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Formulation of the Cauchy Problem for the Helmholtz

equation

Let Ω ⊂ R
n be a bounded domain with a Lipschitz boundary Γ.

The boundary Γ is divided into two parts Γ0 and Γ1.

Γ1

Γ0 ν

ν

Ω

Consider the Cauchy problem for the Helmholtz equation:










∆u + k2u = 0 in Ω,

u = f on Γ0,

∂νu = g on Γ0,

where k is the wave number.
The problem is ill–posed.
Applications: characterization of sound sources (Langrenne and
Garcia: 2011), . . .
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Alternating algorithm

Following

V.A. Kozlov and V.G. Maz’ya, On iterative procedures for solving

ill–posed boundary value problems that preserve differential equations,
Algebra i Analiz, 192 (1989), pp. 1207–1228,(in Russian).

the alternating algorithm may be described in the following way:











∆u + k2u = 0 in Ω,

u = f on Γ0,

∂νu = η on Γ1,

(1)











∆u + k2u = 0 in Ω,

∂νu = g on Γ0,

u = φ on Γ1,

(2)

1 The first approximation u0 to the solution u is obtained by
solving (1), where η is an arbitrary initial approximation of the
normal derivative on Γ1.

2 Having constructed u2n, we find u2n+1 by solving (2) with φ = u2n
on Γ1.

3 We then obtain u2n+2 by solving the problem (1) with η = ∂νu2n+1

on Γ1.

4/21



Previous works

V.A. Kozlov, V.G. Maz’ya and A.V. Fomin, An iterative method for

solving the Cauchy problem for elliptic equations, Comput. Maths. Math.
Phys., 31 (1991), no. 1, 46–52.

D. Lesnic, L. Elliot and D.B. Ingham, An alternating BEM for solving

numerically the Cauchy problems for the Laplace equation, Engineering
Analysis with Boundary Elements, 20 (1997), no. 2, pp. 123–133.

S. Avdonin, V. Kozlov, D. Maxwell and M. Truffer, Iterative methods for

solving a nonlinear boundary inverse problem in glaciology, J. Inv.
Ill-Posed Problems, 17 (2009), pp. 239–258.

R. Chapko and B.T. Johansson, An alternating potential–based approach

to the Cauchy problem for the Laplace equation in a planar domain with a

cut, Comp.Meth. Appl. Math., 8 (2008), no. 4, pp. 315–335.

G. Bastay, T. Johansson, V.A. Kozlov and D. Lesnic, An alternating

method for the stationary Stokes system, Z. Angew. Math. Mech., 86
(2006), no. 4, pp. 268–280.

L. Marin, L. Elliott, P.J. Heggs, D.B. Ingham, D. Lesnic and X. Wen, An
alternating iterative algorithm for the Cauchy problem associated to the

Helmholtz equation, Comput. Meth. Appl. Mech. Eng., 192 (2003), pp.
709–722.

5/21



Nonconvergence of the original algorithm for the Cauchy

problem for the Helmholtz equation

Consider the Cauchy problem for the Helmholtz equation in a
rectangle [0, a]× [0, b]:



















∆u(x , y) + k2u(x , y) = 0, 0 < x < a, 0 < y < b,

u(x , 0) = f (x), 0 ≤ x ≤ a,

uy (x , 0) = g(x), 0 ≤ x ≤ a,

u(0, y) = u(a, y) = 0, 0 ≤ y ≤ b.

This problem is ill–posed.

The algorithm diverges for

k2 ≥ π2(a−2 + (4b)−2)
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Choice of the interior boundary

B.T. Johansson and V.A. Kozlov, An alternating method for

Helmholtz–type operators in non-homogeneous medium, IMA Journal of
Applied Mathematics, 74 (2009), pp. 62–73.

F. Berntsson, V.A. Kozlov, L. Mpinganzima and B.O. Turesson, An
alternating iterative procedure for the Cauchy problem for the Helmholtz
equation, accepted by the Journal of Inverse Problems in Science and
Engineering (Proceedings).

Introduce open subsets ωi , i = 1, . . . , n inside Ω with boundaries γi ,
i = 1, . . . , n.
We assume that every ωi is a Lipschitz domain.

Γ1

Γ0 ν

ν

ω2
γ2

ω1
γ1

ω3 γ3

ωi
γi

ν

ν

νν

Ω1 = ∪n
i=1ωi with Lipschitz boundary γ = ∪n

i=1γi and
Ω2 = Ω\(Ω1 ∪ γ).
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Choice of the interior boundary γ and the constant µ

Assumption: For all nonzer u,

∫

Ω

(

|∇u|2 − k2u2
)

dx + µ

∫

γ

u2 dS > 0,

for u ∈ H1(Ω) such that u 6= 0.
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Sufficient condition for the positivity

Theorem

Let

Λµ = min
u∈H1(Ω)
‖u‖2=1

∫

Ω

|∇u|2 dx + µ

∫

γ

u2 dS ,

and

Λ = min
u∈H1(Ω),u|γ=0

‖u‖2=1

∫

Ω

|∇u|2 dx .

Then there exists a positive constant C such that

Λ− Λµ ≤
C (Λ)3/2

µ1/2
.
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Corollary

Corollary

If Λ is positive, then

∫

Ω

(

|∇u|2 − k2u2
)

dx + µ

∫

γ

u2 dS > 0, for all u, u 6= 0 on γ.

for sufficiently large µ.
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Modified alternating iterative algorithm for the Cauchy

problem for the Helmholtz equation

The modified algorithm will consist of solving the following well–posed
problems alternatively:































∆u + k2u = 0 in Ω\γ,

u = f on Γ0,

∂νu = η on Γ1,

[∂νu] + µu = ξ on γ,

[u] = 0 on γ,

(3)



















∆v + k2v = 0 in Ω\γ,

∂νv = g on Γ0,

v = φ on Γ1,

v = ϕ on γ.

(4)

1 The first approximation u0 to the solution u is obtained by
solving (3), where η is an arbitrary initial approximation of the
normal derivative on Γ1 and ξ is an arbitrary approximation
of [∂νu] + µu on γ.

2 Having constructed u2n, we find u2n+1 by solving (4) with φ = u2n
on Γ1 and ϕ = u2n on γ.

3 We then obtain u2n+2 by solving the problem (3) with η = ∂νu2n+1

on Γ1 and ξ = [∂νu2n+1] + µu2n+1 on γ.
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Convergence of the modified alternating iterative algorithm

Theorem

Let f ∈ H1/2(Γ0) and g ∈ H1/2(Γ0)
∗, and let u ∈ H1(Ω) be the solution

to the Cauchy problem for the Helmholtz equation given above. Then,

for every η ∈ H1/2(Γ1)
∗ and every ξ ∈ H1/2(γ)∗, the sequence (un)

∞
n=0

obtained from the modified alternating algorithm converges to u in

H1(Ω).
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Modified algorithm continued

Given η ∈ H1/2(Γ1)
∗ and ξ ∈ H1/2(γ)∗, let us define

B(η, ξ) = (∂νv
∣

∣

Γ1
, [∂νv ] + µv

∣

∣

γ
).

We find that
(ηk+1, ξk+1) = B(ηk , ξk).
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Operator N

Consider the following problem































∆u + k2u = 0 in Ω\γ,

u = 0 on Γ0,

∂νu = η on Γ1,

[∂νu] + µu = ξ on γ,

[u] = 0 on γ,

Introduce a linear operator N : H1/2(Γ1)
∗ × H1/2(γ)∗ −→ H1/2(Γ0)

∗

by
N(η, ξ) = ∂νu

∣

∣

Γ0
,

where η ∈ H1/2(Γ1)
∗, ξ ∈ H1/2(γ)∗.

If u ∈ H1(Ω) solves the Cauchy problem for the Helmholtz equation
with f = 0 on Γ0, the problem can then be formulated as

N(η, ξ) = g .
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Adjoint operator N∗

Lemma

Let ζ ∈ H1/2(Γ0)
∗, and let v solves the



















∆w + k2w = 0 in Ω\γ,

∂νw = ζ on Γ0,

w = 0 on Γ1,

w = 0 on γ.

Then N∗(ζ) = (∂νw
∣

∣

Γ1
, [∂νw ] + µw

∣

∣

γ
).
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Landweber method

Consider the following functional

J(η, ξ) = ‖g − N(η, ξ)‖H1/2(Γ0)∗

Let us define

LN(η, ξ) = (η, ξ) + αN∗(g − N(η, ξ)),

where α is a fixed constant chosen so that 0 < α < ‖N‖−2.

The Landweber method produces iterates

(ηk+1, ξk+1) = LN(ηk , ξk).
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Modified algorithm and Landweber method

Theorem

For any η ∈ H1/2(Γ1)
∗ and ξ ∈ H1/2(γ), the iterates produced by the

Landweber method and the modified alternating algorithm are identical,

i.e.,

LN(η, ξ) = B(η, ξ). (5)
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Conjugate gradient method

The conjugate gradient method for the problem is as follows

1 Choose initial η0 ∈ H1/2(Γ1)
∗ and ξ0 ∈ H1/2(γ)∗.

Denote χ0 = (η0, ξ0) and (H1/2)∗ = H1/2(Γ1)
∗ × H1/2(γ)∗.

2 d0 = g − N(χ0);

3 p1 = s0 = N∗(d0);

4 for k = 1, 2, . . . , unless sk−1 = 0, compute

5 qk = N(χk);

6 αk = ‖sk−1‖(H1/2)∗/‖qk‖H1/2(Γ0)∗ ;

7 χk = χk−1 + αkpk ;

8 dk = dk−1 − αkqk ;

9 sk = N ∗ (dk);

10 αk = ‖sk‖(H1/2)∗/‖sk−1‖(H1/2)∗ ;

11 pk+1 = sk + βkpk .
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Numerical experiments

The domain is the rectangle Ω = (0, 1)× (0, L).

We put Γ0 = (0, 1)× {0} and Γ1 = (0, 1)× {L}.

We choose L = 0.2, the computational grid N = 401, and M = 81
and the following exact data:

u(x , 0) =

(

3 sinπx +
sin 3πx

19
+ 9 exp(−30(x − L)2)

)

x2(1− x)2,

and

u(x , L) = 2

(

8 sinπx +
sin 3πx

17
+ 20 exp(−50(x − L)2)

)

x2(1− x)2.

19/21



Numerical experiments
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Figure 1 : Modified algorithm (left) after 1500 iterations and the conjugate
gradient method (right) after 20 iterations.
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