Identification of non-linearities in transport-diffusion models of crowded motion

Jan-Frederik Pietschmann
joint with
Martin Burger (Münster), Marie-Therese Wolfram (Vienna)

April 5, 2013
IPA, Linköping

(1) Motivation

(2) Direct and Inverse Problem
(3) Linearization, Identifiability
(4) Numerical Examples

Introduction

Definitions

- Crowded motion: movement in confined geometries where finite size effects matter.

Some Examples

$$
\partial_{t} u=\operatorname{div}\left(D(u)\left(\nabla E^{\prime}(u)-\nabla V\right)\right)
$$

Non-linear Drift-/Convection-Diffusion Equation

$$
\partial_{t} u=\operatorname{div}\left(D(u)\left(\nabla E^{\prime}(u)-\nabla V\right)\right)
$$

Non-linear Drift-/Convection-Diffusion Equation

Aim: Identify (reconstruct)

- the mobility $D=D(u)$
- the entropy $E=E(u)$ given "some measurements".

Forward Problem

Stationary case:

$$
\operatorname{div}(G(u) \nabla u-D(u) \nabla V)=0,
$$

with

$$
G(u)=D(u) E^{\prime \prime}(u)
$$

Boundary conditions:

$$
\left.u\right|_{\partial \Omega}=f \in H^{2}(\Omega) .
$$

Assumptions:
(A1) $G(u) \geq \epsilon>0, D(u)>0$
for $0<u<1, \epsilon>0$.
(A2) $E \in \mathcal{C}^{2}(\mathcal{I}), \quad E^{\prime \prime}(u) \geq 0, \mathcal{I}=[0,1]$
(A3) $D \circ\left(E^{\prime}\right)^{-1}$ exists,
(A4) $V \in W^{1, \infty}(\Omega)$.

Direct Problem - Well-Posedness

Theorem (Existence)

Let $n=1,2,3$ and $F^{\prime}(u)=\left(D\left(H^{-1}(u)\right)\right)^{\prime}, H^{\prime}=G$, continuous and bounded for all $0<a \leq u \leq b<1$. Then, there exists a solution $u \in L^{\infty}(\Omega) \cap H^{1}(\Omega)$

Proof:

- Transformation to entropyvariables:

$$
\varphi=\partial_{u} \mathcal{E}(u), \quad \mathcal{E}(u):=\int_{\Omega} E(u(x))-u(x) U V(x) d x
$$

- Linearisation + a-priori bounds (maximum principle) + fixed point arguments
- Uniqueness only for U small

Assumptions/Inverse Problem

Available data:

- Flux measurements (robust, easy to obtain)
- Density estimation from trajectories

Data available from artificial experiments, video recordings

Assumptions/Inverse Problem

Available data:

- Flux measurements (robust, easy to obtain)
- Density estimation from trajectories

Data available from artificial experiments, video recordings
Inverse Problem:
(IP) Identify the functions G, D from flux measurements

$$
j_{\text {meas }}=\int_{\Gamma \subset \partial \Omega} j d \sigma=\int_{\Gamma \subset \partial \Omega}(G(u) \nabla u-D(u) \nabla V) \cdot n d \sigma
$$

where (U, V, f) are taken from a subset of
$\mathbb{R} \times W^{1, \infty}(\Omega) \times H^{2}(\Omega)$.

Linearisations, Simple Cases

Linearisations, Simple Cases

One spatial dimension, $\Omega=[0,1]$, linear potential $V=U x$

$$
\partial_{x}\left(G(u) \partial_{x} u-D(u) U\right)=0
$$

Measurements $=$ flux measurements on boundary

Linearisations, Simple Cases

One spatial dimension, $\Omega=[0,1]$, linear potential $V=U x$

$$
\partial_{x}\left(G(u) \partial_{x} u-D(u) U\right)=0
$$

Measurements $=$ flux measurements on boundary

Reconstruction of D :

- $u(0)=u(1)=u_{0} \Rightarrow$ constant stationary solutions u_{0}

$$
\begin{aligned}
& j_{\text {meas }}=G\left(u_{0}\right) \underbrace{\partial_{x} u_{0}}_{=0}-D\left(u_{0}\right) U \\
\Rightarrow & D\left(u_{0}\right)=-\frac{j_{\text {meas }}}{U}
\end{aligned}
$$

\Rightarrow Can identify D from flux measurements

Linearisations, Simple Cases

Reconstruction of G :
Linearise around equal Dirichlet boundary conditions, i.e.
$u_{R}=u_{L}+\epsilon$:

$$
\partial_{x}\left(G\left(u_{0}\right) \nabla u-D^{\prime}\left(u_{0}\right) u U\right)=0
$$

Linearised flux:

$$
j_{\text {meas }}=G\left(u_{0}\right) \nabla u-D^{\prime}\left(u_{0}\right) u U
$$

Transformation $u=e^{c x} v$ (Semiconductors) and Integration yields

$$
G\left(u_{0}\right)=-D^{\prime}\left(u_{0}\right) U / \log \left(1-\frac{\epsilon}{u_{R}+\frac{j_{\text {meas }}}{D^{\prime}\left(u_{0}\right) U}}\right)
$$

Numerical Examples

$$
G(u)=u, D(u)=u(1-u)
$$

Looks ok, but: $U=0.01$

$$
\left(G\left(u_{0}\right) u_{x}-D^{\prime}\left(u_{0}\right) u U\right)_{x}=0
$$

Differentiability

Define parameter-to-solution map

$$
\begin{array}{r}
\mathcal{T}: \mathcal{D}(\mathcal{T}) \times \mathbb{R} \times W^{1, \infty}(\Omega) \times H^{2}(\Omega) \rightarrow H^{1}(\Omega) \\
(G, D, V, f) \mapsto u, u \text { solving } \mathcal{D P}(G, D ; U, V, g)
\end{array}
$$

then:
Theorem
Let $D, G \in \mathcal{C}^{1}(\mathcal{I})$ (i.e. $E \in \mathcal{C}^{3}(\mathcal{I})$). Then for given $(V, f) \in W^{1, \infty}(\Omega) \times H^{2}(\partial \Omega)$ the operator \mathcal{T} is Frechét differentiable with respect to D, G.

Proof (sketch):

$$
e(G, D, u)=\operatorname{div}(G(u) \nabla u-D(u) U \nabla V)=0
$$

Generalised inverse function theorem. Main difficulty:

$$
\frac{\partial e}{\partial u}(G, D ; u) v=\operatorname{div}\left(G(u) \nabla v+\left(G^{\prime}(u) \nabla u-D^{\prime}(u) U \nabla V\right) v\right)
$$

Identifiability (I)

Consider two solutions $\left(u_{1} ; G_{1}, D\right),\left(u_{2} ; G_{2}, D\right)$ with fluxes

$$
j_{i}=G_{i}\left(u_{i}\right) \partial_{x} u_{i}-D\left(u_{i}\right) U, i=1,2
$$

Theorem
If $j_{1}=j_{2}$, then the following relation holds:

$$
0=\int_{0}^{1}\left[\left(G_{1}\left(u_{1}\right)-G_{2}\left(u_{1}\right)\right) \partial_{x} u_{1}\right] \cdot \partial_{x} \lambda d x
$$

where λ is a solution of

$$
p(x) \lambda_{x x}+q(x) \cup V_{x} \lambda_{x}=0, \quad x \in \Omega=[0,1]
$$

supplemented with

$$
\lambda(0)=0, \quad \lambda(1)=1,
$$

with $p, q \in L^{\infty}(\Omega), p>0$ in Ω.

Identifiability (II)

Definition (Distinguishability, cf. Duchateau (1995))

Two continuous functions $f, g:[a, b] \rightarrow \mathbb{R}$ are called distinguishable if $f \neq g$ and $f-g$ changes sign only finitely many times on $[a, b]$.

Identifiability (II)

Definition (Distinguishability, cf. Duchateau (1995))

Two continuous functions $f, g:[a, b] \rightarrow \mathbb{R}$ are called distinguishable if $f \neq g$ and $f-g$ changes sign only finitely many times on $[a, b]$.

Theorem

Let $\left(u_{1} ; G_{1}, D\right)$ and $\left(u_{2} ; G_{2}, D\right)$ denote two solutions. Furthermore assume $G_{i}, i=1,2$ bounded in $L^{1}(\Omega)$. We define the interval

$$
\mathcal{I}=\left[\inf _{x \in \Omega} u, \sup _{x \in \Omega} u\right]
$$

Then the exists a sets of finitely many Dirichlet B.C.s $\left(u_{L}^{i}, u_{R}^{i}\right)$ (with corresponding fluxes j_{1}^{i}, j_{2}^{i}) such that the functions $\left(G_{1}, G_{2}\right)$ are not distinguishable on \mathcal{I} if j_{1}^{i} and j_{2}^{i} are identical.

Identifiability (Proof)

- Maxiumum principle in $[0,1]$:

$$
\begin{aligned}
\operatorname{sign}\left(u_{x}\right) & =\operatorname{sign}\left(u_{L}-u_{R}\right), \\
\lambda_{x} & >0
\end{aligned}
$$

- In each interval \mathcal{I}_{G}^{k}, we can choose boundary values u_{L} and u_{R} such that the values of u_{1} lie in this interval (due to the maximum principle). Then we have

$$
0=\int_{\Omega}\left(G_{1}\left(u_{1}\right)-G_{2}\left(u_{1}\right)\right)\left(u_{1}\right)_{x} \lambda_{x} d x
$$

\Rightarrow contradiction and $G_{1}=G_{2}$ on \mathcal{I}_{G}^{k}.

Numerical Examples

$$
G(u)=u, D(u)=u(1-u), U=0.25
$$

Conclusion \& Outlook

- Well-Posedness of the Direct Problem
- Identifiability (1D)
- Frechét differentiability (strong regularity assumptions)
- Landweber-Kaczmarz scheme

Future Work:

- Time-dependent case
- multiple space dimensions (numerics, identifiability, etc.)

國 M. Burger, J.-F. P., M.-T. Wolfram Identification of non-linearities in transport-diffusion models of crowded motion.
Preprint: UCLA-CAM report No. 11-80, 2011
http://www.jfpietschmann.eu

