Underwater topography "invisible" for surface waves at given frequencies

Sergei A. Nazarov in cooperation with A.-S. Bonnet-BenDhia and J. Taskinen

St-Petersburg University

Linkoeping, April 5, 2013

Approaches:

- smartly designed composite materials + special shapes (STEALTH technology)
- local deformation of space variables (HARRY POTTER'S cloack)
- Greenleaf A., Kurylev Ya., Lassas M. Uhlmann G. Invisibility an inverse problems. Bull. Amer. Math. Soc. 2009. V. 46.
- Greenleaf A., Kurylev Ya., Lassas M. Uhlmann G. Approximate quantum and acoustic cloacking.
 J. Spectr. Theory. 2011. V. 1.

Our approach:

- No changes in the differential equations and the boundary conditions but only design of obstacle's shape.
- The main difference is that we consider WAVEGUIDES and thus deal with a FINITE number of propagative waves.

The linear theory of water-waves.

The Steklov spectral problem:

•
$$-\Delta \varphi^{\varepsilon} + k^2 \varphi^{\varepsilon} = 0$$
 in Π^{ε} ,

•
$$\partial_z \varphi^{\varepsilon} = \lambda \varphi^{\varepsilon}$$
 on Γ ,

•
$$\partial_{\nu}\varphi^{\varepsilon} = 0$$
 on Σ^{ε}

- φ^{ε} is the velocity potential and $\lambda^{\varepsilon} = g^{-1}\omega^2$ the spectral parameter with a frequency $\omega > 0$ and the acceleration g > 0 due to gravity,
- the superscript $\varepsilon > 0$ indicates the size of the perturbation of the bottom (a warp) $\Sigma^{\varepsilon} = \{(y, z) : y \in \mathbb{R}, z = -d + \varepsilon h(y)\}.$

Propagative waves.

۲

The continuous spectrum $[\lambda_{\dagger}, +\infty)$.

The cutoff point
$$\lambda_{\dagger} = \lambda(k) \ge 0$$
 satisfies $\lambda(m) = m \frac{1 - e^{-2md}}{1 + e^{-2md}}$ with $m \ge 0$.

 If the bottom is flat, i.e., h = 0, then, for any l ≥ 0, there exists in the straight channel two propagative waves

$$w^{\pm}(y,z) = e^{\pm ily}(e^{mz} + e^{-m(z+2d)})$$

where
$$m = \sqrt{k^2 + l^2}$$
.

• According to the Sommerfeld principle the wave w^+ travels from $-\infty$ to $+\infty$.

The transmission and reflection coefficients.

The straight channel Π^0 .

The perturbed channel Π^{ε} .

The scattered wave: u^ε(y, z) = χ₋(y)w⁺(z) + Σ_± χ_±(y)s^ε_±w[±](z) + ũ^ε(y, z),
where the reflection s^ε₋ and transmission s^ε₊ coefficients satisfy |s^ε₋|² + |s^ε₊|² = 1, ũ^ε decays exponentially,

 χ_{\pm} are cut-off functions near $y = \pm \infty$.

The transmission and reflection coefficients.

The straight channel Π^0 .

The perturbed channel Π^{ε} .

The scattered wave: u^ε(y, z) = χ₋(y)w⁺(z) + Σ_± χ_±(y)s^ε_±w[±](z) + ũ^ε(y, z),
where the reflection s^ε₋ and transmission s^ε₊ coefficients satisfy |s^ε₋|² + |s^ε₊|² = 1, ũ^ε decays exponentially,

 χ_{\pm} are cut-off functions near $y = \pm \infty$.

The perturbed channel Π^{ε} .

• The scattered wave: $u^{\varepsilon}(y,z) = \chi_{-}(y)w^{+}(z) + \sum_{\pm} \chi_{\pm}(y)s_{\pm}^{\varepsilon}w^{\pm}(z) + \widetilde{u}^{\varepsilon}(y,z).$

• We fix some l > 0 and the frequency $\omega_l = \sqrt{g\lambda(k,l)^{1/2}}$.

- The perturbation (obstacle) is "invisible" with the reflection coefficient s^ε₋ = 0 and transmission coefficient s^ε₊ = 1.
- The perturbation (obstacle) is non-reflective with the reflection coefficient s^ε_− = 0 (and, hence, the transmission coefficient s^ε₊ = e^{iψ_ε}).

The "invisible" local perturbation (a warp) at a given frequency.

• One needs to find out a **smooth** profile h(y)of the slightly sloped bottom $\Sigma^{\varepsilon} = \{(y, z) : y \in \mathbb{R}, z = -d + \varepsilon h(y)\}$ (with $\operatorname{supp} h \subset (-L, +L), L > 0$) such that

$$s_{-}^{\varepsilon} = 0$$
 and $s_{+}^{\varepsilon} = 1$

in the solution

$$u^{\varepsilon}(y,z) = \chi_{-}(y)w^{+}(z) + \sum_{\pm} \chi_{\pm}(y)s^{\varepsilon}_{\pm}w^{\pm}(z) + \widetilde{u}^{\varepsilon}(y,z).$$

The "invisible" perturbation.

• We accept the asymptotic ansätze

$$u^{\varepsilon}(y,z) = w^+(y,z) + \varepsilon u'(y,z) + \dots,$$

 $s^{\varepsilon}_{\pm} = s^0_{\pm} + \varepsilon s'_{\pm} + \dots,$
where $u^0(y,z) = w^+(y,z)$ and $s^0_+ = 1, s^0_- = 0$
• .
• .

The "invisible" perturbation.

• We accept the asymptotic ansätze
$$u^{\varepsilon}(y, z) = w^+(y, z) + \varepsilon u'(y, z) + \dots,$$

 $s^{\varepsilon}_{\pm} = s^0_{\pm} + \varepsilon s'_{\pm} + \dots,$
where $u^0(y, z) = w^+(y, z)$ and $s^0_+ = 1, s^0_- = 0$

and then rectify the bottom

۰.

The "invisible" perturbation.

- We accept the asymptotic ansätze $u^{\varepsilon}(y,z) = w^+(y,z) + \varepsilon u'(y,z) + \dots,$ $s^{\varepsilon}_{\pm} = s^0_{\pm} + \varepsilon s'_{\pm} + \dots,$ where $u^0(y,z) = w^+(y,z)$ and $s^0_+ = 1$, $s^0_- = 0$
- and then rectify the bottom
- taking into account that $\partial_{\nu} = (1 + \varepsilon^2 |\partial_y h(y)|^2)^{-1/2} (-\partial_z + \varepsilon \partial_y h(y)).$

The boundary condition at the rectified bottom.

•
$$\partial_{\nu} u^{\varepsilon}(y, -d + \varepsilon h(y)) = -\partial_{z} u^{0}(y, -d + \varepsilon h(y)) +$$

+ $\varepsilon \partial_{y} h(y) \partial_{z} u^{0}(y, -d + \varepsilon h(y)) - \varepsilon \partial_{z} u'(y, -d + \varepsilon h(y)) + \cdots =$
= $-\partial_{z} u^{0}(y, -d) - \varepsilon h(s) \partial_{z}^{2} u^{0}(y, -d) +$
+ $\varepsilon \partial_{y} h(y) \partial_{z} u^{0}(y, -d) - \varepsilon \partial_{z} u'(y, -d) + \ldots$

• The Helmholtz equation provides $\partial_z^2 u^0(y,-d) = -\partial_y^2 u^0(y,-d) + k^2 u^0(y,-d)$

• and therefore
$$\partial_{\nu}u^{\varepsilon}(y, -d + \varepsilon h(y)) =$$

= $\varepsilon (-\partial_{z}u'(y, -d) + \partial_{y}h(y)\partial_{z}u^{0}(y, -d) +$
+ $h(y)\partial_{y}^{2}u^{0}(y, -d) - h(y)k^{2}u^{0}(y, -d)) + \dots$

The problem for the correction term.

• Thus, the function
$$u'$$
 satisfies
 $-\Delta u'(y, z) + k^2 u'(y, z) = 0, (y, z) \in \Pi^0,$
 $\partial_z u'(y, 0) = \lambda u'(y, 0), y \in \mathbb{R},$
 $-\partial_z u'(y, -d) = -\partial_y (h(y)\partial_y u^0(y, -d)) + k^2 h(y) u^0(y, -d).$

• There exists a unique solution such that

•
$$u'(y,z) = \sum_{\pm} \chi_{\pm}(y) s'_{\pm} w^{\pm}(z) + \widetilde{u}'(y,z)$$

with some coefficients s'_{\pm} .

Formulas for the coefficients.

The correction term

$$u'(y,z) = \sum_{\pm} \chi_{\pm}(y) s'_{\pm} w^{\pm}(z) + \widetilde{u}'(y,z).$$

- Insert u'(y, z) and $w^{\pm}(y, z)$ into the Green formula in the rectangle $(-R, R) \times (-d, 0)$ and send R to ∞ .
- As a result we obtain: $s'_{+} = 4iN^{-1}(k^{2} + l^{2})\int_{-L}^{L}h(y)dy,$ $s'_{-} = 4iN^{-1}(k^{2} - l^{2})\int_{-L}^{L}e^{2ily}h(y)dy$ with a certain N > 0.

Formulas for the coefficients.

• The correction term $u'(y,z) = \sum_{\pm} \chi_{\pm}(y)s'_{\pm}w^{\pm}(z) + \widetilde{u}'(y,z),$ $s'_{+} = 4iN^{-1}(k^{2} + l^{2})\int_{-L}^{L}h(y)dy,$ $s'_{-} = 4iN^{-1}(k^{2} - l^{2})\int_{-L}^{L}e^{2ily}h(y)dy$ • Thus imposing three orthogonality conditions

$$\int_{-L}^{L} h(y)dy = 0, \quad \int_{-L}^{L} e^{2ily}h(y)dy = 0 \in \mathbb{C}$$

• provides
$$s'_{\pm} = 0$$
,

Ο,

Formulas for the coefficients.

- The correction term $u'(y,z) = \sum_{\pm} \chi_{\pm}(y) s'_{\pm} w^{\pm}(z) + \tilde{u}'(y,z),$ $s'_{+} = 4iN^{-1}(k^{2} + l^{2}) \int_{-L}^{L} h(y) dy,$ $s'_{-} = 4iN^{-1}(k^{2} - l^{2}) \int_{-L}^{L} e^{2ily} h(y) dy$
- Thus imposing three orthogonality conditions $\int_{-L}^{L} h(y)dy = 0, \quad \int_{-L}^{L} e^{2ily}h(y)dy = 0 \in \mathbb{C}$
- provides $s'_{\pm} = 0$,
- however, we still cannot achieve $s_{\pm}^{\varepsilon} = 0$ because the lower-order perturbation $\varepsilon^2 \tilde{s}_{\pm}^{\varepsilon}$.

 To find out an "invisible" warp we employ an idea and techniques of the enforced stability of embedded eigenvalues, see, e.g.,

Nazarov S.A. Trapped waves in a cranked waveguide with hard walls

Acoustical Physics 2011. V. 57 (6). P. 764-771,

Nazarov S.A. Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide **Theoretical and mathematical physics** 2011. V. 167 (2). P. 606–627.

• We linearize the equations $s_+^\varepsilon=1$ and $s_-^\varepsilon=0$ around the asymptotic solution.

• To find out an "invisible" warp we employ the techniques of the **enforced stability** of embedded eigenvalues, namely we impose the decomposition of the profile

$$h(y) = h_0(y) + \sum_{j=1}^{5} \tau_j(\varepsilon) h_j(y)$$

where $\tau=(\tau_1,\tau_2,\tau_3)$ is the vector of new small parameters and $h_q\in C_c^4(-L,+L)$...

• We linearize the equations $s_+^\varepsilon=1$ and $s_-^\varepsilon=0$ around the asymptotic solution.

•
$$h(y) = h_0(y) + \sum_{j=1}^{3} \tau_j(\varepsilon)h_j(y)$$

where $\tau = (\tau_1, \tau_2, \tau_3)$ is the vector of new small parameters
and $h_q \in C_c^4(-L, +L)$ subject
to the normalization and orthogonality conditions
 $\int_{-L}^{L} R_k(y)h_0(y)dy = 0, \quad \int_{-L}^{L} R_k(y)h_j(y)dy = \delta_{j,k},$
where $j, k = 1, 2, 3$ and
 $R_1(y) = 1, \quad R_2(y) = \cos(2ly), \quad R_3(y) = \sin(2ly)$
• .

•
$$h(y) = h_0(y) + \sum_{j=1}^{3} \tau_j(\varepsilon)h_j(y)$$

where $\tau = (\tau_1, \tau_2, \tau_3)$ is the vector of new small parameters
and $h_q \in C_c^4(-L, +L)$ subject
to the normalization and orthogonality conditions
 $\int_{-L}^{L} R_k(y)h_0(y)dy = 0, \quad \int_{-L}^{L} R_k(y)h_j(y)dy = \delta_{j,k},$
where $j, k = 1, 2, 3$ and
 $R_1(y) = 1, \quad R_2(y) = \cos(2ly), \quad R_3(y) = \sin(2ly)$
• notice that $e^{2ily} = \cos(2ly) + i\sin(2ly).$

Transcendental equations.

- We have
 $$\begin{split} s^{\varepsilon}_{\pm} &= s^0_{\pm} + \varepsilon s'_{\pm} + \varepsilon^2 \widetilde{s}^{\varepsilon}_{\pm}, \\ s'_{+} &= 4iN^{-1}(k^2 + l^2) \int_{-L}^{L} h(y) dy, \\ s'_{-} &= 4iN^{-1}(k^2 l^2) \int_{-L}^{L} e^{2ily} h(y) dy \end{split}$$
- Then three equations $\operatorname{Im} s^{\varepsilon}_{+} = 0$ and $s^{\varepsilon}_{-} = 0 \in \mathbb{C}$ under the condition $k \neq l$ reduce to the abstract equation $\tau = T^{\varepsilon}(\tau)$ in \mathbb{R}^{3}

where
$$T_1^{\varepsilon}(\tau) = -\frac{\varepsilon}{4} \frac{1}{k^2 + l^2} N \operatorname{Im}(\widetilde{s}_+^{\varepsilon}), \quad T_2^{\varepsilon}(\tau) = -\frac{\varepsilon}{4} \frac{1}{k^2 - l^2} N \operatorname{Im}(\widetilde{s}_+^{\varepsilon}), \quad T_3^{\varepsilon}(\tau) = \frac{\varepsilon}{4} \frac{1}{k^2 - l^2} N \operatorname{Re}(\widetilde{s}_+^{\varepsilon}).$$

The most important point is: for a small ε
 the operator T^ε in R³ is contractive in a small ball !

The properties of the operator T^{ε} .

Estimates for the remainder.

- Rectifying the boundary: the coordinate change $(y,z)\mapsto (y^{\varepsilon},z^{\varepsilon})\text{,}$
- namely, we make the local shift near the warp

$$y^{\varepsilon} = y, \quad z^{\varepsilon} = z - \varepsilon h(y)$$

which slightly and **analytically in** ε and τ perturbs the operators and glue it with identity outside the vicinity of t

glue it with identity outside the vicinity of the warp.

• Profits:

the estimate $|\tilde{s}_{\pm}^{\varepsilon}| \leq c$ in the remainder $\tilde{s}_{\pm}^{\varepsilon}$ and the analytic dependence of s_{\pm}^{ε} on τ .

The properties of the operator T^{ε} .

Estimates for the remainder.

- Rectifying the boundary: the coordinate change $(y,z)\mapsto (y^{\varepsilon},z^{\varepsilon}),$
- namely, we make the local shift near the warp

$$y\varepsilon = y, \quad z^{\varepsilon} = z - \varepsilon h(y)$$

which slightly and **analytically in** ε and τ perturbs the operators and

glue it with identity outside the vicinity of the warp.

• Profits:

the estimate $|\tilde{s}_{\pm}^{\varepsilon}| \leq c$ in the remainder $\tilde{s}_{\pm}^{\varepsilon}$ and the analytic dependence of s_{\pm}^{ε} on τ .

The properties of the operator T^{ε} .

Estimates for the remainder.

- Rectifying the boundary: the coordinate change $(y,z)\mapsto (y^{\varepsilon},z^{\varepsilon}),$
- namely, we make the local shift near the warp

$$y\varepsilon = y, \quad z^{\varepsilon} = z - \varepsilon h(y)$$

which slightly and **analytically in** ε and τ perturbs the operators and

glue it with identity outside the vicinity of the warp.

• Profits:

the estimate $|\tilde{s}_{\pm}^{\varepsilon}| \leq c$ in the remainder $\tilde{s}_{\pm}^{\varepsilon}$ and the analytic dependence of s_{\pm}^{ε} on τ .

About the warp.

• The solution $\tau = \tau(\varepsilon)$ exists and unique in the ball $\mathbb{B}^3_{\varepsilon\rho}$ with some $\rho > 0$.

• Since
$$|\tau(\varepsilon)| \le \varepsilon \rho$$
, we have
 $\varepsilon h(y) = \varepsilon h_0(y) + \sum_{j=1}^3 \tau_j(\varepsilon) h_j(y) = \varepsilon h_0(y) + O(\varepsilon^2)$,

i.e., h_0 is the main term under three conditions only.

• In view of the condition $\int_{-L}^{L} h_0(y) dy = 0 \quad (*)$ the increment of the volume due to the warp is $O(\varepsilon^2)$.

About the warp.

- In view of the condition ∫^L_{-L} h₀(y)dy = 0 (*) the increment of the volume due to the warp is O(ε²).
 Aiming to make the warp non-reflecting only, we may omit (*) and make the volume increment ≥ α
 - we may omit (*) and make the volume increment $\geq c\varepsilon$.
- •.

Ο.

About the warp.

• In view of the condition $\int_{-L}^{L} h_0(y) dy = 0$ (*)

the increment of the volume due to the warp is $O(\varepsilon^2)$.

- Aiming to make the warp non-reflecting only, we may omit (*) and make the volume increment ≥ cε.
- The proof is based on the smoothness assumption on h_p , thus we cannot consider more complicated shapes yet.

۰.

About the warp.

• In view of the condition $\int_{-L}^{L} h_0(y) dy = 0$ (*)

the increment of the volume due to the warp is $O(\varepsilon^2)$.

- Aiming to make the warp non-reflecting only, we may omit (∗) and make the volume increment ≥ cε.
- The proof is based on the smoothness assumption on h_p , thus we cannot consider more complicated shapes yet.

۰.

About the warp.

• In view of the condition $\int_{-L}^{L} h_0(y) dy = 0$ (*)

the increment of the volume due to the warp is $O(\varepsilon^2)$.

- Aiming to make the warp non-reflecting only, we may omit (∗) and make the volume increment ≥ cε.
- The proof is based on the smoothness assumption on h_p , thus we cannot consider more complicated shapes yet.
- We also do not know yet about "invisible" submerged objects.

Thanks a lot for attention !

▲□▶∽�� 30