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The invisibility.

Approaches:

smartly designed composite materials + special shapes
(STEALTH technology)

local deformation of space variables
(HARRY POTTER’S cloack)

Greenleaf A., Kurylev Ya., Lassas M. Uhlmann G. Invisibility
an inverse problems. Bull. Amer. Math. Soc. 2009. V. 46.

Greenleaf A., Kurylev Ya., Lassas M. Uhlmann G.
Approximate quantum and acoustic cloacking.
J. Spectr. Theory. 2011. V. 1.

Our approach:

No changes in the differential equations and the boundary
conditions but only design of obstacle’s shape.

The main difference is that we consider WAVEGUIDES and
thus deal with a FINITE number of propagative waves.
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The linear theory of water-waves.

The Steklov spectral problem:

−∆ϕε + k2ϕε = 0 in Πε,

∂zϕ
ε = λϕε on Γ,

∂νϕ
ε = 0 on Σε,

ϕε is the velocity potential and λε = g−1ω2 the spectral
parameter with a frequency ω > 0 and the acceleration
g > 0 due to gravity,

the superscript ε > 0 indicates the size of
the perturbation of the bottom (a warp)
Σε = {(y, z) : y ∈ R, z = −d+ εh(y)}.
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Propagative waves.

The continuous spectrum [λ†,+∞).

The cutoff point λ† = λ(k) ≥ 0 satisfies

λ(m) = m
1− e−2md

1 + e−2md
with m ≥ 0.

If the bottom is flat, i.e., h = 0, then, for any l ≥ 0,
there exists in the straight channel two propagative waves

w±(y, z) = e±ily(emz + e−m(z+2d))

where m =
√
k2 + l2.

According to the Sommerfeld principle the wave w+

travels from −∞ to +∞.

o
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The transmission and reflection coefficients.

The straight channel Π0.

The wave w+(y, z) = e+ily(emz + e−m(z+2d)), of course,
travels from −∞ to +∞ without any perturbation.

The perturbed channel Πε.

The scattered wave:
uε(y, z) = χ−(y)w+(z) +

∑
±
χ±(y)sε±w

±(z) + ũ ε(y, z),

where the reflection sε− and transmission sε+ coefficients
satisfy |sε−|2 + |sε+|2 = 1, ũ ε decays exponentially,
χ± are cut-off functions near y = ±∞.

o
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The transmission and reflection coefficients.

The straight channel Π0.

The wave w+(y, z) = e+iy(emz + e−m(z+2d))
travels from −∞ to +∞ without any perturbation.

The perturbed channel Πε.

The scattered wave:
uε(y, z) = χ−(y)w+(z) +

∑
±
χ±(y)sε±w

±(z) + ũ ε(y, z),

where the reflection sε− and transmission sε+ coefficients
satisfy |sε−|2 + |sε+|2 = 1, ũ ε decays exponentially,
χ± are cut-off functions near y = ±∞.
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Invisibility.

The perturbed channel Πε.

The scattered wave:
uε(y, z) = χ−(y)w+(z) +

∑
±
χ±(y)sε±w

±(z) + ũ ε(y, z).

We fix some l > 0 and the frequency ωl =
√
gλ(k, l)1/2.

The perturbation (obstacle) is “invisible” with
the reflection coefficient sε− = 0
and transmission coefficient sε+ = 1.

The perturbation (obstacle) is non-reflective with
the reflection coefficient sε− = 0
(and, hence, the transmission coefficient sε+ = eiψε).
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Invisibility.

The “invisible” local perturbation (a warp) at a given frequency.

One needs to find out a smooth profile h(y)
of the slightly sloped bottom
Σε = {(y, z) : y ∈ R, z = −d+ εh(y)}
( with supph ⊂ (−L,+L), L > 0) such that

sε− = 0 and sε+ = 1

in the solution
uε(y, z) = χ−(y)w+(z) +

∑
±
χ±(y)sε±w

±(z) + ũ ε(y, z).
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Invisibility.

The “invisible” perturbation.

We accept the asymptotic ansätze
uε(y, z) = w+(y, z) + εu′(y, z) + . . . ,
sε± = s0± + εs′± + . . . ,
where u0(y, z) = w+(y, z) and s0+ = 1, s0− = 0
.
.

.

z

y

z=-d



10

Invisibility.

The “invisible” perturbation.

We accept the asymptotic ansätze
uε(y, z) = w+(y, z) + εu′(y, z) + . . . ,
sε± = s0± + εs′± + . . . ,
where u0(y, z) = w+(y, z) and s0+ = 1, s0− = 0
and then rectify the bottom

.
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Invisibility.

The “invisible” perturbation.

We accept the asymptotic ansätze
uε(y, z) = w+(y, z) + εu′(y, z) + . . . ,
sε± = s0± + εs′± + . . . ,
where u0(y, z) = w+(y, z) and s0+ = 1, s0− = 0
and then rectify the bottom

taking into account that
∂ν = (1 + ε2|∂yh(y)|2)−1/2(−∂z + ε∂yh(y)).
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Asymptotic analysis.

The boundary condition at the rectified bottom.

∂νu
ε(y,−d+ εh(y)) = −∂zu0(y,−d+ εh(y))+

+ε∂yh(y)∂zu0(y,−d+ εh(y))− ε∂zu′(y,−d+ εh(y)) + · · · =
= −∂zu0(y,−d)− εh(s)∂2

zu
0(y,−d)+

+ε∂yh(y)∂zu0(y,−d)− ε∂zu′(y,−d) + . . . .

The Helmholtz equation provides
∂2
zu

0(y,−d) = −∂2
yu

0(y,−d) + k2u0(y,−d)
and therefore ∂νu

ε(y,−d+ εh(y)) =
= ε
(
− ∂zu′(y,−d) + ∂yh(y)∂zu0(y,−d)+

+h(y)∂2
yu

0(y,−d)− h(y)k2u0(y,−d)
)

+ . . .
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Asymptotic analysis.

The problem for the correction term.

Thus, the function u′ satisfies
−∆u′(y, z) + k2u′(y, z) = 0, (y, z) ∈ Π0,
∂zu
′(y, 0) = λu′(y, 0), y ∈ R,

−∂zu′(y,−d) = −∂y(h(y)∂yu0(y,−d)) + k2h(y)u0(y,−d).
There exists a unique solution such that

u′(y, z) =
∑
±
χ±(y)s′±w

±(z) + ũ ′(y, z)

with some coefficients s′±.

o
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Asymptotic analysis.

Formulas for the coefficients.

The correction term
u′(y, z) =

∑
±
χ±(y)s′±w

±(z) + ũ ′(y, z).

Insert u′(y, z) and w±(y, z) into the Green
formula in the rectangle (−R,R)× (−d, 0) and send R to ∞.

As a result we obtain:

s′+ = 4iN−1(k2 + l2)
∫ L

−L
h(y)dy,

s′− = 4iN−1(k2 − l2)
∫ L

−L
e2ilyh(y)dy

with a certain N > 0.
.
.
.



15

Asymptotic analysis.

Formulas for the coefficients.

The correction term
u′(y, z) =

∑
±
χ±(y)s′±w

±(z) + ũ ′(y, z),

s′+ = 4iN−1(k2 + l2)
∫ L

−L
h(y)dy,

s′− = 4iN−1(k2 − l2)
∫ L

−L
e2ilyh(y)dy

Thus imposing three orthogonality conditions∫ L

−L
h(y)dy = 0,

∫ L

−L
e2ilyh(y)dy = 0 ∈ C

provides s′± = 0,

.

.
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Asymptotic analysis.

Formulas for the coefficients.

The correction term
u′(y, z) =

∑
±
χ±(y)s′±w

±(z) + ũ ′(y, z),

s′+ = 4iN−1(k2 + l2)
∫ L

−L
h(y)dy,

s′− = 4iN−1(k2 − l2)
∫ L

−L
e2ilyh(y)dy

Thus imposing three orthogonality conditions∫ L

−L
h(y)dy = 0,

∫ L

−L
e2ilyh(y)dy = 0 ∈ C

provides s′± = 0,

however, we still cannot achieve sε± = 0
because the lower-order perturbation ε2s̃ ε±.
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Searching for a proper profile.

Complicating the form of the profile.

To find out an “invisible” warp we employ
an idea and techniques of
the enforced stability of embedded eigenvalues, see, e.g.,

Nazarov S.A. Trapped waves in a cranked waveguide with
hard walls
Acoustical Physics 2011. V. 57 (6). P. 764-771,

Nazarov S.A. Asymptotic expansions of eigenvalues in
the continuous spectrum of a regularly perturbed quantum
waveguide Theoretical and mathematical physics
2011. V. 167 (2). P. 606–627.

We linearize the equations sε+ = 1 and sε− = 0 around the
asymptotic solution.
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Searching for a proper profile.

Complicating the form of the profile.

To find out an “invisible” warp we employ the techniques of
the enforced stability of embedded eigenvalues,
namely we impose the decomposition of the profile

h(y) = h0(y) +
3∑
j=1

τj(ε)hj(y)

where τ = (τ1, τ2, τ3) is the vector of new small parameters
and hq ∈ C4

c (−L,+L) ...

We linearize the equations sε+ = 1 and sε− = 0 around the
asymptotic solution.
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Searching for a proper profile.

Complicating the form of the profile.

h(y) = h0(y) +
3∑
j=1

τj(ε)hj(y)

where τ = (τ1, τ2, τ3) is the vector of new small parameters
and hq ∈ C4

c (−L,+L) subject
to the normalization and orthogonality conditions∫ L

−L
Rk(y)h0(y)dy = 0,

∫ L

−L
Rk(y)hj(y)dy = δj,k,

where j, k = 1, 2, 3 and
R1(y) = 1, R2(y) = cos(2ly), R3(y) = sin(2ly)
.
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Searching for a proper profile.

Complicating the form of the profile.

h(y) = h0(y) +
3∑
j=1

τj(ε)hj(y)

where τ = (τ1, τ2, τ3) is the vector of new small parameters
and hq ∈ C4

c (−L,+L) subject
to the normalization and orthogonality conditions∫ L

−L
Rk(y)h0(y)dy = 0,

∫ L

−L
Rk(y)hj(y)dy = δj,k,

where j, k = 1, 2, 3 and
R1(y) = 1, R2(y) = cos(2ly), R3(y) = sin(2ly)
notice that e2ily = cos(2ly) + i sin(2ly).
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The equations to determine the desired profile.

Transcendental equations.

We have sε± = s0± + εs′± + ε2s̃ ε±,

s′+ = 4iN−1(k2 + l2)
∫ L

−L
h(y)dy,

s′− = 4iN−1(k2 − l2)
∫ L

−L
e2ilyh(y)dy

Then three equations Imsε+ = 0 and sε− = 0 ∈ C
under the condition k 6= l reduce to the abstract equation

τ = T ε(τ) in R3

where T ε1 (τ) = −ε
4

1
k2 + l2

N Im(s̃ ε+), T ε2 (τ) =

= −ε
4

1
k2 − l2

N Im(s̃ ε+), T ε3 (τ) =
ε

4
1

k2 − l2
NRe(s̃ ε+).

The most important point is: for a small ε
the operator T ε in R3 is contractive in a small ball !
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The properties of the operator T ε.

Estimates for the remainder.

Rectifying the boundary: the coordinate change
(y, z) 7→ (yε, zε),

namely, we make the local shift near the warp
yε = y, zε = z − εh(y)

which slightly and analytically in ε and τ
perturbs the operators and
glue it with identity outside the vicinity of the warp.

Profits:
the estimate |s̃ ε±| ≤ c in the remainder s̃ ε±
and the analytic dependence of sε± on τ .
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The properties of the operator T ε.

Estimates for the remainder.

Rectifying the boundary: the coordinate change
(y, z) 7→ (yε, zε),

namely, we make the local shift near the warp
yε = y, zε = z − εh(y)
which slightly and analytically in ε and τ
perturbs the operators and
glue it with identity outside the vicinity of the warp.

Profits:
the estimate |s̃ ε±| ≤ c in the remainder s̃ ε±
and the analytic dependence of sε± on τ .
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The properties of the operator T ε.

Estimates for the remainder.

Rectifying the boundary: the coordinate change
(y, z) 7→ (yε, zε),

namely, we make the local shift near the warp
yε = y, zε = z − εh(y)
which slightly and analytically in ε and τ
perturbs the operators and
glue it with identity outside the vicinity of the warp.

Profits:
the estimate |s̃ ε±| ≤ c in the remainder s̃ ε±
and the analytic dependence of sε± on τ .
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Conclusive remarks.

About the warp.

The solution τ = τ(ε) exists and unique
in the ball B3

ερ with some ρ > 0.

Since |τ(ε)| ≤ ερ, we have

εh(y) = εh0(y) +
3∑
j=1

τj(ε)hj(y) = εh0(y) +O(ε2),

i.e., h0 is the main term under three conditions only.

In view of the condition

∫ L

−L
h0(y)dy = 0 (∗)

the increment of the volume due to the warp is O(ε2).
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Conclusive remarks.

About the warp.

In view of the condition

∫ L

−L
h0(y)dy = 0 (∗)

the increment of the volume due to the warp is O(ε2).

Aiming to make the warp non-reflecting only,
we may omit (∗) and make the volume increment ≥ cε.

.

.

.
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Conclusive remarks.

About the warp.

In view of the condition

∫ L

−L
h0(y)dy = 0 (∗)

the increment of the volume due to the warp is O(ε2).

Aiming to make the warp non-reflecting only,
we may omit (∗) and make the volume increment ≥ cε.

The proof is based on the smoothness assumption on hp,
thus we cannot consider more complicated shapes yet.

.
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Conclusive remarks.

About the warp.

In view of the condition

∫ L

−L
h0(y)dy = 0 (∗)

the increment of the volume due to the warp is O(ε2).

Aiming to make the warp non-reflecting only,
we may omit (∗) and make the volume increment ≥ cε.

The proof is based on the smoothness assumption on hp,
thus we cannot consider more complicated shapes yet.

.
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Conclusive remarks.

About the warp.

In view of the condition

∫ L

−L
h0(y)dy = 0 (∗)

the increment of the volume due to the warp is O(ε2).

Aiming to make the warp non-reflecting only,
we may omit (∗) and make the volume increment ≥ cε.

The proof is based on the smoothness assumption on hp,
thus we cannot consider more complicated shapes yet.

We also do not know yet about “invisible” submerged objects.



30

The last phrase.

Thanks a lot

for attention !


