$\begin{array}{c} \mbox{Introduction}\\ \mbox{Optimal decomposition for couple} (X_0, X_1)\\ \mbox{Optimal decomposition for couple} (\ell^{\ell}, X)\\ \mbox{General case} \end{array}$

Geometry of optimal decomposition for the L- functional and duality in convex analysis

Japhet Niyobuhungiro

Conference on "Inverse Problems and Applications"

Linköping University

April 06, 2013

Geor

Optimal decomposition for couple (X_0, X_1) Optimal decomposition for couple (ℓ^p, X) ROF model The problem

ROF model

ROF model

In 1992 Rudin, Osher and Fatemi suggested a denoising model which has made great success. Let $D = [a, b] \times [c, d]$ be a rectangular domain in \mathbb{R}^2 . Suppose that initial image $f_* \in BV$ and we observe

$$f_{\rm ob} = f_* + \eta,$$

where $\eta \in L^2(D)$ corresponds to noise. In order to reconstruct approximately initial image f_* , ROF suggested to consider

$$L_{2,1}(t, f_{\mathrm{ob}}, L^{2}(D), BV(D)) = \inf_{g \in BV} \left(\frac{1}{2} \|f_{\mathrm{ob}} - g\|_{L^{2}}^{2} + t \|g\|_{BV} \right),$$

and to take as approximation to f_* the function f_t which minimizes this functional, i.e.,

Geometry of optimal

Optimal decomposition for couple (X_0, X_1) Optimal decomposition for couple (ℓ^p, X) General case ROF model The problem

ROF model

$$L_{2,1}(t, f_{ob}, L^{2}(D), BV(D)) = \frac{1}{2} \|f_{ob} - f_{t}\|_{L^{2}}^{2} + t \|f_{t}\|_{BV},$$

where (for a function f of class C^1)

$$\|f\|_{BV} = \iint_{D} \left(\left| \frac{\partial f}{\partial x}(x, y) \right| + \left| \frac{\partial f}{\partial y}(x, y) \right| \right) dxdy.$$

Optimal decomposition

The expression

$$f_{\rm ob} = (f_{\rm ob} - f_t) + f_t,$$

Geometry of optimal (

is called *optimal decomposition* of $L_{2,1}(t, f_{ob}, L^2(D), BV(D))$ corresponding to f_{ob} .

Optimal decomposition for couple (X_0, X_1) Optimal decomposition for couple (ℓ^p, X) General case ROF model The problem

Geometr

伺下 イヨト イヨト

of optimal

ROF model

In 2002, Yves Meyer obtained a mathematical characterization of this optimal decomposition for this couple $(L^2(D), BV(D))$ by using duality. [Yves Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, 2002]

Optimal decomposition for couple (X_0, X_1) Optimal decomposition for couple (ℓ^p, X) ROF model The problem

The problem

Let (X_0, X_1) be a compatible Banach couple. i.e., X_0 and X_1 are Banach spaces such that X_0 and X_1 are linearly and continuously embedded in some Banach space \mathcal{X} . Let $x \in X_0 + X_1$, let 1 and <math>t > 0. We consider the L- functional

$$L_{p,1}(t,x;X_0,X_1) = \inf_{x=x_0+x_1} \left(\frac{1}{p} \|x_0\|_{X_0}^p + t \|x_1\|_{X_1}\right),$$

We give a characterization of *optimal decomposition* for the L-functional. i.e., $x = x_{0,opt} + x_{1,opt}$ such that

$$L_{p,1}(t,x;X_0,X_1) = \frac{1}{p} \|x_{0,\text{opt}}\|_{X_0}^p + t \|x_{1,\text{opt}}\|_{X_1}$$

Geometry

(日本)(日本)(日本)(日本)

of optimal (

Optimal decomposition for couple (X_0, X_1) Optimal decomposition for couple (ℓ^p, X) General case ROF model The problem

The problem

$$L_{p,1}(t,x;X_0,X_1) = \inf_{x=x_0+x_1} \left(\frac{1}{p} \|x_0\|_{X_0}^p + t \|x_1\|_{X_1}\right),$$

We give a characterization of *optimal decomposition* for the L-functional. i.e., $x = x_{0,opt} + x_{1,opt}$ such that

$$L_{p,1}(t,x;X_0,X_1) = \frac{1}{p} \|x_{0,\text{opt}}\|_{X_0}^p + t \|x_{1,\text{opt}}\|_{X_1}$$

For ROF model,

$$p = 2, X_0 = L^2(D), X_1 = BV(D)$$

<u>Geometry</u>

(日本)(日本)(日本)

of optimal (

Dual characterization of optimal decomposition

Let (X_0, X_1) be a regular couple $(X_0 \cap X_1 \text{ is dense in both } X_0 \text{ and } X_1)$. Then it is a known fact from interpolation theory that (X_0^*, X_1^*) also form a Banach couple and $(X_0 \cap X_1)^* = X_0^* + X_1^*$. The dual spaces are defined by the norm

$$\|y\|_{X_{j}^{*}} = \sup \left\{ \langle y, x \rangle : \ x \in X_{j}, \ \|x\|_{X_{j}} \leq 1 \right\}, \ j = 0, 1.$$

The spaces $X_0 + X_1$ and $X_0 \cap X_1$ are Banach spaces with respect to the following norms

$$\|x\|_{X_0+X_1} = \inf_{x=x_0+x_1} \left\{ \|x_0\|_{X_0} + \|x_1\|_{X_1} \right\},\$$

where the infimum extends over all representations $x = x_0 + x_1$ of x with x_0 in X_0 and x_1 in X_1 , and

$$\|x\|_{X_0 \cap X_1} = \max\left\{\|x\|_{X_0}, \|x\|_{X_1}\right\}.$$

Geometry

or optimai

Dual characterization of optimal decomposition

Theorem (Main Theorem)

Let $1 . The decomposition <math>x = x_{0,opt} + x_{1,opt}$ is optimal for $L_{p,1}(t, x; X_0, X_1)$ if and only if $\exists y_* \in X_0^* \cap X_1^*$ such that $\|y_*\|_{X_1^*} \leq t$ and

Geo

leu

$$\begin{cases} \frac{1}{\rho} \|x_{0,opt}\|_{X_0}^{\rho} = \langle y_*, x_{0,opt} \rangle - \frac{1}{\rho'} \|y_*\|_{X_0^*}^{\rho'};\\ t \|x_{1,opt}\|_{X_1} = \langle y_*, x_{1,opt} \rangle, \end{cases} \\ \end{cases}$$
where $\frac{1}{\rho} + \frac{1}{\rho'} = 1.$

Example of illustration in \mathbb{R}^2

(A) (E) (A) (E) (A)

Geometry of optimal (

Couple (ℓ^p, X)

Consider a particular but important case of couple (ℓ^p, X) on \mathbb{R}^n

$$L_{p,1}(t,x;\ell_p,X) = \inf_{x=x_0+x_1} \left(\frac{1}{p} \|x_0\|_{\ell_p}^p + t \|x_1\|_{\mathbf{X}} \right),$$

where 1 . Consider the following function

$$F_{0}(u) = rac{1}{p} \|u\|_{\ell_{p}}^{p}, \ \nabla F_{0}(v) = \left\{ |v|^{p-1} \operatorname{sgn}(v)
ight\}$$

Let us define the set Ω by

$$\Omega = \left\{ v \in \mathbb{R}^n : \nabla F_0(v) \in t\mathcal{B}_{X^*} \right\},$$

Example of illustration in \mathbb{R}^2

Couple (ℓ^p, X)

$$\Omega = \{ v \in \mathbb{R}^n : \nabla F_0(v) \in t\mathcal{B}_{X^*} \}.$$
 There are two cases
Case 1: If $v \in \Omega$

then the optimal decomposition for $L_{p,1}(t,x;\ell_p,X)$ is given by

$$x_{0,\text{opt}} = x \text{ and } x_{1,\text{opt}} = 0$$

Geo

leurv

OF ODUI

Case 2: If $x \notin \Omega$

Theorem

The decomposition $x = x_{0,opt} + x_{1,opt}$ is optimal for $L_{p,1}(t, x; \ell_p, X)$ if and only if (a) $\|\nabla F_0(x_{0,opt})\|_{X^*} = t$ (b) $\langle x_{1,opt}, \nabla F_0(x_{0,opt}) \rangle = t \|x_{1,opt}\|_X$.

Example of illustration in \mathbb{R}^2

Geometry of optimal decoposition for couple (ℓ^p, X)

 $x_{1,\mathrm{opt}}$ is orthogonal to the supporting hyperplane to $t\mathcal{B}_{X^*}$ at y_*

Example of illustration in \mathbb{R}^2

Geometry

· · 프 · · · 프 ·

of optimal

Case
$$p = 2$$
: Couple (ℓ^2, X)

$$F_0(u) = \frac{1}{2} \|u\|_{\ell^2}^2, \ \nabla F_0(v) = v$$

The sets Ω and $t\mathcal{B}_{X^*}$ coincide

$$\Omega = t\mathcal{B}_{X^*} = \{u \in \mathbb{R}^n : \|u\|_{X^*} \le t\}$$

Corollary (for $x \notin \Omega$)

$$\|x_{0,opt}\|_{X^*} = t \text{ and } \langle x_{0,opt}, x - x_{0,opt} \rangle = t \|x - x_{0,opt}\|_X.$$

Example of illustration in \mathbb{R}^2

モンマモン

Case
$$p = 2$$
: Couple (ℓ^2, X)

Theorem

Let $x_{0,opt}$ be an exact minimizer for $L_{2,1}(t,x;\ell^2,X)$. Then $x_{0,opt}$ is the nearest element of $t\mathcal{B}_{X^*}$ to the point x in the metric of ℓ^2 :

$$E(t,x;\ell^2,X^*) = \inf_{\|x_0\|_{X^*} \le t} \|x - x_0\|_{\ell^2} = \|x - x_{0,opt}\|_{\ell^2}.$$

Geo

Example of illustration in \mathbb{R}^2

Geometry of optimal decoposition for couple (ℓ^2, X)

Example of illustration in \mathbb{R}^2

Illustration in the plane

Consider couple (ℓ^3, X) in the plane where the unit ball of X is the rotated ball of ℓ^1 by the rotation matrix

$$\mathsf{R}_{ heta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix},$$

for $\theta = 30^{\circ}$. We have that

$$\|x\|_{X} = \|R_{\theta}^{-1}x\|_{\ell^{1}} = \left|\frac{\sqrt{3}}{2}x_{1} - \frac{1}{2}x_{2}\right| + \left|\frac{1}{2}x_{1} + \frac{\sqrt{3}}{2}x_{2}\right|.$$
$$\nabla F_{0}(u) = \left[|u_{1}|^{2}\operatorname{sgn}(u_{1}), |u_{2}|^{2}\operatorname{sgn}(u_{2})\right].$$

The set Ω can be written as

$$\Omega = \left\{ v \in \mathbb{R}^2 : \left\| \left[|v_1|^2 \operatorname{sgn}(v_1), |v_2|^2 \operatorname{sgn}(v_2) \right]^T \right\|_{X^*} \leq t \right\},$$

<u>Geometry</u>

OF ODTI

Example of illustration in \mathbb{R}^2

Illustration in the plane

where the norm in X^* is given by

$$\|y\|_{X^*} = \|R_{\theta}y\|_{\ell^{\infty}} = \max\left\{ \left| \frac{\sqrt{3}}{2}y_1 + \frac{1}{2}y_2 \right|, \left| -\frac{1}{2}y_1 + \frac{\sqrt{3}}{2}y_2 \right| \right\}.$$

Example of illustration in \mathbb{R}^2

Illustration in the plane

Geometry of Optimal Decomposition for the Couple (ℓ_p, X) for p = 3, $X = R_{\theta}(\ell_1)$ and $\theta = 30^{\circ}$. The set Ω could be of rather complicated structure.

Dual characterization of optimal decomposition

Theorem (general case)

Let $x \in X_0 + X_1$, $1 < p_0, p_1 < \infty$ and let t > 0 be a fixed parameter. The decomposition $x = x_{0,opt} + x_{1,opt}$ is optimal for

$$L_{p_0,p_1}(t,x;X_0,X_1) = \inf_{x=x_0+x_1} \left(\frac{1}{p_0} \|x_0\|_{X_0}^{p_0} + \frac{t}{p_1} \|x_1\|_{X_1}^{p_1} \right),$$

if and only if $\exists y_* \in X_0^* \cap X_1^*$ such that

$$\begin{cases} \frac{1}{p_0} \|x_{0,opt}\|_{X_0}^{p_0} = \langle y_*, x_{0,opt} \rangle - \frac{1}{p'_0} \|y_*\|_{X_0}^{p'_0}; \\ \frac{t}{p_1} \|x_{1,opt}\|_{X_1}^{p_1} = \langle y_*, x_{1,opt} \rangle - \frac{t}{p'_1} \left\|\frac{y_*}{t}\right\|_{X_1}^{p'_1}. \end{cases}$$

Geo

Japhet Niyobuhungiro Conference on "Inverse Problems and

4

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Optimal decomposition for couple } (X_0, X_1)\\ \mbox{Optimal decomposition for couple } (\ell^{\mathcal{P}}, X)\\ \mbox{General case} \end{array}$

Thank you for your attention!

化医外收医外

of optimal (

Geometry