in 3-d

Let G1 ⊂ R3 be a convex bounded domain with its boundary
∂1G = S ∈ C 1. Let ε ∈ (0, 1) be a number. We assume that

Ω ⊂ G1 ⊂ G , dist (S , ∂G ) > 2ε and dist (S , ∂Ω) > 2ε.

Inverse Problem 3 (IP3). Suppose that the function q (x) is
unknown for x ∈ Ω and known for x ∈ R3�Ω. Also, assume that
the following function f1 (x , x0, k) is known

f1 (x , x0, k) = |u (x , x0, k)| , ∀x0 ∈ S ,∀x ∈ Bε (x0) , x 6= x0,∀k ∈ (a, b) ,

where (a, b) ⊂ R is an arbitrary interval. Determine the function
q (x) for x ∈ Ω.
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Phaseless Inverse Scattering Problems in 3-d

Theorem (uniqueness). Consider IP3. Let two potentials q1 (x)
and q2 (x) be such that q1 (x) = q2 (x) = q (x) for x ∈ R3�Ω. Let
u1 (x , x0, k) and u2 (x , x0, k) be corresponding solutions of the
above forward problem Assume that

|u1 (x , x0, k)| = |u2 (x , x0, k)| , ∀x0 ∈ S ,∀x ∈ Bε (x0) , x 6= x0,∀k ∈ (a, b) .

Then q1 (x) ≡ q2 (x) .
• Applications in studies of reflectivity of neutrons.

• Three more phaseless inverse problems are considered in that
preprint.
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Previous Uniqueness Results

P (x) =

∣∣∣∣∣∣
∫∫
Ω

h (ξ) e ixξdξ

∣∣∣∣∣∣
2

, x ∈ Rn, n = 1, 2.

• h (x) = A (x) exp (iϕ (x)) , where A (x) = |h (x)|

• Either A (x) is known and ϕ (x) is unknown, or vice versa.

• This is Phase Retrieval Problem. Klibanov 1985, 1987 (two
papers), 2006.

• Phaseless inverse scattering in 1-d. Klibanov, 1989; Klibanov
and Sacks, 1992. Survey: Klibanov, Sacks and Tikhonravov, 1995.
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Diffusion Optical Tomography

∆u − a (x) u = −δ (x− x0) , x, x0 ∈ R2, (23)

lim
|x|→∞

u (x, x0) = 0. (24)

• a (x) = 3 (µ′sµa) (x) , where µ′s is the reduced scattering
coefficient and µa is the absorption coefficient.
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Diffusion Optical Tomography

Inverse Problem. Let k = const. > 0 be given. Suppose that in
(23) the coefficient a (x) satisfies the following conditions

a ∈ C 1
(
R2
)
, a (x) ≥ k2 and a (x) = k2 for x ∈ R2�Ω.

Let L ⊂
(
R2�Ω

)
be a straight line and Γ ⊂ L be an unbounded

and connected subset of L. Determine the function a (x) inside of
the domain Ω, assuming that the constant k is given and also that
the following function ϕ (x, x0) is given

u (x, x0) = ϕ (x, x0) ,∀ (x, x0) ∈ ∂Ω× Γ.
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Diffusion Optical Tomography
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Diffusion Optical Tomography
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Diffusion Optical Tomography

inclusion number True contrast Computed contrast Relative error

1 2 2.11 5.6%
2 3 2.9 3.2%
3 4 4.22 5.7%
4 ∞ 6.69 unknown

Table: Computed and correct inclusion/background contrasts and
the relative errors
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