Acceleration of the modified alternating algorithm by the conjugate gradient method for the Cauchy problem for the Helmholtz equation

Mpinganzima Lydie

Department of Mathematics, Linköping University

> 2-6 April, 2013, Linköping, Sweden

Outline

- Cauchy problem for the Helmholtz equation
- Alternating iterative algorithm
- Modified alternating algorithm
- Conjugate gradient method

Formulation of the Cauchy Problem for the Helmholtz equation

- Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with a Lipschitz boundary Γ.
- The boundary Γ is divided into two parts Γ_{0} and Γ_{1}.

- Consider the Cauchy problem for the Helmholtz equation:

$$
\begin{cases}\Delta u+k^{2} u=0 & \text { in } \quad \Omega, \\ u=f & \text { on } \Gamma_{0}, \\ \partial_{\nu} u=g & \text { on } \Gamma_{0},\end{cases}
$$

where k is the wave number.

- The problem is ill-posed.
- Applications: characterization of sound sources (Langrenne and Garcia: 2011), ...

Alternating algorithm

Following
固
V.A. Kozlov and V.G. Maz'ya, On iterative procedures for solving ill-posed boundary value problems that preserve differential equations, Algebra i Analiz, 192 (1989), pp. 1207-1228,(in Russian). the alternating algorithm may be described in the following way:

$$
\left\{\begin{array} { l l }
{ \Delta u + k ^ { 2 } u = 0 } & { \text { in } \Omega , } \tag{2}\\
{ u = f } & { \text { on } \Gamma _ { 0 } , } \\
{ \partial _ { \nu } u = \eta } & { \text { on } \Gamma _ { 1 } , }
\end{array} \quad (1) \quad \left\{\begin{array}{ll}
\Delta u+k^{2} u=0 & \text { in } \Omega \\
\partial_{\nu} u=g & \text { on } \Gamma_{0} \\
u=\phi & \text { on } \Gamma_{1}
\end{array}\right.\right.
$$

(1) The first approximation u_{0} to the solution u is obtained by solving (1), where η is an arbitrary initial approximation of the normal derivative on Γ_{1}.
(2) Having constructed $u_{2 n}$, we find $u_{2 n+1}$ by solving (2) with $\phi=u_{2 n}$ on Γ_{1}.
(3) We then obtain $u_{2 n+2}$ by solving the problem (1) with $\eta=\partial_{\nu} u_{2 n+1}$ on Γ_{1}.

Previous works

眳 V.A. Kozlov, V.G. Maz'ya and A.V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations, Comput. Maths. Math. Phys., 31 (1991), no. 1, 46-52.
D. Lesnic, L. Elliot and D.B. Ingham, An alternating BEM for solving numerically the Cauchy problems for the Laplace equation, Engineering Analysis with Boundary Elements, 20 (1997), no. 2, pp. 123-133.
S. Avdonin, V. Kozlov, D. Maxwell and M. Truffer, Iterative methods for solving a nonlinear boundary inverse problem in glaciology, J. Inv. III-Posed Problems, 17 (2009), pp. 239-258.
R. Chapko and B.T. Johansson, An alternating potential-based approach to the Cauchy problem for the Laplace equation in a planar domain with a cut, Comp.Meth. Appl. Math., 8 (2008), no. 4, pp. 315-335.

莤
G. Bastay, T. Johansson, V.A. Kozlov and D. Lesnic, An alternating method for the stationary Stokes system, Z. Angew. Math. Mech., 86 (2006), no. 4, pp. 268-280.L. Marin, L. Elliott, P.J. Heggs, D.B. Ingham, D. Lesnic and X. Wen, An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation, Comput. Meth. Appl. Mech. Eng., 192 (2003), pp. 709-722.

Nonconvergence of the original algorithm for the Cauchy problem for the Helmholtz equation

- Consider the Cauchy problem for the Helmholtz equation in a rectangle $[0, a] \times[0, b]$:

$$
\begin{cases}\Delta u(x, y)+k^{2} u(x, y)=0, & 0<x<a, \quad 0<y<b, \\ u(x, 0)=f(x), & 0 \leq x \leq a, \\ u_{y}(x, 0)=g(x), & 0 \leq x \leq a, \\ u(0, y)=u(a, y)=0, & 0 \leq y \leq b\end{cases}
$$

- This problem is ill-posed.
- The algorithm diverges for

$$
k^{2} \geq \pi^{2}\left(a^{-2}+(4 b)^{-2}\right)
$$

Choice of the interior boundary

五
B.T. Johansson and V.A. Kozlov, An alternating method for Helmholtz-type operators in non-homogeneous medium, IMA Journal of Applied Mathematics, 74 (2009), pp. 62-73.

R F. Berntsson, V.A. Kozlov, L. Mpinganzima and B.O. Turesson, An alternating iterative procedure for the Cauchy problem for the Helmholtz equation, accepted by the Journal of Inverse Problems in Science and Engineering (Proceedings).

- Introduce open subsets $\omega_{i}, i=1, \ldots, n$ inside Ω with boundaries γ_{i}, $i=1, \ldots, n$.
- We assume that every ω_{i} is a Lipschitz domain.

- $\Omega_{1}=\cup_{i=1}^{n} \omega_{i}$ with Lipschitz boundary $\gamma=\cup_{i=1}^{n} \gamma_{i}$ and $\Omega_{2}=\Omega \backslash\left(\Omega_{1} \cup \gamma\right)$.

Choice of the interior boundary γ and the constant μ

Assumption: For all nonzer u,

$$
\int_{\Omega}\left(|\nabla u|^{2}-k^{2} u^{2}\right) d x+\mu \int_{\gamma} u^{2} d S>0
$$

for $u \in H^{1}(\Omega)$ such that $u \neq 0$.

Sufficient condition for the positivity

Theorem

Let

$$
\Lambda_{\mu}=\min _{\substack{u \in H^{1}(\Omega) \\\|u\|_{2}=1}} \int_{\Omega}|\nabla u|^{2} d x+\mu \int_{\gamma} u^{2} d S
$$

and

$$
\Lambda=\min _{\substack{u \in H^{1}(\Omega),\left.u\right|_{\gamma}=0 \\\|u\|_{2}=1}} \int_{\Omega}|\nabla u|^{2} d x
$$

Then there exists a positive constant C such that

$$
\Lambda-\Lambda_{\mu} \leq \frac{C(\Lambda)^{3 / 2}}{\mu^{1 / 2}}
$$

Corollary

Corollary

If \wedge is positive, then

$$
\int_{\Omega}\left(|\nabla u|^{2}-k^{2} u^{2}\right) d x+\mu \int_{\gamma} u^{2} d S>0, \quad \text { for all } \quad u, \quad u \neq 0 \quad \text { on } \quad \gamma .
$$

for sufficiently large μ.

Modified alternating iterative algorithm for the Cauchy problem for the Helmholtz equation

The modified algorithm will consist of solving the following well-posed problems alternatively:

$$
\left\{\begin{array} { l l }
{ \Delta u + k ^ { 2 } u = 0 } & { \text { in } \Omega \backslash \gamma , } \tag{4}\\
{ u = f } & { \text { on } \Gamma _ { 0 } , } \\
{ \partial _ { \nu } u = \eta } & { \text { on } \Gamma _ { 1 } , \quad (3) } \\
{ [\partial _ { \nu } u] + \mu u = \xi } & { \text { on } \gamma , } \\
{ [u] = 0 } & { \text { on } \gamma , }
\end{array} \quad \left\{\begin{array}{ll}
\Delta v+k^{2} v=0 & \text { in } \Omega \backslash \gamma \\
\partial_{\nu} v=g & \text { on } \Gamma_{0} \\
v=\phi \\
v=\varphi & \text { on } \Gamma_{1} \\
\text { on } \gamma
\end{array}\right.\right.
$$

(1) The first approximation u_{0} to the solution u is obtained by solving (3), where η is an arbitrary initial approximation of the normal derivative on Γ_{1} and ξ is an arbitrary approximation of $\left[\partial_{\nu} u\right]+\mu u$ on γ.
(2) Having constructed $u_{2 n}$, we find $u_{2 n+1}$ by solving (4) with $\phi=u_{2 n}$ on Γ_{1} and $\varphi=u_{2 n}$ on γ.
(3) We then obtain $u_{2 n+2}$ by solving the problem (3) with $\eta=\partial_{\nu} u_{2 n+1}$ on Γ_{1} and $\xi=\left[\partial_{\nu} u_{2 n+1}\right]+\mu u_{2 n+1}$ on γ.

Convergence of the modified alternating iterative algorithm

Theorem

Let $f \in H^{1 / 2}\left(\Gamma_{0}\right)$ and $g \in H^{1 / 2}\left(\Gamma_{0}\right)^{*}$, and let $u \in H^{1}(\Omega)$ be the solution to the Cauchy problem for the Helmholtz equation given above. Then, for every $\eta \in H^{1 / 2}\left(\Gamma_{1}\right)^{*}$ and every $\xi \in H^{1 / 2}(\gamma)^{*}$, the sequence $\left(u_{n}\right)_{n=0}^{\infty}$ obtained from the modified alternating algorithm converges to u in $H^{1}(\Omega)$.

Modified algorithm continued

Given $\eta \in H^{1 / 2}\left(\Gamma_{1}\right)^{*}$ and $\xi \in H^{1 / 2}(\gamma)^{*}$, let us define

$$
B(\eta, \xi)=\left(\left.\partial_{\nu} v\right|_{\Gamma_{1}},\left[\partial_{\nu} v\right]+\left.\mu v\right|_{\gamma}\right) .
$$

We find that

$$
\left(\eta_{k+1}, \xi_{k+1}\right)=B\left(\eta_{k}, \xi_{k}\right) .
$$

Operator N

- Consider the following problem

$$
\begin{cases}\Delta u+k^{2} u=0 & \text { in } \Omega \backslash \gamma \\ u=0 & \text { on } \Gamma_{0} \\ \partial_{\nu} u=\eta & \text { on } \Gamma_{1} \\ {\left[\partial_{\nu} u\right]+\mu u=\xi} & \text { on } \gamma \\ {[u]=0} & \text { on } \gamma\end{cases}
$$

- Introduce a linear operator $N: H^{1 / 2}\left(\Gamma_{1}\right)^{*} \times H^{1 / 2}(\gamma)^{*} \longrightarrow H^{1 / 2}\left(\Gamma_{0}\right)^{*}$ by

$$
N(\eta, \xi)=\left.\partial_{\nu} u\right|_{\Gamma_{0}},
$$

where $\eta \in H^{1 / 2}\left(\Gamma_{1}\right)^{*}, \xi \in H^{1 / 2}(\gamma)^{*}$.

- If $u \in H^{1}(\Omega)$ solves the Cauchy problem for the Helmholtz equation with $f=0$ on Γ_{0}, the problem can then be formulated as

$$
N(\eta, \xi)=g .
$$

Adjoint operator N^{*}

Lemma

Let $\zeta \in H^{1 / 2}\left(\Gamma_{0}\right)^{*}$, and let v solves the

$$
\begin{cases}\Delta w+k^{2} w=0 & \text { in } \Omega \backslash \gamma \\ \partial_{\nu} w=\zeta & \text { on } \Gamma_{0} \\ w=0 & \text { on } \Gamma_{1} \\ w=0 & \text { on } \gamma\end{cases}
$$

Then $N^{*}(\zeta)=\left(\left.\partial_{\nu} w\right|_{\Gamma_{1}},\left[\partial_{\nu} w\right]+\left.\mu w\right|_{\gamma}\right)$.

Landweber method

- Consider the following functional

$$
J(\eta, \xi)=\|g-N(\eta, \xi)\|_{H^{1 / 2}\left(\Gamma_{0}\right)^{*}}
$$

- Let us define

$$
L_{N}(\eta, \xi)=(\eta, \xi)+\alpha N^{*}(g-N(\eta, \xi)),
$$

where α is a fixed constant chosen so that $0<\alpha<\|N\|^{-2}$.

- The Landweber method produces iterates

$$
\left(\eta_{k+1}, \xi_{k+1}\right)=L_{N}\left(\eta_{k}, \xi_{k}\right)
$$

Modified algorithm and Landweber method

Theorem

For any $\eta \in H^{1 / 2}\left(\Gamma_{1}\right)^{*}$ and $\xi \in H^{1 / 2}(\gamma)$, the iterates produced by the Landweber method and the modified alternating algorithm are identical, i.e.,

$$
\begin{equation*}
L_{N}(\eta, \xi)=B(\eta, \xi) \tag{5}
\end{equation*}
$$

Conjugate gradient method

The conjugate gradient method for the problem is as follows
1 Choose initial $\eta_{0} \in H^{1 / 2}\left(\Gamma_{1}\right)^{*}$ and $\xi_{0} \in H^{1 / 2}(\gamma)^{*}$.
Denote $\chi_{0}=\left(\eta_{0}, \xi_{0}\right)$ and $\left(H^{1 / 2}\right)^{*}=H^{1 / 2}\left(\Gamma_{1}\right)^{*} \times H^{1 / 2}(\gamma)^{*}$.
$2 d_{0}=g-N\left(\chi_{0}\right)$;
$3 p_{1}=s_{0}=N^{*}\left(d_{0}\right)$;
4 for $k=1,2, \ldots$, unless $s_{k-1}=0$, compute
$5 q_{k}=N\left(\chi_{k}\right)$;
$6 \alpha_{k}=\left\|s_{k-1}\right\|_{\left(H^{1 / 2}\right)^{*}} /\left\|q_{k}\right\|_{H^{1 / 2}\left(\Gamma_{0}\right)^{*}} ;$
$7 \chi_{k}=\chi_{k-1}+\alpha_{k} p_{k}$;
$8 d_{k}=d_{k-1}-\alpha_{k} q_{k}$;
$9 s_{k}=N *\left(d_{k}\right)$;
$10 \alpha_{k}=\left\|s_{k}\right\|_{\left(H^{1 / 2}\right)^{*}} /\left\|s_{k-1}\right\|_{\left(H^{1 / 2}\right)^{*}} ;$
$11 p_{k+1}=s_{k}+\beta_{k} p_{k}$.

- The domain is the rectangle $\Omega=(0,1) \times(0, L)$.
- We put $\Gamma_{0}=(0,1) \times\{0\}$ and $\Gamma_{1}=(0,1) \times\{L\}$.
- We choose $L=0.2$, the computational grid $N=401$, and $M=81$ and the following exact data:

$$
u(x, 0)=\left(3 \sin \pi x+\frac{\sin 3 \pi x}{19}+9 \exp \left(-30(x-L)^{2}\right)\right) x^{2}(1-x)^{2}
$$

and
$u(x, L)=2\left(8 \sin \pi x+\frac{\sin 3 \pi x}{17}+20 \exp \left(-50(x-L)^{2}\right)\right) x^{2}(1-x)^{2}$.

Numerical experiments

Figure 1: Modified algorithm (left) after 1500 iterations and the conjugate gradient method (right) after 20 iterations.

THANK YOU FOR YOUR ATTENTION.

