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Heat Transfer Law

T .
Z— = g(Te™ent _T)% 4 B, on the boundary
n

where

T = temperature

Taembient — ambient temperature

k = thermal conductivity

n = outward unit normal to the boundary

B = additional heat flux

o = heat transfer coefficient (may be space-, time-, or
temperature-dependent)

B =1 for convection; 3 = 4 for radiation.
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1. Space-dependent Heat Transfer Coefficient
Consider the inverse problem which requires finding the temperature
T € C*(Q) and the space-dependent heat transfer coefficient
o € C(0N), o > 0, satisfying the heat equation
or
ot
subject to the initial condition
T(x,0) =To(zx), z€€,
the Robin boundary condition
oT
%(az,t) +o(x)T(z,t) = B(z,t), (z,t) € 0 x (0,t5),
and the instant temperature observation at the fixed time t € (0,¢y):
T(z,t°) = x(z), z €N

or, the additional integral time-average temperature observation

/tf wt)T (z,t)dt = x(z), =z €09,
0

(z,t) = VQT(a:,t), (x,t) =Q x (0,t5] =: Q,

where w € L1(0,ty) is given.



Boundary Element Method (BEM)

Using the BEM we reduce the inverse problem to nonlinear boundary
integral equations for the boundary temperature and the heat transfer
coefficient:

1Txt /Ga:ty, 0)To(y)d(y)

//89 (&, 7)G(x,t; €, 7)dS(§)dr

/ /m € 7) { ) DHET) <£>G(m,t;£,r>] dS(&)dr,
(x,t) € 002 x (0,ty),

where

o HiE-7) = &l
Clnti&sm) = [ — e P (‘W)

is the fundamental solution of the heat equation and H is the Heaviside
function.



Numerical Example

Find the temperature T'(z,t) (= 22 + 2t) and the space-dependent heat
transfer coefficient(s) 0 < o (= 1), 0 < o1 (= 1) solving the problem

oT 0*T
E(xvt):@(xvt)a (m,t):(O,l)X(O,tle],
T(x,0) =2% 2z €]0,1],

orT
—o=(0,0)+ 00T, ) =2, te (0,1),
Z—Z(l,t} +oT(1,t)=2t+3, te(0,1),

and the additional 1% noisy measurement conditions
T(0,t°) =2t x 1.01, T(1,t°) = (1 +2t°) % 1.01,

or

ty ty
/ T(0,t)dt =1x%1.01, / T(1,t)dt =2x*1.01.
0 0

Using the BEM with N = Ny = 40 elements, in the latter case we have
obtained: oy = 0.9875 and o1 = 0.9777. In the former case see the

ficure on the next slide
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Figure 6. The constants oo (A) and o; (O) for Problem I, as a function of
ip = 1,...N = 40, when (No, N} = (40, 40) (1% noise).



2. Time-dependent Heat Transfer Coefficient

Consider the inverse problem which requires finding the temperature
T € C*(Q) and the time-dependent heat transfer coefficient

o € C([0,ty]) satisfying the heat equation

8_T
ot

subject to the initial condition
T(xz,0) =To(z), x€9Q,

the Robin boundary condition

ar
on

and the temperature observation at the fixed point xg € 92
T(zo,t) =X(t), te]0,tf]
or, the additional boundary integral temperature observation

/ v(z)T (z,t)dS(z) =x(t), tel0,ty],
o0

where v € L1(09) is given.

(z,t) = V*T(z,t), (x,t) =Qx (0,t7] = Q,

(z,t) + o(t)T(w,t) = B, 1), (x,t) € O x (0, ),



Numerical Example
Find the temperature T'(z,t) (= 2% + 2t + 1) and the time-dependent
heat transfer coefficient o(t) (= t), solving the problem

oT 9T
E(m,t) = W(m,t), (z,t) = (0,1) x (0,¢f = 1],
T(z,0) =22 =z ¢€l0,1],
oT 9
—%(O,t) +o)T(0,t) =2t +¢, te(0,1),
oT

o7 (LD Fo®OT(1,1) = 22 +t+1), te€(0,1),

and the additional p% noisy measurement condition
T0,t)=2t+1+¢ te(0,1),

where p denotes the percentage of noise and € are random variables
taken from a Gaussian normal distribution with zero mean and stadard
deviation 3p%.

Using the BEM with N = Ny = 40 elements and various amounts of
noise p% € {1,3,5}% we obtain the figure on the next slide.
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Figure 11. The analytical and numerical heat transfer coefficients o(t) for Prob-

lem II, as functions of time ¢, for various amounts of noise.
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2’. Time-dependent Heat Transfer Coefficient

Consider the inverse problem which requires finding the pair solution
(T'(x,t),0(t)) = (temperature,heat transfer coefficient) satisfying the
heat equation

oT

E(m,t) = V2T (z,t), (2,t)=Qx(0,t;] =Q,

subject to the initial condition
T(JZ,O) = TO(x)v T e Q7

the Robin boundary conditions

or

5o @) +o®)g(I(z.1) = Be,t), (z,1) € 02 x (0,¢)

and the additional boundary integral (non-local) observation
/‘ﬂTwﬂMﬂ@:E@,teMwL
o0

where ®(T) = ng(s)ds denotes a primitive (anti-derivative) of g.



Remarks:
e Of physical interest is the linear convection case g(T') = T, and the
nonlinear radiative case g(T) = T°|T.

e Multiplying with T" the heat equation and integrating over £ results in
1d 2 9
= — T%(z,t)dQ ) + | |[VT|7dQ = T hdS
2dt \ Jg Q 09
() / o(T)T dS
o0

and one could recognise the last term as an ‘energy’ term
(a+ 1)o(t)E(t) for the nonlinearity g(T') = T.



Let us now consider the weak solutions T" and o of the inverse problem
defined in the following spaces of functions:

T € C([0,t7], La() N La((0, t), H())
with 8,7 € Ly((0,t7), L(R)).

o >0and o € C*[0,ts] with ¢’ /o bounded.

We also require that the input data be such that:

To € H*(Q), B, By € La((0,t5), L2(09)),
g >0, g(0)=0, [g(s)]<C(|s|*+1)

for some non-negative constants Cy, C and a.



Definition. For a given o € L1(0,t¢), o > 0, a function
T, € La((0,t5), H () with 8, T € Lo((0,ty), L2(R)) is called a weak
solution to the direct problem if T,(x,0) = To(x) and

(8tT0'7 (b) + (awTaa 8a:¢) + U(g(TO')a ¢)8Q = (37 ¢)8Q,
Vo € HY(2), a.e.in (0,ty).

Theorem. (unique solvability of the direct problem)
There exists a unique weak solution to the direct problem.



Existence and Uniqueness Theorem. (Slodicka and Lesnic (2010))
Assume that a compatibility condition at t = 0 holds and that
E'(t) > b0 >0, |E"(t)] < Coy, Vt € [0,t5] and that

0< E(t) < / B(TO(x, 1))dS (), V¢ € [0,/],

oQ
where T is the unique weak solution of the direct problem with o = 0.
Then there exists a unique solution to the inverse problem.

The continuous dependence of the solution on the input energy data
E(t) can (probably) be established under the additional assumption that
o is bounded. This is an usual additional source condition which when
imposed onto the solution of some ill-posed problems restore its stability
with respect to noise added into the input data.



We employ the BEM

%T(m,t)Z/QG(aj,t;y,())TO(y)dQ(y)
+A ~/69[B(£77) —g(T(&,71))o(7)]|G(z, t; &, 7)dS(&)dr

t oG
_ /0 /a (&) (6 € TS ),

V(x, )02 x (0,141,

and

/aQ O(T(£,1)dS(€) = E(t), Vte (0,ty].
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Figure 2. The analytical and numerical boundary temperatures (a) 7(0, r) and (b) 7(1, ¢), the heat



3. Temperature-dependent Heat Transfer Coefficient

Consider the inverse problem of finding the temperature T' € C33/2(Q)
and the space-dependent heat transfer coefficient o € C([01,62]), where
01 = mingu(z,t) and 6> = mazgu(x,t) are assumed known a priori and
satisfy #1605 > 0. We also assume

X(0) < u(z,t) <x(t), (z,t) €0 x][0,ty].
In addition, the pair solution (T, o (7)) satisfies the heat equation

oT
ot
subject to the initial condition

T(JZ,O) = TO(x)v T e Q7

(z,t) = V2T(z,t), (z,t)=Qx 0,t7] =: Q,

the Robin boundary condition
or
on

and the temperature observation at the fixed point zy € 9€2:

(@,t) + o(T(x, )T (z,t) = B(x,t), (x,t) € I x (0,17),

T(zo,t) =X(t), tel0,ts].



Uniqueness Theorem. (Rundell and Yin (1990))
If B € C*2(08 x [0,tf]), and X € C?([0,tf]) is strictly increasing, then
the solution is unique.

Further, in the one-dimensional case we seek 7' € C*1(Q) and
O € Yadm ‘= {0’ S CO+1([01,02])|0 <my < O'(T) < M; < OO},

where 0; = min{0,in fye0,1)To(z)} and
02 = max{0, max,e,1)To(x)}.

Existence and Uniqueness Theorem. (Pilant and Rundell (1989))

In the one-dimensional case, if Ty € C2*1/2([0,1]), B =0, and

X € C'+1/2([0,t4]) is strictly monotone and X(0) = Tp(0) = Tp(1), then
the inverse problem has a unique solution.



Boundary Element Method (BEM)

Using the BEM we reduce the inverse problem to nonlinear boundary
integral equations for the boundary temperature and the heat transfer
coefficient:

5760 = [ Gty 0Tminw)
+/0 /m B(&, 7Gx, t;€,7)dS(€)dr

! oG
_/0 /m T 7) [an—(@(ﬂ%t;ﬁﬁ) +0(T(£,T))G(x,t;£,r)] ds(€)dr,
(z,1) € dQ x (0, t7).



In one-dimension, with the temperature measurement taken at the
boundary point xy = 0 we obtain a coupled system of two nonlinear
boundary integral equations in two unknowns, namely T'(1,¢) and
o(T(1,t)):

1
%y(t):/o G(0,t;y,0)To(y)dy

t— . i oG .
+ /0 ) [G(O,t,O,T)a(X(t))—l- a—g(O,t,O,T)] dr

(i oG
—|—/0 T(1,t) {G(O,t; 1,7)o(T(1,t)) — 8_§(O’t; 1,7)] dr, te(0,ty),

1 1
5700 = [ GOty 0 Ta(wdy
0

t— . = oG .
+/0 X(t) [G(l,t,O,T)U(X(t)) + 8—§(l,t,0,7)] dr

¢ oG
—|—/0 T(1,t) {G(l,t; 1,7)o(T(1,t)) — 8_5(1’t; 1,7)] dr, te(0,ty).



Using a constant BEM approximation with N boundary elements and N
cells, we obtain a system of 2V nonlinear equations

AO’ (ﬂ) = ba

where T'; contains T'(1,t), b contains Ty and B, and A, is a nonlinear
operator depending on ¢. Assuming that  is strictly increasing, let

k= X(0) + k(x(tf) —=X(0))/K, k=0,K

denote a uniform discretisation of the the interval [x(0),x(ts)] into K
equal sub-intervals. Then we seek a piecewise constant function
o(T)T =: f : [qo, qx] — R defined by

a, T € [q0,q1)
as, T € [q1,q2)
f(T) = - -

ak, T €[qx-1,qK)

where the unknown coefficients a = (ax),_7 7 are yet to be determined.



Assuming T'(1,¢; f) € [x(0),x(¢)], ¥t € [0,tf], we have

fX) = agwy, f(T(,4) =ayq, =1,

where #; are the boundary element nodes, and for each | € {1,..., N},
¢(1) is the unique number in the set {1,..., K'} such that

X(t1) € [ap)-1,46@)), and 2(1) is the unique number in the set
{1, ,K} such that T(l,tl) [ [qw(l),l,qw(l)).

We then minimize (using the NAG routine E04FCF) the nonlinear
Tikhonov functional

S:RE xRN =Ry, S(a,T,):= |A-(Ty) = b|* + «llal?,

where k > 0 is a regularization parameter to be prescribed.



Numerical Examples

The BEM is applied with (N, Ny) = (40,40) to generate the forward
operator A,(T;). The piecewise constant parametrisation of

f(T) =0o(T)T is sought with K = 10.

The analytical temperature to be retrieved

T(x,t) =2 —x+1+2t, (x,t) €[0,1] x [0,1],
generates the initial temperature
T(x,0)=To(z) =2 —2z+1, z€][0,1],
and the boundary temperature measurement

T(0,t) =x(t) =1+2t, tel0,1].

Remark that  is strictly increasing and that
T(1,t) =142t € [x(0) =1,%x(¢t) = 1+ 2t], ¥t € [0, 1], such that the
unique solvability of the inverse problem is ensured.

Numerical results are presented next for f(T') € {1,7%} which
corresponds to a heat transfer coefficient o(T) € {T~!,T3}.



Evample 1. f(T) = 1. Initial guess (o, 7)) = (3.3).
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Figure 1: (a) The analytical boundary temperature T°(0,¢), (b) the numerical
boundary temperature T°(1, t), as functions of time t, and (c) the numer-
ical vector a = (ar), _—. when the amount of noise in (4. 4) g o)



Example 2. f(T) = T*. Initial guess (QO.I?) = (50,3) and the Neumann conditions (1) and

(2) modified as

a—T(:r-t) = f(T(z,t)) +1— (L+20)", (a,t) € {0,1} x (0,1].
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Figure 2: The analytical and numerical approximations of (a) the boundary tem-
perature T(1,£) and (b) the function f(T), when p € {0,1,3,5}% and

K=0.
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Figure 3: The analytical and numerical approximations of (a) the boundary tem-
perature T(L,t) and (b) the function f(T), when p = 5%, = 0and

10-%,



4. Conclusions

e Reconstruction of heat transfer coefficient which may be space-, time-,
or temperature-dependent has been addressed.

e The existence and uniqueness of solution has been discussed in both
strong and weak senses. Furthermore, a numerical method based on the
boundary element method (BEM) (combined with the Tikhonov
reqularization method where necessary) has been devised in order to
obtain stable and accurate numerical solutions.

e Future work will investigate iterative regularizations and
higher-dimensional numerical reconstructions.



