Determination of heat transfer coefficients

D. Lesnic
Department of Applied Mathematics, University of Leeds, UK

Heat Transfer Law

$$
k \frac{\partial T}{\partial n}=\sigma\left(T^{\text {ambient }}-T\right)^{\beta}+B, \quad \text { on the boundary }
$$

where
$T=$ temperature
$T^{\text {ambient }}=$ ambient temperature
$k=$ thermal conductivity
$n=$ outward unit normal to the boundary
$B=$ additional heat flux
$\sigma=$ heat transfer coefficient (may be space-, time-, or temperature-dependent)
$\beta=1$ for convection; $\beta=4$ for radiation.

Outline

Mathematical formulation

- Space-dependent heat transfer coefficient
- Time-dependent heat transfer coefficient
- Temperature-dependent heat transfer coefficient

Boundary element method (BEM)
Numerical Results and Discussion

Conclusions

1. Space-dependent Heat Transfer Coefficient

Consider the inverse problem which requires finding the temperature $T \in C^{2,1}(Q)$ and the space-dependent heat transfer coefficient $\sigma \in C(\partial \Omega), \sigma \geq 0$, satisfying the heat equation

$$
\frac{\partial T}{\partial t}(x, t)=\nabla^{2} T(x, t), \quad(x, t)=\Omega \times\left(0, t_{f}\right]=: Q
$$

subject to the initial condition

$$
T(x, 0)=T_{0}(x), \quad x \in \Omega
$$

the Robin boundary condition

$$
\frac{\partial T}{\partial n}(x, t)+\sigma(x) T(x, t)=B(x, t), \quad(x, t) \in \partial \Omega \times\left(0, t_{f}\right)
$$

and the instant temperature observation at the fixed time $t^{0} \in\left(0, t_{f}\right)$:

$$
T\left(x, t^{0}\right)=\chi(x), \quad x \in \partial \Omega
$$

or, the additional integral time-average temperature observation

$$
\int_{0}^{t_{f}} \omega(t) T(x, t) d t=\chi(x), \quad x \in \partial \Omega
$$

where $\omega \in L_{1}\left(0, t_{f}\right)$ is given.

Boundary Element Method (BEM)

Using the BEM we reduce the inverse problem to nonlinear boundary integral equations for the boundary temperature and the heat transfer coefficient:

$$
\begin{array}{r}
\frac{1}{2} T(x, t)=\int_{\Omega} G(x, t ; y, 0) T_{0}(y) d \Omega(y) \\
+\int_{0}^{t} \int_{\partial \Omega} B(\xi, \tau) G(x, t ; \xi, \tau) d S(\xi) d \tau \\
-\int_{0}^{t} \int_{\partial \Omega} T(\xi, \tau)\left[\frac{\partial G}{\partial n(\xi)}(x, t ; \xi, \tau)+\sigma(\xi) G(x, t ; \xi, \tau)\right] d S(\xi) d \tau \\
(x, t) \in \partial \Omega \times\left(0, t_{f}\right),
\end{array}
$$

where

$$
G(x, t ; \xi, \tau)=\frac{H(t-\tau)}{[4 \pi(t-\tau)]^{n / 2}} \exp \left(-\frac{\|x-\xi\|^{2}}{4(t-\tau)}\right)
$$

is the fundamental solution of the heat equation and H is the Heaviside function.

Numerical Example

Find the temperature $T(x, t)\left(=x^{2}+2 t\right)$ and the space-dependent heat transfer coefficient(s) $0 \leq \sigma_{0}(=1), 0 \leq \sigma_{1}(=1)$ solving the problem

$$
\begin{array}{r}
\frac{\partial T}{\partial t}(x, t)=\frac{\partial^{2} T}{\partial x^{2}}(x, t), \quad(x, t)=(0,1) \times\left(0, t_{f}=1\right], \\
T(x, 0)=x^{2}, \quad x \in[0,1], \\
-\frac{\partial T}{\partial x}(0, t)+\sigma_{0} T(0, t)=2 t, \quad t \in(0,1), \\
\frac{\partial T}{\partial x}(1, t)+\sigma_{1} T(1, t)=2 t+3, \quad t \in(0,1),
\end{array}
$$

and the additional 1% noisy measurement conditions

$$
T\left(0, t^{0}\right)=2 t^{0} * 1.01, \quad T\left(1, t^{0}\right)=\left(1+2 t^{0}\right) * 1.01,
$$

or

$$
\int_{0}^{t_{f}} T(0, t) d t=1 * 1.01, \quad \int_{0}^{t_{f}} T(1, t) d t=2 * 1.01
$$

Using the BEM with $N=N_{0}=40$ elements, in the latter case we have obtained: $\sigma_{0}=0.9875$ and $\sigma_{1}=0.9777$. In the former case see the figure on the next slide.

Figure 6. The constants $\sigma_{0}(\triangle)$ and $\sigma_{1}(\square)$ for Problem I, as a function of $i_{0}=1, \ldots N=40$, when $\left(N_{0}, N\right)=(40,40)(1 \%$ noise $)$.

2. Time-dependent Heat Transfer Coefficient

Consider the inverse problem which requires finding the temperature $T \in C^{2,1}(Q)$ and the time-dependent heat transfer coefficient $\sigma \in C\left(\left[0, t_{f}\right]\right)$ satisfying the heat equation

$$
\frac{\partial T}{\partial t}(x, t)=\nabla^{2} T(x, t), \quad(x, t)=\Omega \times\left(0, t_{f}\right]=: Q
$$

subject to the initial condition

$$
T(x, 0)=T_{0}(x), \quad x \in \Omega,
$$

the Robin boundary condition

$$
\frac{\partial T}{\partial n}(x, t)+\sigma(t) T(x, t)=B(x, t), \quad(x, t) \in \partial \Omega \times\left(0, t_{f}\right)
$$

and the temperature observation at the fixed point $x_{0} \in \partial \Omega$:

$$
T\left(x_{0}, t\right)=\bar{\chi}(t), \quad t \in\left[0, t_{f}\right]
$$

or, the additional boundary integral temperature observation

$$
\int_{\partial \Omega} \nu(x) T(x, t) d S(x)=\bar{\chi}(t), \quad t \in\left[0, t_{f}\right],
$$

where $\nu \in L_{1}(\partial \Omega)$ is given.

Numerical Example

Find the temperature $T(x, t)\left(=x^{2}+2 t+1\right)$ and the time-dependent heat transfer coefficient $\sigma(t)(=t)$, solving the problem

$$
\begin{array}{r}
\frac{\partial T}{\partial t}(x, t)=\frac{\partial^{2} T}{\partial x^{2}}(x, t), \quad(x, t)=(0,1) \times\left(0, t_{f}=1\right], \\
T(x, 0)=x^{2}, \\
x \in[0,1], \\
-\frac{\partial T}{\partial x}(0, t)+\sigma(t) T(0, t)=2 t^{2}+t, \quad t \in(0,1), \\
\frac{\partial T}{\partial x}(1, t)+\sigma(t) T(1, t)=2\left(t^{2}+t+1\right), \quad t \in(0,1),
\end{array}
$$

and the additional $\rho \%$ noisy measurement condition

$$
T(0, t)=2 t+1+\epsilon, \quad t \in(0,1),
$$

where ρ denotes the percentage of noise and ϵ are random variables taken from a Gaussian normal distribution with zero mean and stadard deviation $3 \rho \%$.

Using the BEM with $N=N_{0}=40$ elements and various amounts of noise $\rho \% \in\{1,3,5\} \%$ we obtain the figure on the next slide.

Figure 11. The analytical and numerical heat transfer coefficients $\sigma(t)$ for Problem II, as functions of time t, for various amounts of noise.

2'. Time-dependent Heat Transfer Coefficient

Consider the inverse problem which requires finding the pair solution $(T(x, t), \sigma(t))=$ (temperature, heat transfer coefficient) satisfying the heat equation

$$
\frac{\partial T}{\partial t}(x, t)=\nabla^{2} T(x, t), \quad(x, t)=\Omega \times\left(0, t_{f}\right]=: Q
$$

subject to the initial condition

$$
T(x, 0)=T_{0}(x), \quad x \in \Omega,
$$

the Robin boundary conditions

$$
\frac{\partial T}{\partial n}(x, t)+\sigma(t) g(T(x, t))=B(x, t), \quad(x, t) \in \partial \Omega \times\left(0, t_{f}\right)
$$

and the additional boundary integral (non-local) observation

$$
\int_{\partial \Omega} \Phi(T(x, t)) d S(x)=E(t), \quad t \in\left[0, t_{f}\right],
$$

where $\Phi(T)=\int^{T} g(s) d s$ denotes a primitive (anti-derivative) of g.

Remarks:

- Of physical interest is the linear convection case $g(T)=T$, and the nonlinear radiative case $g(T)=T^{3}|T|$.
- Multiplying with T the heat equation and integrating over Ω results in

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t}\left(\int_{\Omega} T^{2}(x, t) d \Omega\right)+\int_{\Omega}|\nabla T|^{2} d \Omega=\int_{\partial \Omega} T h d S \\
-\sigma(t) \int_{\partial \Omega} g(T) T d S
\end{array}
$$

and one could recognise the last term as an 'energy' term $(\alpha+1) \sigma(t) E(t)$ for the nonlinearity $g(T)=T^{\alpha}$.

Let us now consider the weak solutions T and σ of the inverse problem defined in the following spaces of functions:

$$
\begin{array}{r}
T \in C\left(\left[0, t_{f}\right], L_{2}(\Omega)\right) \cap L_{2}\left(\left(0, t_{f}\right), H^{1}(\Omega)\right) \\
\text { with } \partial_{t} T \in L_{2}\left(\left(0, t_{f}\right), L_{2}(\Omega)\right) \\
\sigma \geq 0 \text { and } \sigma \in C^{1}\left[0, t_{f}\right] \text { with } \sigma^{\prime} / \sigma \text { bounded. }
\end{array}
$$

We also require that the input data be such that:

$$
\begin{gathered}
T_{0} \in H^{2}(\Omega), \quad B, B_{t} \in L_{2}\left(\left(0, t_{f}\right), L_{2}(\partial \Omega)\right) \\
\quad g^{\prime} \geq 0, \quad g(0)=0, \quad|g(s)| \leq C\left(|s|^{\alpha}+1\right)
\end{gathered}
$$

for some non-negative constants C_{0}, C and α.

Definition. For a given $\sigma \in L_{2}\left(0, t_{f}\right), \sigma \geq 0$, a function $T_{\sigma} \in L_{2}\left(\left(0, t_{f}\right), H^{1}(\Omega)\right)$ with $\partial_{t} T \in L_{2}\left(\left(0, t_{f}\right), L_{2}(\Omega)\right)$ is called a weak solution to the direct problem if $T_{\sigma}(x, 0)=T_{0}(x)$ and

$$
\begin{aligned}
&\left(\partial_{t} T_{\sigma}, \phi\right)+\left(\partial_{x} T_{\sigma}, \partial_{x} \phi\right)+ \sigma\left(g\left(T_{\sigma}\right), \phi\right)_{\partial \Omega}=(B, \phi)_{\partial \Omega}, \\
& \forall \phi \in H^{1}(\Omega), \text { a.e. in }\left(0, t_{f}\right) .
\end{aligned}
$$

Theorem. (unique solvability of the direct problem)
There exists a unique weak solution to the direct problem.

Existence and Uniqueness Theorem. (Slodicka and Lesnic (2010))
Assume that a compatibility condition at $t=0$ holds and that $E^{\prime}(t) \geq \delta_{0}>0,\left|E^{\prime \prime}(t)\right| \leq C_{0}, \forall t \in\left[0, t_{f}\right]$ and that

$$
0<E(t) \leq \int_{\partial \Omega} \Phi\left(T^{0}(x, t)\right) d S(x), \quad \forall t \in\left[0, t_{f}\right]
$$

where T^{0} is the unique weak solution of the direct problem with $\sigma=0$.
Then there exists a unique solution to the inverse problem.
The continuous dependence of the solution on the input energy data $E(t)$ can (probably) be established under the additional assumption that σ is bounded. This is an usual additional source condition which when imposed onto the solution of some ill-posed problems restore its stability with respect to noise added into the input data.

We employ the BEM

$$
\begin{array}{r}
\frac{1}{2} T(x, t)=\int_{\Omega} G(x, t ; y, 0) T_{0}(y) d \Omega(y) \\
+\int_{0}^{t} \int_{\partial \Omega}[B(\xi, \tau)-g(T(\xi, \tau)) \sigma(\tau)] G(x, t ; \xi, \tau) d S(\xi) d \tau \\
-\int_{0}^{t} \int_{\partial \Omega} T(\xi, \tau) \frac{\partial G}{\partial n(\xi)}(x, t ; \xi, \tau) d S(\xi) d \tau \\
\forall(x, t) \partial \Omega \times\left(0, t_{f}\right]
\end{array}
$$

and

$$
\int_{\partial \Omega} \Phi(T(\xi, t)) d S(\xi)=E(t), \quad \forall t \in\left(0, t_{f}\right]
$$

Figure 2. The analytical and numerical boundary temperatures (a) $T(0, t)$ and (b) $T(1, t)$, the heat

3. Temperature-dependent Heat Transfer Coefficient

Consider the inverse problem of finding the temperature $T \in C^{3,3 / 2}(\bar{Q})$ and the space-dependent heat transfer coefficient $\sigma \in C^{1}\left(\left[\theta_{1}, \theta_{2}\right]\right)$, where $\theta_{1}=\min _{\bar{Q}} u(x, t)$ and $\theta_{2}=\max _{\bar{Q}} u(x, t)$ are assumed known a priori and satisfy $\theta_{1} \theta_{2}>0$. We also assume

$$
\bar{\chi}(0) \leq u(x, t) \leq \bar{\chi}(t), \quad(x, t) \in \partial \Omega \times\left[0, t_{f}\right] .
$$

In addition, the pair solution $(T, \sigma(T))$ satisfies the heat equation

$$
\frac{\partial T}{\partial t}(x, t)=\nabla^{2} T(x, t), \quad(x, t)=\Omega \times\left(0, t_{f}\right]=: Q
$$

subject to the initial condition

$$
T(x, 0)=T_{0}(x), \quad x \in \Omega
$$

the Robin boundary condition

$$
\frac{\partial T}{\partial n}(x, t)+\sigma(T(x, t)) T(x, t)=B(x, t), \quad(x, t) \in \partial \Omega \times\left(0, t_{f}\right)
$$

and the temperature observation at the fixed point $x_{0} \in \partial \Omega$:

$$
T\left(x_{0}, t\right)=\bar{\chi}(t), \quad t \in\left[0, t_{f}\right] .
$$

Uniqueness Theorem. (Rundell and Yin (1990))
If $B \in C^{2,2}\left(\partial \Omega \times\left[0, t_{f}\right]\right)$, and $\bar{\chi} \in C^{2}\left(\left[0, t_{f}\right]\right)$ is strictly increasing, then the solution is unique.

Further, in the one-dimensional case we seek $T \in C^{2,1}(Q)$ and

$$
\sigma \in \Sigma_{a d m}:=\left\{\sigma \in C^{0+1}\left(\left[\theta_{1}, \theta_{2}\right]\right) \mid 0<m_{1} \leq \sigma(T) \leq M_{1}<\infty\right\},
$$

where $\theta_{1}=\min \left\{0, \operatorname{in} f_{x \in(0,1)} T_{0}(x)\right\}$ and $\theta_{2}=\max \left\{0, \max _{x \in(0,1)} T_{0}(x)\right\}$.

Existence and Uniqueness Theorem. (Pilant and Rundell (1989)) In the one-dimensional case, if $T_{0} \in C^{2+1 / 2}([0,1]), B=0$, and $\bar{\chi} \in C^{1+1 / 2}\left(\left[0, t_{f}\right]\right)$ is strictly monotone and $\bar{\chi}(0)=T_{0}(0)=T_{0}(1)$, then the inverse problem has a unique solution.

Boundary Element Method (BEM)

Using the BEM we reduce the inverse problem to nonlinear boundary integral equations for the boundary temperature and the heat transfer coefficient:

$$
\begin{array}{r}
\frac{1}{2} T(x, t)=\int_{\Omega} G(x, t ; y, 0) T_{0}(y) d \Omega(y) \\
+\int_{0}^{t} \int_{\partial \Omega} B(\xi, \tau) G(x, t ; \xi, \tau) d S(\xi) d \tau \\
-\int_{0}^{t} \int_{\partial \Omega} T(\xi, \tau)\left[\frac{\partial G}{\partial n(\xi)}(x, t ; \xi, \tau)+\sigma(T(\xi, \tau)) G(x, t ; \xi, \tau)\right] d S(\xi) d \tau \\
(x, t) \in \partial \Omega \times\left(0, t_{f}\right)
\end{array}
$$

In one-dimension, with the temperature measurement taken at the boundary point $x_{0}=0$ we obtain a coupled system of two nonlinear boundary integral equations in two unknowns, namely $T(1, t)$ and $\sigma(T(1, t))$:

$$
\begin{array}{r}
\frac{1}{2} \bar{\chi}(t)=\int_{0}^{1} G(0, t ; y, 0) T_{0}(y) d y \\
+\int_{0}^{t} \bar{\chi}(t)\left[G(0, t ; 0, \tau) \sigma(\bar{\chi}(t))+\frac{\partial G}{\partial \xi}(0, t ; 0, \tau)\right] d \tau \\
+\int_{0}^{t} T(1, t)\left[G(0, t ; 1, \tau) \sigma(T(1, t))-\frac{\partial G}{\partial \xi}(0, t ; 1, \tau)\right] d \tau, \quad t \in\left(0, t_{f}\right), \\
\frac{1}{2} T(1, t)=\int_{0}^{1} G(1, t ; y, 0) T_{0}(y) d y \\
+\int_{0}^{t} \bar{\chi}(t)\left[G(1, t ; 0, \tau) \sigma(\bar{\chi}(t))+\frac{\partial G}{\partial \xi}(1, t ; 0, \tau)\right] d \tau \\
+\int_{0}^{t} T(1, t)\left[G(1, t ; 1, \tau) \sigma(T(1, t))-\frac{\partial G}{\partial \xi}(1, t ; 1, \tau)\right] d \tau, \quad t \in\left(0, t_{f}\right) .
\end{array}
$$

Using a constant BEM approximation with N boundary elements and N_{0} cells, we obtain a system of $2 N$ nonlinear equations

$$
A_{\sigma}\left(\underline{T_{1}}\right)=\underline{b},
$$

where \underline{T}_{1} contains $T(1, t), \underline{b}$ contains T_{0} and B, and A_{σ} is a nonlinear operator depending on σ. Assuming that $\bar{\chi}$ is strictly increasing, let

$$
q_{k}:=\bar{\chi}(0)+k\left(\bar{\chi}\left(t_{f}\right)-\bar{\chi}(0)\right) / K, \quad k=\overline{0, K}
$$

denote a uniform discretisation of the the interval $\left[\bar{\chi}(0), \bar{\chi}\left(t_{f}\right)\right]$ into K equal sub-intervals. Then we seek a piecewise constant function $\sigma(T) T=: f:\left[q_{0}, q_{K}\right] \rightarrow \mathbb{R}$ defined by

$$
f(T)=\left\{\begin{array}{cc}
a_{1}, & T \in\left[q_{0}, q_{1}\right) \\
a_{2}, & T \in\left[q_{1}, q_{2}\right) \\
\vdots & \vdots \\
a_{K}, & T \in\left[q_{K-1}, q_{K}\right)
\end{array}\right.
$$

where the unknown coefficients $\underline{a}=\left(a_{k}\right)_{k=\overline{1, K}}$ are yet to be determined.

Assuming $T(1, t ; f) \in[\bar{\chi}(0), \bar{\chi}(t)], \forall t \in\left[0, t_{f}\right]$, we have

$$
f\left(\bar{\chi}\left(\tilde{t}_{l}\right)\right)=a_{\phi(l)}, \quad f\left(T\left(1, \tilde{t}_{l}\right)\right)=a_{\psi(l)}, \quad l=\overline{1, l},
$$

where \tilde{t}_{l} are the boundary element nodes, and for each $l \in\{1, \ldots, N\}$, $\phi(l)$ is the unique number in the set $\{1, \ldots, K\}$ such that $\bar{\chi}\left(\tilde{t}_{l}\right) \in\left[q_{\phi(l)-1}, q_{\phi(l)}\right)$, and $\psi(l)$ is the unique number in the set $\{1, \ldots, K\}$ such that $T\left(1, \tilde{t}_{l}\right) \in\left[q_{\psi(l)-1}, q_{\psi(l)}\right)$.

We then minimize (using the NAG routine E04FCF) the nonlinear Tikhonov functional

$$
S: \mathbb{R}^{K} \times \mathbb{R}^{N} \rightarrow \mathbb{R}_{+}, \quad S\left(\underline{a}, \underline{T}_{1}\right):=\left\|A_{\sigma}\left(\underline{T}_{1}\right)-\underline{b}\right\|^{2}+\kappa\|\underline{a}\|^{2},
$$

where $\kappa>0$ is a regularization parameter to be prescribed.

Numerical Examples

The BEM is applied with $\left(N, N_{0}\right)=(40,40)$ to generate the forward operator $A_{\sigma}\left(\underline{T}_{1}\right)$. The piecewise constant parametrisation of $f(T)=\sigma(T) T$ is sought with $K=10$.
The analytical temperature to be retrieved

$$
T(x, t)=x^{2}-x+1+2 t, \quad(x, t) \in[0,1] \times[0,1],
$$

generates the initial temperature

$$
T(x, 0)=T_{0}(x)=x^{2}-x+1, \quad x \in[0,1],
$$

and the boundary temperature measurement

$$
T(0, t)=\bar{\chi}(t)=1+2 t, \quad t \in[0,1] .
$$

Remark that $\bar{\chi}$ is strictly increasing and that $T(1, t)=1+2 t \in[\bar{\chi}(0)=1, \bar{\chi}(t)=1+2 t], \forall t \in[0,1]$, such that the unique solvability of the inverse problem is ensured.

Numerical results are presented next for $f(T) \in\left\{1, T^{4}\right\}$ which corresponds to a heat transfer coefficient $\sigma(T) \in\left\{T^{-1}, T^{3}\right\}$.

Example 1. $f(T)=1$. Initial guess $\left(\underline{a}^{0}, \underline{T}_{1}^{0}\right)=(\underline{3}, \underline{3})$.

Figure 1: (a) The analytical boundary temperature $T(0, t)$, (b) the numerical boundary temperature $T(1, t)$, as functions of time t, and (c) the numerical vector $\mathbf{a}=\left(a_{k}\right)_{k-5,}$, when the amount of noise in $(4,4)$ is: (0)

Example 2. $f(T)=T^{4}$. Initial guess $\left(\underline{a}^{0}, \underline{T}_{1}^{0}\right)=(\underline{50}, \underline{3})$ and the Neumann conditions (1) and (2) modified as

$$
\frac{\partial T}{\partial n}(x, t)=f(T(x, t))+1-(1+2 t)^{4}, \quad(x, t) \in\{0,1\} \times(0,1]
$$

Figure 2: The analytical and numerical approximations of (a) the boundary temperature $T(1, t)$ and (b) the function $f(T)$, when $\rho \in\{0,1,3,5\} \%$ and $\kappa=0$.

Figure 3: The analytical and numerical approximations of (a) the boundary temperature $T(1, t)$ and (b) the function $f(T)$, when $\rho=5 \%, \kappa=0$ and 10^{-3}.

4. Conclusions

- Reconstruction of heat transfer coefficient which may be space-, time-, or temperature-dependent has been addressed.
- The existence and uniqueness of solution has been discussed in both strong and weak senses. Furthermore, a numerical method based on the boundary element method (BEM) (combined with the Tikhonov reqularization method where necessary) has been devised in order to obtain stable and accurate numerical solutions.
- Future work will investigate iterative regularizations and higher-dimensional numerical reconstructions.

