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invisibility.
Approaches:

o smartly designed composite materials + special shapes
(STEALTH technology)

o local deformation of space variables
(HARRY POTTER'S cloack)

o Greenleaf A., Kurylev Ya., Lassas M. Uhlmann G. Invisibility
an inverse problems. Bull. Amer. Math. Soc. 2009. V. 46.

o Greenleaf A., Kurylev Ya., Lassas M. Uhlmann G.
Approximate quantum and acoustic cloacking.
J. Spectr. Theory. 2011. V. 1.

Our approach:
o No changes in the differential equations and the boundary
conditions but only design of obstacle’s shape.

o The main difference is that we consider WAVEGUIDES and
thus deal with a FINITE number of propagative waves.




linear theory of water-waves.
The Steklov spectral problem:

° A+ k20 =0 in II°,
° 0,¢° = A¢® on T,

) Oy =0 on X°,

o ° is the velocity potential and A\* = g~ 'w? the spectral

parameter with a frequency w > 0 and the acceleration
g > 0 due to gravity,

!

o the superscript € > 0 indicates the size of
the perturbation of the bottom (a warp)
¢ ={(y,2) 1y € R,z = —d+eh(y)}.
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pagative waves.

The continuous spectrum [\, +00).
° The cutoff point A = A(k) > 0 satisfies
1— €—2md )
o If the bottom is flat, i.e., h = 0, then, for any [ > 0,
there exists in the straight channel two propagative waves
= (y’ Z) _ ej:z‘ly(emz + 6—m(z+2d))

where m = Vk? + [2.

o According to the Sommerfeld principle the wave w™
travels from —oo to +o0.
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'The transmission and reflection coefficients.
The straight channel I1°.

o The wave w(y, z) = et (e™* 4 ¢="(>+2d)) of course,
travels from —oo to +o0o without any perturbation.

The perturbed channel TI¢.

o The scattered wave:
us(y,2) = x-(W)w*(2) + Y xx ) siw®(2) + @(y, 2),
+
o where the reflection s and transmission s coefficients
satisfy [s | + |s5 |2 = 1, ©° decays exponentially,
X+ are cut-off functions near y = too.
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ibility.
The perturbed channel II¢.

o The scattered wave

W (y, 2) = )+ L)) + 700, 2)

o We fix some [ > 0 and the frequency w; = v/gA(k, )1/2.

o The perturbation (obstacle) is “invisible” with
the reflection coefficient s =0
and transmission coefficient 55 = 1.

o The perturbation (obstacle) is non-reflective with

the reflection coefficient s = 0
(and, hence, the transmission coefficient s5 = e¥=).
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Invisibility.

The “invisible” local perturbation (a warp) at a given frequency.

o One needs to find out a smooth profile h(y)
of the slightly sloped bottom
Y ={(y,2): yeR,z=—-d+¢ch(y)}
( with supph C (—L,+L), L > 0) such that

£ =0 and s5 =1

in the squtlon
ut(y,z) = )+ Z x+(y)siwt(2) + T (y, 2).




Invisibility.
The “invisible” perturbation.

o We accept the asymptotic ansatze
u(y,2) = wh(y,2) +ev'(y,2) +. ..,
5. =8 tesl+...,
where u%(y, z) = wT(y,2) and s§. =1, s =0
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Invisibility.
The “invisible” perturbation.

o We accept the asymptotic ansatze
u(y,2) = wh(y,2) +ev'(y,2) +. ..,
5. =8 tesl+...,
where u%(y, z) = wT(y,2) and s§. =1, s =0

o and then rectify the bottom

o taking into account that
0y = (1+€2|0yh(y)*)7V/2(=0; + edyhl(y)).




ptotic analysis.

The boundary condition at the rectified bottom.

o al/ug(ya —d + Eh(y)) = —8zu0(y, —d + 8h(y))+
+e0yh(y)0.ul(y, —d + eh(y)) — ed.u/ (y, —d + eh(y)) + - - - =
= _8zu0(y7 _d) - eh(s)afuo(y, _d)+
+e0yh(y)9.ul(y, —d) — ed ./ (y, —d) + . ...

o The Helmholtz equation provides
aguo(:% _d) = _asuo(y7 _d) + kQUO(yJ _d)

o and therefore d,u(y, —d + eh(y)) =
=e(— 0.4/ (y, —d) + 9yh(y)9:u’(y, —d)+
+h(y)0yu’(y, —d) — h(y)k*u’(y, —d)) + ...




Asymptotic analysis.
The problem for the correction term.

o Thus, the function u/ satisfies

— A (y,2) + k% (y,2) = 0, (y,z) € II°,

94/ (y,0) = M(y,0), y €R,

—0,u/(y, —d) = =0y (h(y)9yul(y, —d)) + k*h(y)u’(y, —d).
o There exists a unique solution such that
o u'(y,z) = ; X+ (y)shw®(2) + ' (y, 2)

with some coefficients ¢/, .




mptotic analysis.

Formulas for the coefficients.

° The correctlon term

ZXi y)swt(z) + ' (y, 2).

o Insert u/(y, ) and w* (y, ) into the Green
formula in the rectangle (—R, R) x (—d,0) and send R to oc.

o As a result we obtain: .
s, = 4iN"HE? + l2)/ h(y)dy,
L

L
s = 4N (k2 -1?) / X Wh(y)dy
L
with a certain N > 0.




ymptotic analysis.

Formulas for the coefficients.

o The correctlon term

=3 et + 7 (02)

L
sy = 4iN"H(E? + l2)/ h(y)dy,
=1L
L
s’ = 4N k2 - 1?) / 2 h(y)dy
=1L

o Thus imposing three orthogonality conditions
L 7
[ nway=o. [ emgay-oec
—L —I

o provides s', =0,
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ptotic analysis.

Formulas for the coefficients.

o The correction term
u'(y,2) = ; x+(y)shw(2) + T'(y, 2),

L

sy = 4iN"H(E? + l2)/ h(y)dy,
—L
L

s = 4Nk - 1?) / eXWh(y)dy
—L

o Thus imposing three orthogonality conditions
7

L
/ h(y)dy = 0, / eMyh(y)dy =0eC
L L
o provides s’ =0,

o however, we still cannot achieve s5. = 0
because the lower-order perturbation €235




ing for a proper profile.
Complicating the form of the profile.

o To find out an “invisible” warp we employ
an idea and techniques of
the enforced stability of embedded eigenvalues, see, e.g.,

Nazarov S.A. Trapped waves in a cranked waveguide with
hard walls
Acoustical Physics 2011. V. 57 (6). P. 764-771,

Nazarov S.A. Asymptotic expansions of eigenvalues in

the continuous spectrum of a regularly perturbed quantum
waveguide Theoretical and mathematical physics

2011. V. 167 (2). P. 606-627.

o We linearize the equations s5 =1 and s° = 0 around the
asymptotic solution.




rching for a proper profile.

Complicating the form of the profile.

o To find out an “invisible” warp we employ the techniques of
the enforced stability of embedded eigenvalues,
namely we impose the decomposition of the profile

3
h(y) = ho(y) + Z 7i(e)h;(y)

where 7 = (71, T2, 73) is the vector of new small parameters
and hy € CH(—L,+L) ...

o We linearize the equations s5 =1 and s° = 0 around the
asymptotic solution.




arching for a proper profile.

Complicating the form of the profile.

3
o h(y) = ho(y) + Y _ 75(e)h;(y)
j=1

where 7 = (71, 72, 73) is the vector of new small parameters
and hy € C4(—L,+L) subject
to the normalization and orthogonality conditions
L L
/L Ri(y)ho(y)dy = 0, /L Ri(y)hj(y)dy = b; k.
where j,k =1,2,3 and
Ri(y) =1, Ra(y) =cos(2ly), Rs(y) = sin(2ly)




rching for a proper profile.

Complicating the form of the profile.
3
o h(y) = ho(y) + Y _ 7(e)h;(y)
j=1

where 7 = (71, 72, T3) is the vector of new small parameters
and h, € C4(—L,+L) subject
to the normalization and orthogonality conditions

L L
| Rewhotdn=0. [ Ry = b
where j,k =1,2,3 and

Ri(y) =1, Ra(y) = cos(2ly), Rs(y) = sin(2ly)
o notice that e = cos(2ly) + isin(2ly).




equations to determine the desired profile.
Transcendental equations.

o We have 55 = s -I—Las’i +e%3%,
S, =N+ ) [ i)y
—L
L
s = 4N k2 - 1?) / eXWh(y)dy
—L

o Then three equations Ims =0 and s =0€C
under the condition k£ # [ reduce to the abstract equation
r=T(t) in R?

1 =
o where TE( - 4k2+l2NIm( 6), Tf( ) =
— 8 ~E € ~E

o The most important point is: for a smaII €
the operator 7¢ in R3 is contractive in a small ball!




properties of the operator 7T°.
Estimates for the remainder.

o Rectifying the boundary: the coordinate change
(y,2) = (%, 2%),
o namely, we make the local shift near the warp
Y=y, 2f=z—ch(y)
which slightly and analytically in € and 7
perturbs the operators and
glue it with identity outside the vicinity of the warp.

o Profits:
the estimate |5 | < ¢ in the remainder 55
and the analytic dependence of s5 on 7.
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clusive remarks.

About the warp.

o The solution 7 = 7(¢) exists and unique
in the ball B2, with some p > 0.

o Since |7(g)| < ep, we have
eh(y) = eho(y) + Z (e = cho(y) + O(£?),
i.e., hg is the maln term under three conditions only.

i
o In view of the condition / ho(y)dy =0 (%)
—I

the increment of the volume due to the warp is O(g?).
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lusive remarks.

About the warp.

L
ho(y)dy =0 ()
L

the increment of the volume due to the warp is O(g?).

o In view of the condition /

o Aiming to make the warp non-reflecting only,
we may omit (x) and make the volume increment > ce.

o The proof is based on the smoothness assumption on h,,
thus we cannot consider more complicated shapes yet.

o We also do not know yet about “invisible” submerged objects.




Thanks a lot
for attention !




