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. TECHNISCHE
Introduction % DT

Definitions
e Crowded motion: movement in confined geometries where
finite size effects matter.

Some Examples

®
Sea of Spherical lons




The Inverse Problem % vkl

dru = div(D(u)(VE'(u) — VV)),

Non-linear Drift-/Convection-Diffusion Equation



The Inverse Problem % vkl

deu = div(D(u)(VE'(u) — VV)),

Non-linear Drift-/Convection-Diffusion Equation

Aim: Identify (reconstruct)
e the mobility D = D(u)
e the entropy E = E(u)

given "some measurements".



TECHNISCHE
Forward Problem % Sl

Stationary case:

div(G(u)Vu — D(u)VV) =0,

N ect
with ..
Boundary conditions:
G(u) = D(u)E"(u) ulpg = f € H*(Q).

Assumptions:

(Al) G(u)>€e>0, D(u)>0
forO<u<l1,e>0.

(A2) E € C3(T), E"(u) >0, T =[0,1]

(A3) Do (E')7! exists,

(A4) V € WL>(Q).
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e
Direct Problem - Well-Posedness %gxmw

Theorem (Existence)

Let n=1,2,3 and F'(u) = (D(H™(u))), H' = G, continuous
and bounded for all 0 < a < u < b < 1. Then, there exists a
solution u € L*°(Q) N H(Q)

Proof:
e Transformation to entropyvariables:

o =0u,E(u), &(u) ::/QE(u(x)) — u(x)UV (x)dx.

e Linearisation + a-priori bounds (maximum principle) + fixed
point arguments

e Uniqueness only for U small



Assumptions/Inverse Problem % Era

Available data:
e Flux measurements (robust, easy to obtain)
e Density estimation from trajectories

Data available from artificial experiments, video recordings



Assumptions/Inverse Problem % Era

Available data:
e Flux measurements (robust, easy to obtain)
e Density estimation from trajectories

Data available from artificial experiments, video recordings
Inverse Problem:

(ZP) Identify the functions G, D from flux measurements

Jmeas = / J do = / (G(U)VU — D(U)V\/) -ndo
rcoQ rcoQ

where (U, V, f) are taken from a subset of
R x W12(Q) x H2(Q).



Linearisations, Simple Cases % ANl




Linearisations, Simple Cases % ANl

One spatial dimension, Q = [0, 1], linear potential V = Ux
Ox(G(u)Oxu — D(u)U) =0

Measurements = flux measurements on boundary



Linearisations, Simple Cases % ANl

One spatial dimension, Q = [0, 1], linear potential V = Ux
Ox(G(u)Oxu — D(u)U) =0
Measurements = flux measurements on boundary

Reconstruction of D:

e u(0) = u(1) = up = constant stationary solutions ug
Jmeas = G(UO) Ox g _D(UO)U
=0

= Can identify D from flux measurements
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Linearisations, Simple Cases % ANl

Reconstruction of G:
Linearise around equal Dirichlet boundary conditions, i.e.
Uugr = u; +e€:

Ox(G(ug)Vu — D'(up)ul) = 0.
Linearised flux:
jmeas = G(UO)VU — DI(UO)UU

Transformation u = ev (Semiconductors) and Integration yields

G(up) = —D'(up)U /[ log|1— S
R+ Haio
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Numerical Examples % SARSTADY

G(u)=u, D(u) = u(l —u)
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Looks ok, but: U = 0.01
(G(uo)ux — D'(ug)ul)x =0
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I
Differentiability @

Define parameter-to-solution map
T :D(T) x R x Wh®(Q) x H3(Q) — HY(Q)
(G,D,V,f)— u, usolving DP(G,D; U, V,g)
then:
Theorem

Let D,G € CYZ) (i.e. E € C3(Z)). Then for given
(V,f) € Wheo(Q) x H?(0Q) the operator T is Frechét
differentiable with respect to D, G.

Proof (sketch):
e(G,D,u) =div(G(u)Vu — D(u)UVV) =0
Generalised inverse function theorem. Main difficulty:
%(G, D; u)v = div(G(u)Vv + (G’ (u)Vu — D' (u) UV V)v).
u
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]
|dentifiability (1) @
Consider two solutions (u1; Gi1, D), (u2; Gz, D) with fluxes

j,' = G,-(u,-)&)xu,- — D(u,-)U, = 1,2.

Theorem
If j1 = jo, then the {ollowing relation holds:

0= [ (Gu(u) — Gaes)0sus] - 01h .
where A is a solution of
p(x)Asx + g(x)UVi A =0, xe€Q=]0,1],
supplemented with

A0)=0, M1)=1,

with p, g € L°(2), p > 0in Q.




]
|dentifiability (I1) @

Definition (Distinguishability, cf. Duchateau (1995))

Two continuous functions f, g : [a, b] — R are called
distinguishable if f # g and f — g changes sign only finitely many
times on [a, b].
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]
|dentifiability (I1) @

Definition (Distinguishability, cf. Duchateau (1995))

Two continuous functions f, g : [a, b] — R are called
distinguishable if f # g and f — g changes sign only finitely many
times on [a, b].

Theorem

Let (u1; G1, D) and (u2; Gp, D) denote two solutions. Furthermore
assume G;, i = 1,2 bounded in L*(Q2). We define the interval

I= [inf u, sup u]
x€Q x€Q

Then the exists a sets of finitely many Dirichlet B.C.s (u}, uk)
(with corresponding fluxes ji, j) such that the functions (G1,Gz)
are not distinguishable on I if ji and j; are identical.
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]
|dentifiability (Proof) @

e Maxiumum principle in [0, 1]:

sign(uy) = sign(uy — ug),
A >0

e In each interval Ié, we can choose boundary values u; and ug
such that the values of uj lie in this interval (due to the
maximum principle). Then we have

0= /Q(Gl(ul) — Go(un)) (1) dx.

= contradiction and G; = G, on Z§.
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Numerical Examples % AT

G(u)=u, D(v)=u(l—u), U=0.25
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Conclusion & Outlook % AT

e Well-Posedness of the Direct Problem

e Identifiability (1D)
e Frechét differentiability (strong regularity assumptions)

e Landweber-Kaczmarz scheme

Future Work:

e Time-dependent case
e multiple space dimensions (numerics, identifiability, etc.)

G M. Burger, J.-F. P., M.-T. Wolfram
Identification of non-linearities in transport-diffusion models of
crowded motion.
Preprint: UCLA-CAM report No. 11-80, 2011

http://www.jfpietschmann.eu
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