Underwater topography "invisible" for surface waves at given frequencies

Sergei A. Nazarov
in cooperation with
A.-S. Bonnet-BenDhia and J. Taskinen

St-Petersburg University

Linkoeping, April 5, 2013

Approaches:

- smartly designed composite materials + special shapes (STEALTH technology)
- local deformation of space variables (HARRY POTTER'S cloack)
- Greenleaf A., Kurylev Ya., Lassas M. Uhlmann G. Invisibility an inverse problems. Bull. Amer. Math. Soc. 2009. V. 46.
- Greenleaf A., Kurylev Ya., Lassas M. Uhlmann G. Approximate quantum and acoustic cloacking. J. Spectr. Theory. 2011. V. 1.

Our approach:

- No changes in the differential equations and the boundary conditions but only design of obstacle's shape.
- The main difference is that we consider WAVEGUIDES and thus deal with a FINITE number of propagative waves.

The linear theory of water-waves.

The Steklov spectral problem:

-
-
-

$$
\begin{gathered}
-\Delta \varphi^{\varepsilon}+k^{2} \varphi^{\varepsilon}=0 \quad \text { in } \quad \Pi^{\varepsilon}, \\
\partial_{z} \varphi^{\varepsilon}=\lambda \varphi^{\varepsilon} \quad \text { on } \quad \Gamma, \\
\partial_{\nu} \varphi^{\varepsilon}=0 \quad \text { on } \quad \Sigma^{\varepsilon},
\end{gathered}
$$

- φ^{ε} is the velocity potential and $\lambda^{\varepsilon}=g^{-1} \omega^{2}$ the spectral parameter with a frequency $\omega>0$ and the acceleration $g>0$ due to gravity,
- the superscript $\varepsilon>0$ indicates the size of the perturbation of the bottom (a warp) $\Sigma^{\varepsilon}=\{(y, z): y \in \mathbb{R}, z=-d+\varepsilon h(y)\}$.

Propagative waves.

The continuous spectrum $\left[\lambda_{\dagger},+\infty\right)$.

- The cutoff point $\lambda_{\dagger}=\lambda(k) \geq 0$ satisfies

$$
\lambda(m)=m \frac{1-e^{-2 m d}}{1+e^{-2 m d}} \text { with } m \geq 0
$$

- If the bottom is flat, i.e., $h=0$, then, for any $l \geq 0$, there exists in the straight channel two propagative waves

$$
\begin{aligned}
& w^{ \pm}(y, z)=e^{ \pm i l y}\left(e^{m z}+e^{-m(z+2 d)}\right) \\
& \text { where } m=\sqrt{k^{2}+l^{2}} .
\end{aligned}
$$

- According to the Sommerfeld principle the wave w^{+} travels from $-\infty$ to $+\infty$.

The straight channel Π^{0}.

- The wave $w^{+}(y, z)=e^{+i l y}\left(e^{m z}+e^{-m(z+2 d)}\right)$, of course, travels from $-\infty$ to $+\infty$ without any perturbation.

The perturbed channel Π^{ε}.

- The scattered wave:

$$
u^{\varepsilon}(y, z)=\chi_{-}(y) w^{+}(z)+\sum_{ \pm} \chi_{ \pm}(y) s_{ \pm}^{\varepsilon} w^{ \pm}(z)+\widetilde{u}^{\varepsilon}(y, z)
$$

- where the reflection s_{-}^{ε} and transmission s_{+}^{ε} coefficients satisfy $\left|s_{-}^{\varepsilon}\right|^{2}+\left|s_{+}^{\varepsilon}\right|^{2}=1, \widetilde{u}^{\varepsilon}$ decays exponentially, $\chi_{ \pm}$are cut-off functions near $y= \pm \infty$.

The straight channel Π^{0}.

- The wave $w^{+}(y, z)=e^{+i y}\left(e^{m z}+e^{-m(z+2 d)}\right)$ travels from $-\infty$ to $+\infty$ without any perturbation.

The perturbed channel Π^{ε}.

- The scattered wave:

$$
u^{\varepsilon}(y, z)=\chi_{-}(y) w^{+}(z)+\sum_{ \pm} \chi_{ \pm}(y) s_{ \pm}^{\varepsilon} w^{ \pm}(z)+\widetilde{u}^{\varepsilon}(y, z)
$$

- where the reflection s_{-}^{ε} and transmission s_{+}^{ε} coefficients satisfy $\left|s_{-}^{\varepsilon}\right|^{2}+\left|s_{+}^{\varepsilon}\right|^{2}=1, \widetilde{u}^{\varepsilon}$ decays exponentially, $\chi_{ \pm}$are cut-off functions near $y= \pm \infty$.

Invisibility.

The perturbed channel Π^{ε}.

- The scattered wave:

$$
u^{\varepsilon}(y, z)=\chi_{-}(y) w^{+}(z)+\sum_{ \pm} \chi_{ \pm}(y) s_{ \pm}^{\varepsilon} w^{ \pm}(z)+\widetilde{u}^{\varepsilon}(y, z)
$$

- We fix some $l>0$ and the frequency $\omega_{l}=\sqrt{g \lambda(k, l)^{1 / 2}}$.
- The perturbation (obstacle) is "invisible" with the reflection coefficient $s_{-}^{\varepsilon}=0$ and transmission coefficient $s_{+}^{\varepsilon}=1$.
- The perturbation (obstacle) is non-reflective with the reflection coefficient $s_{-}^{\varepsilon}=0$ (and, hence, the transmission coefficient $s_{+}^{\varepsilon}=e^{i \psi_{\varepsilon}}$).

The "invisible" local perturbation (a warp) at a given frequency.

- One needs to find out a smooth profile $h(y)$ of the slightly sloped bottom
$\Sigma^{\varepsilon}=\{(y, z): y \in \mathbb{R}, z=-d+\varepsilon h(y)\}$
(with supph $\subset(-L,+L), L>0)$ such that

$$
s_{-}^{\varepsilon}=0 \quad \text { and } \quad s_{+}^{\varepsilon}=1
$$

in the solution

$$
u^{\varepsilon}(y, z)=\chi_{-}(y) w^{+}(z)+\sum_{ \pm} \chi_{ \pm}(y) s_{ \pm}^{\varepsilon} w^{ \pm}(z)+\widetilde{u}^{\varepsilon}(y, z)
$$

Invisibility.

The "invisible" perturbation.

- We accept the asymptotic ansätze

$$
\begin{aligned}
& u^{\varepsilon}(y, z)=w^{+}(y, z)+\varepsilon u^{\prime}(y, z)+\ldots, \\
& s_{ \pm}^{\varepsilon}=s_{ \pm}^{0}+\varepsilon s_{ \pm}^{\prime}+\ldots, \\
& \text { where } u^{0}(y, z)=w^{+}(y, z) \text { and } s_{+}^{0}=1, s_{-}^{0}=0
\end{aligned}
$$

- .
-.

Invisibility.

The "invisible" perturbation.

- We accept the asymptotic ansätze

$$
\begin{aligned}
& u^{\varepsilon}(y, z)=w^{+}(y, z)+\varepsilon u^{\prime}(y, z)+\ldots \\
& s_{ \pm}^{\varepsilon}=s_{ \pm}^{0}+\varepsilon s_{ \pm}^{\prime}+\ldots, \\
& \text { where } u^{0}(y, z)=w^{+}(y, z) \text { and } s_{+}^{0}=1, s_{-}^{0}=0
\end{aligned}
$$

- and then rectify the bottom
- .

Invisibility.

The "invisible" perturbation.

- We accept the asymptotic ansätze

$$
\begin{aligned}
& u^{\varepsilon}(y, z)=w^{+}(y, z)+\varepsilon u^{\prime}(y, z)+\ldots, \\
& s_{ \pm}^{\varepsilon}=s_{ \pm}^{0}+\varepsilon s_{ \pm}^{\prime}+\ldots, \\
& \text { where } u^{0}(y, z)=w^{+}(y, z) \text { and } s_{+}^{0}=1, s_{-}^{0}=0
\end{aligned}
$$

- and then rectify the bottom
- taking into account that

$$
\partial_{\nu}=\left(1+\varepsilon^{2}\left|\partial_{y} h(y)\right|^{2}\right)^{-1 / 2}\left(-\partial_{z}+\varepsilon \partial_{y} h(y)\right) .
$$

Asymptotic analysis.

The boundary condition at the rectified bottom.

- $\partial_{\nu} u^{\varepsilon}(y,-d+\varepsilon h(y))=-\partial_{z} u^{0}(y,-d+\varepsilon h(y))+$

$$
+\varepsilon \partial_{y} h(y) \partial_{z} u^{0}(y,-d+\varepsilon h(y))-\varepsilon \partial_{z} u^{\prime}(y,-d+\varepsilon h(y))+\cdots=
$$

$$
=-\partial_{z} u^{0}(y,-d)-\varepsilon h(s) \partial_{z}^{2} u^{0}(y,-d)+
$$

$$
+\varepsilon \partial_{y} h(y) \partial_{z} u^{0}(y,-d)-\varepsilon \partial_{z} u^{\prime}(y,-d)+\ldots
$$

- The Helmholtz equation provides

$$
\partial_{z}^{2} u^{0}(y,-d)=-\partial_{y}^{2} u^{0}(y,-d)+k^{2} u^{0}(y,-d)
$$

- and therefore $\partial_{\nu} u^{\varepsilon}(y,-d+\varepsilon h(y))=$

$$
\begin{aligned}
& =\varepsilon\left(-\partial_{z} u^{\prime}(y,-d)+\partial_{y} h(y) \partial_{z} u^{0}(y,-d)+\right. \\
& \left.+h(y) \partial_{y}^{2} u^{0}(y,-d)-h(y) k^{2} u^{0}(y,-d)\right)+\ldots
\end{aligned}
$$

Asymptotic analysis.

The problem for the correction term.

- Thus, the function u^{\prime} satisfies

$$
\begin{aligned}
& -\Delta u^{\prime}(y, z)+k^{2} u^{\prime}(y, z)=0,(y, z) \in \Pi^{0}, \\
& \partial_{z} u^{\prime}(y, 0)=\lambda u^{\prime}(y, 0), y \in \mathbb{R}, \\
& -\partial_{z} u^{\prime}(y,-d)=-\partial_{y}\left(h(y) \partial_{y} u^{0}(y,-d)\right)+k^{2} h(y) u^{0}(y,-d) .
\end{aligned}
$$

- There exists a unique solution such that
- $u^{\prime}(y, z)=\sum_{ \pm} \chi_{ \pm}(y) s_{ \pm}^{\prime} w^{ \pm}(z)+\widetilde{u}^{\prime}(y, z)$
with some coefficients $s_{ \pm}^{\prime}$.

Asymptotic analysis.

Formulas for the coefficients.

- The correction term

$$
u^{\prime}(y, z)=\sum_{ \pm} \chi_{ \pm}(y) s_{ \pm}^{\prime} w^{ \pm}(z)+\widetilde{u}^{\prime}(y, z)
$$

- Insert $u^{\prime}(y, z)$ and $w^{ \pm}(y, z)$ into the Green formula in the rectangle $(-R, R) \times(-d, 0)$ and send R to ∞.
- As a result we obtain:

$$
\begin{aligned}
& s_{+}^{\prime}=4 i N^{-1}\left(k^{2}+l^{2}\right) \int_{-L}^{L} h(y) d y \\
& s_{-}^{\prime}=4 i N^{-1}\left(k^{2}-l^{2}\right) \int_{-L}^{L} e^{2 i l y} h(y) d y \\
& \quad \text { with a certain } N>0
\end{aligned}
$$

Asymptotic analysis.

Formulas for the coefficients.

- The correction term

$$
\begin{aligned}
& u^{\prime}(y, z)=\sum_{ \pm} \chi_{ \pm}(y) s_{ \pm}^{\prime} w^{ \pm}(z)+\widetilde{u}^{\prime}(y, z), \\
& s_{+}^{\prime}=4 i N^{-1}\left(k^{2}+l^{2}\right) \int_{-L}^{L} h(y) d y \\
& s_{-}^{\prime}=4 i N^{-1}\left(k^{2}-l^{2}\right) \int_{-L}^{L} e^{2 i l y} h(y) d y
\end{aligned}
$$

- Thus imposing three orthogonality conditions

$$
\int_{-L}^{L} h(y) d y=0, \quad \int_{-L}^{L} e^{2 i l y} h(y) d y=0 \in \mathbb{C}
$$

- provides $s_{ \pm}^{\prime}=0$,
- .

Asymptotic analysis.

Formulas for the coefficients.

- The correction term

$$
\begin{aligned}
& u^{\prime}(y, z)=\sum_{ \pm} \chi_{ \pm}(y) s_{ \pm}^{\prime} w^{ \pm}(z)+\widetilde{u}^{\prime}(y, z), \\
& s_{+}^{\prime}=4 i N^{-1}\left(k^{2}+l^{2}\right) \int_{-L}^{L} h(y) d y, \\
& s_{-}^{\prime}=4 i N^{-1}\left(k^{2}-l^{2}\right) \int_{-L}^{L} e^{2 i l y} h(y) d y
\end{aligned}
$$

- Thus imposing three orthogonality conditions

$$
\int_{-L}^{L} h(y) d y=0, \quad \int_{-L}^{L} e^{2 i l y} h(y) d y=0 \in \mathbb{C}
$$

- provides $s_{ \pm}^{\prime}=0$,
- however, we still cannot achieve $s_{ \pm}^{\varepsilon}=0$ because the lower-order perturbation $\varepsilon^{2} \widetilde{s}_{ \pm}^{\varepsilon}$.

Complicating the form of the profile.

- To find out an "invisible" warp we employ an idea and techniques of the enforced stability of embedded eigenvalues, see, e.g., Nazarov S.A. Trapped waves in a cranked waveguide with hard walls
Acoustical Physics 2011. V. 57 (6). P. 764-771,
Nazarov S.A. Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide Theoretical and mathematical physics 2011. V. 167 (2). P. 606-627.
- We linearize the equations $s_{+}^{\varepsilon}=1$ and $s_{-}^{\varepsilon}=0$ around the asymptotic solution.

Complicating the form of the profile.

- To find out an "invisible" warp we employ the techniques of the enforced stability of embedded eigenvalues, namely we impose the decomposition of the profile $h(y)=h_{0}(y)+\sum_{j=1}^{3} \tau_{j}(\varepsilon) h_{j}(y)$
where $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ is the vector of new small parameters and $h_{q} \in C_{c}^{4}(-L,+L) \ldots$
- We linearize the equations $s_{+}^{\varepsilon}=1$ and $s_{-}^{\varepsilon}=0$ around the asymptotic solution.

Complicating the form of the profile.

- $h(y)=h_{0}(y)+\sum_{j=1}^{3} \tau_{j}(\varepsilon) h_{j}(y)$
where $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ is the vector of new small parameters and $h_{q} \in C_{c}^{4}(-L,+L)$ subject
to the normalization and orthogonality conditions

$$
\int_{-L}^{L} R_{k}(y) h_{0}(y) d y=0, \quad \int_{-L}^{L} R_{k}(y) h_{j}(y) d y=\delta_{j, k}
$$

where $j, k=1,2,3$ and

$$
R_{1}(y)=1, \quad R_{2}(y)=\cos (2 l y), \quad R_{3}(y)=\sin (2 l y)
$$

Complicating the form of the profile.

- $h(y)=h_{0}(y)+\sum_{j=1}^{3} \tau_{j}(\varepsilon) h_{j}(y)$
where $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ is the vector of new small parameters and $h_{q} \in C_{c}^{4}(-L,+L)$ subject to the normalization and orthogonality conditions
$\int_{-L}^{L} R_{k}(y) h_{0}(y) d y=0, \quad \int_{-L}^{L} R_{k}(y) h_{j}(y) d y=\delta_{j, k}$,
where $j, k=1,2,3$ and
$R_{1}(y)=1, \quad R_{2}(y)=\cos (2 l y), \quad R_{3}(y)=\sin (2 l y)$
- notice that $e^{2 i l y}=\cos (2 l y)+i \sin (2 l y)$.

Transcendental equations.

- We have $\quad s_{ \pm}^{\varepsilon}=s_{ \pm}^{0}+\varepsilon s_{ \pm}^{\prime}+\varepsilon^{2} \widetilde{s}_{ \pm}^{\varepsilon}$,

$$
\begin{aligned}
& s_{+}^{\prime}=4 i N^{-1}\left(k^{2}+l^{2}\right) \int_{-L}^{L} h(y) d y \\
& s_{-}^{\prime}=4 i N^{-1}\left(k^{2}-l^{2}\right) \int_{-L}^{L} e^{2 i l y} h(y) d y
\end{aligned}
$$

- Then three equations $\operatorname{Im} s_{+}^{\varepsilon}=0$ and $s_{-}^{\varepsilon}=0 \in \mathbb{C}$ under the condition $k \neq l$ reduce to the abstract equation

$$
\tau=T^{\varepsilon}(\tau) \quad \text { in } \quad \mathbb{R}^{3}
$$

- where $T_{1}^{\varepsilon}(\tau)=-\frac{\varepsilon}{4} \frac{1}{k^{2}+l^{2}} N \operatorname{Im}\left(\widetilde{s}_{+}^{\varepsilon}\right), \quad T_{2}^{\varepsilon}(\tau)=$ $=-\frac{\varepsilon}{4} \frac{1}{k^{2}-l^{2}} N \operatorname{Im}\left(\widetilde{s}_{+}^{\varepsilon}\right), \quad T_{3}^{\varepsilon}(\tau)=\frac{\varepsilon}{4} \frac{1}{k^{2}-l^{2}} N \operatorname{Re}\left(\widetilde{s}_{+}^{\varepsilon}\right)$.
- The most important point is: for a small ε the operator T^{ε} in \mathbb{R}^{3} is contractive in a small ball!

The properties of the operator T^{ε}.

Estimates for the remainder.

- Rectifying the boundary: the coordinate change

$$
(y, z) \mapsto\left(y^{\varepsilon}, z^{\varepsilon}\right),
$$

- namely, we make the local shift near the warp

$$
y^{\varepsilon}=y, \quad z^{\varepsilon}=z-\varepsilon h(y)
$$

which slightly and analytically in ε and τ perturbs the operators and glue it with identity outside the vicinity of the warp.

- Profits:
the estimate $\left|\widetilde{s}_{ \pm}^{\varepsilon}\right| \leq c$ in the remainder $\widetilde{s}_{ \pm}^{\varepsilon}$ and the analytic dependence of $s_{ \pm}^{\varepsilon}$ on τ.

The properties of the operator T^{ε}.

Estimates for the remainder.

- Rectifying the boundary: the coordinate change $(y, z) \mapsto\left(y^{\varepsilon}, z^{\varepsilon}\right)$,
- namely, we make the local shift near the warp
$y \varepsilon=y, \quad z^{\varepsilon}=z-\varepsilon h(y)$
which slightly and analytically in ε and τ perturbs the operators and glue it with identity outside the vicinity of the warp.
- Profits:
the estimate $\left|\widetilde{s}_{ \pm}^{\varepsilon}\right| \leq c$ in the remainder $\widetilde{s}_{ \pm}^{\varepsilon}$ and the analytic dependence of $s_{ \pm}^{\varepsilon}$ on τ.

The properties of the operator T^{ε}.

Estimates for the remainder.

- Rectifying the boundary: the coordinate change $(y, z) \mapsto\left(y^{\varepsilon}, z^{\varepsilon}\right)$,
- namely, we make the local shift near the warp
$y \varepsilon=y, \quad z^{\varepsilon}=z-\varepsilon h(y)$
which slightly and analytically in ε and τ
perturbs the operators and glue it with identity outside the vicinity of the warp.
- Profits:
the estimate $\left|\widetilde{s}_{ \pm}^{\varepsilon}\right| \leq c$ in the remainder $\widetilde{s}_{ \pm}^{\varepsilon}$ and the analytic dependence of $s_{ \pm}^{\varepsilon}$ on τ.

Conclusive remarks.

About the warp.

- The solution $\tau=\tau(\varepsilon)$ exists and unique in the ball $\mathbb{B}_{\varepsilon \rho}^{3}$ with some $\rho>0$.
- Since $|\tau(\varepsilon)| \leq \varepsilon \rho$, we have

$$
\varepsilon h(y)=\varepsilon h_{0}(y)+\sum_{j=1}^{3} \tau_{j}(\varepsilon) h_{j}(y)=\varepsilon h_{0}(y)+O\left(\varepsilon^{2}\right)
$$

i.e., h_{0} is the main term under three conditions only.

- In view of the condition $\int_{-L}^{L} h_{0}(y) d y=0 \quad(*)$ the increment of the volume due to the warp is $O\left(\varepsilon^{2}\right)$.

Conclusive remarks.

About the warp.

- In view of the condition $\int_{-L}^{L} h_{0}(y) d y=0 \quad(*)$ the increment of the volume due to the warp is $O\left(\varepsilon^{2}\right)$.
- Aiming to make the warp non-reflecting only, we may omit $(*)$ and make the volume increment $\geq c \varepsilon$.
-.
- .

Conclusive remarks.

About the warp.

- In view of the condition $\int_{-L}^{L} h_{0}(y) d y=0 \quad(*)$ the increment of the volume due to the warp is $O\left(\varepsilon^{2}\right)$.
- Aiming to make the warp non-reflecting only, we may omit ($*$) and make the volume increment $\geq c \varepsilon$.
- The proof is based on the smoothness assumption on h_{p}, thus we cannot consider more complicated shapes yet.

Conclusive remarks.

About the warp.

- In view of the condition $\int_{-L}^{L} h_{0}(y) d y=0 \quad(*)$ the increment of the volume due to the warp is $O\left(\varepsilon^{2}\right)$.
- Aiming to make the warp non-reflecting only, we may omit ($*$) and make the volume increment $\geq c \varepsilon$.
- The proof is based on the smoothness assumption on h_{p}, thus we cannot consider more complicated shapes yet.

Conclusive remarks.

About the warp.

- In view of the condition $\int_{-L}^{L} h_{0}(y) d y=0 \quad(*)$ the increment of the volume due to the warp is $O\left(\varepsilon^{2}\right)$.
- Aiming to make the warp non-reflecting only, we may omit ($*$) and make the volume increment $\geq c \varepsilon$.
- The proof is based on the smoothness assumption on h_{p}, thus we cannot consider more complicated shapes yet.
- We also do not know yet about "invisible" submerged objects.

The last phrase.

Thanks a lot for attention!

