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We consider the Laplacian ∆M on a rotationally symmetric
manifolds M, see Fig. 1. Assume that M = [0, 1]× Y is a
cylindrical manifold with warped product metric

g = d2x + r2(x)g0, (1)

where the radius r(x) is given by

r = e
2
m
Q , Q(x) =

∫ x

0
q(t)dt, x ∈ [0, 1],

q ∈W 0
1 =

{
q, q′ ∈ L2(0, 1) ; q(0) = q(1) = 0

}
Here (Y , g0) is a compact m-dimensional Riemannian manifold
(without boundary or with boundary). We call Y the transversal
manifold. We need to mention that we work mostly with q, but
that q determines the geometry (i.e., the function r and hence all
derived quantities up to two integration constants).
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Figure: 1, The surface Y is a circle S1.

We discuss the manifold Y and the corresponding Laplacian ∆Y :
Firstly, Y has not boundary. For example, we have a circle

Y = S1, see Fig. 1. The operator ∆Y has eigenvalues
E1 = 0,E2 = 1,E3 = 1,E4 = 22, .....
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Figure: 2. The surface of revolution of an angle α < π

Secondly, Y has a boundary. For example, we have a half of the
circle, we can write Y = [0, 1], see Fig. 2. In the case of the
Neumann boundary conditions the operator −∆Y has eigenvalues
E1 = 0,E2 = π2, .... For the Dirichlet boundary conditions the
operator −∆Y has eigenvalues E1 = π2,E2 = (2π)2, ....



We consider the Laplacian ∆M in L2(M) and for simplicity,
below we consider only Dirichlet b.c. f |∂M = 0. In fact, we have
results for more general case.

The Laplacian −∆Y on Y has discrete spectrum denoted by
0 6 E1 6 E2 6 E3 6 ... with corresponding orthonormal family of
eigenfunctions Ψν , ν > 1 in L2(Y ). The Laplacian ∆M on M has
the form

∆M =
1

rm
∂x rm∂x +

∆Y

r2
.

Using the fact that −∆Y has discrete spectrum Eν , ν > 1, we see
that the Laplacian on (M, g) acting in L2(M) is unitarily
equivalent to a direct sum of 1-dimensional operators ∆ν :

−∆M w ⊕∞ν=1 ∆ν . (2)

Here ∆ν acts in the space L2([0, 1], rm(x)dx) and given by

∆ν f = − 1

rm
(rmf ′)′ +

Eν
r2
,

f = f (x), x ∈ [0, 1], f (0) = f (1) = 0,
(3)



The problem is:
Determine r(x) from the knowledge of the spectrum of ∆ν .
The inverse spectral problem consists of the following parts:
i) Uniqueness. Prove that the spectral data uniquely determine

the potential.
ii) Characterization. Give conditions for some data to be the

spectral data of some potential.
iii) Reconstruction. Reconstruct the potential from spectral data.

Inverse problems for surfaces of revolution were discussed by
Brüning-Heintze [84], Zelditch [98], Gurarie [95]. All these authors
considered only Uniqueness.

We solve i)-iii). Our theorem is the first result about
Characterization.



Introduce the space `2α of real sequences h = (hn)∞1 , equipped
with the norm

‖h‖2α =
∑
n>1

n2α|hn|2, α ∈ R, and `2 = `20.



We consider the Sturm-Liouville operator ∆ν , ν > 1 on the
interval [0, 1], with the Dirichlet boundary conditions:

∆ν f = − 1

rm
(rmf ′)′ +

Eν
r2

f , f (0) = f (1) = 0,

Denote by µn = µn(q), n > 1 the eigenvalues of ∆ν . It is well
known that all µn are simple and satisfy

µn = µ0n + c0 + µ̃n, where (µ̃n)∞1 ∈ `2, c0 =

∫ 1

0

(
q2 +

Eν
r2

)
dt.

Here (πn)2, n > 1 are the unperturbed eigenvalues for the case
r = 1. Following Trubowitz we introduce the norming constants
(“additional” spectral data)

κn(q) = log

∣∣∣∣∣ r
m
2 (1)f ′n(1, q)

f ′n(0, q)

∣∣∣∣∣ , n > 1,

here fn is the n-th eigenfunction, f ′n(0, q) 6= 0 and f ′n(1, q) 6= 0.



Theorem
Consider the inverse problem for ∆ν for fixed ν > 1 with

Dirichlet b.c. The the mapping

Ψ : q 7→ ((µ̃n(q))∞n=1 ; (κn(q))∞n=1)

is a real-analytic isomorphism between W 0
1 and M1 × ` 21 , where

M1 =
{

(hn)∞n=1 ∈ `2 : µ01+h1<µ
0
2+h2< . . .

}
⊂ `2.

In particular, in the symmetric case the spectral mapping

µ̃ : W 0,odd
1 →M1, given by q → µ̃ (4)

is a real real analytic isomorphism between the Hilbert space
W 0,odd

1 = {q ∈W 0
1 : q(x) = −q(1− x), ∀ x ∈ (0, 1)} and M1.



Few words about Proof. Consider the Sturm-Liouville operator
∆ν in L2((0, 1); rmdx), r

m
2 = eQ , Q =

∫ x
0 q(t)dt, given by

∆ν f = − 1

rm
(rmf ′)′ +

Eν
r2

f , f (0) = f (1) = 0 r
m
2 = eQ ,

We define the simple unitary transformation U by

U : L2([0, 1], rmdx)→ L2([0, 1], dx), y = U f = r
m
2 f .

We transform ∆ν into the Schrödinger operator Sp in L2(0, 1) by

U (∆ν)U −1 = − 1

r
m
2

∂x rm∂x
1

r
m
2

+
Eν
r2

= Sp+c0, Spy = −y ′′+py ,

with b.c. y(0) = y(1) = 0, where

p = P(q) = q′+q2+
Eν
r2
−c0, c0 =

∫ 1

0

(
q′+q2+

Eν
r2

)
dx . (5)

Inverse problems for the operator Sp = − d2

dx2
+ p with different b.c.

are well understood: Trubowitz+ coauthors for Dirichlet b.c., and
Chelkak-Korotyaev for other b.c.. Thus we have the well
understood mapping p → { eigenvalues + norming constants }
and we need to know the image of p ∈ P(W 0

1 ) =???



Theorem
The mapping P : W 0

1 →H0 = {p ∈ L2(0, 1),
∫ 1
0 pdx = 0} given

by p = P(q) = q′ + q2 + Eν

r2
− c0, c0 =

∫ 1
0

(
q′ + q2 + Eν

r2

)
dx is a

real analytic isomorphism between the Hilbert spaces W 0
1 and H0.

In order to prove this Theorem we use the ”direct approach” of
Kargaev-Korotyaev [97] based on nonlinear functional analysis.
Recall the basic theorem of this approach.

Theorem
Let H,H1 be real separable Hilbert spaces equipped with norms
‖ · ‖, ‖ · ‖1. Suppose that the map f : H → H1 satisfies:
i) f is real analytic and the operator d

dq f has an inverse for ∀q ∈ H,
ii) there exists an increasing function η : [0,∞)→ [0,∞), η(0) = 0,
such that ‖q‖ 6 η(‖f (q)‖1) for all q ∈ H,
iii) there exists a linear isomorphism f0 : H → H1 such that the
mapping f − f0 : H → H1 is compact.
Then f is a real analytic isomorphism between H and H1.


