Identification of non-linearities in transport-diffusion models of crowded motion

Jan-Frederik Pietschmann

joint with Martin Burger (Münster), Marie-Therese Wolfram (Vienna)

April 5, 2013 IPA, Linköping

Motivation

2 Direct and Inverse Problem

3 Linearization, Identifiability

4 Numerical Examples

Introduction

Definitions

• Crowded motion: movement in confined geometries where finite size effects matter.

Some Examples

The Inverse Problem

$$\partial_t u = \operatorname{div}(D(u)(\nabla E'(u) - \nabla V)),$$

Non-linear Drift-/Convection-Diffusion Equation

The Inverse Problem

$$\partial_t u = \operatorname{div}(D(u)(\nabla E'(u) - \nabla V)),$$

Non-linear Drift-/Convection-Diffusion Equation

Aim: Identify (reconstruct)

- the mobility D = D(u)
- the entropy E = E(u)

given "some measurements".

Forward Problem

Stationary case:

$$\operatorname{div}(G(u)\nabla u - D(u)\nabla V) = 0,$$

with

$$G(u) = D(u)E''(u)$$

Boundary conditions:

$$u|_{\partial\Omega}=f\in H^2(\Omega).$$

Assumptions:

(A1)
$$G(u) \ge \epsilon > 0, D(u) > 0$$

for $0 < u < 1, \epsilon > 0$.

(A2)
$$E \in C^2(\mathcal{I}), E''(u) \geq 0, \mathcal{I} = [0, 1]$$

(A3)
$$D \circ (E')^{-1}$$
 exists,

(A4)
$$V \in W^{1,\infty}(\Omega)$$
.

Direct Problem - Well-Posedness

Theorem (Existence)

Let n = 1, 2, 3 and $F'(u) = (D(H^{-1}(u)))'$, H' = G, continuous and bounded for all $0 < a \le u \le b < 1$. Then, there exists a solution $u \in L^{\infty}(\Omega) \cap H^{1}(\Omega)$

Proof:

• Transformation to entropyvariables:

$$\varphi = \partial_u \mathcal{E}(u), \quad \mathcal{E}(u) := \int_{\Omega} E(u(x)) - u(x)UV(x)dx.$$

- Linearisation + a-priori bounds (maximum principle) + fixed point arguments
- Uniqueness only for *U* small

Assumptions/Inverse Problem

Available data:

- Flux measurements (robust, easy to obtain)
- Density estimation from trajectories

Data available from artificial experiments, video recordings

Assumptions/Inverse Problem

Available data:

- Flux measurements (robust, easy to obtain)
- Density estimation from trajectories

Data available from artificial experiments, video recordings

Inverse Problem:

 (\mathcal{IP}) Identify the functions G, D from flux measurements

$$j_{meas} = \int_{\Gamma \subset \partial \Omega} j \ d\sigma = \int_{\Gamma \subset \partial \Omega} \left(G(u) \nabla u - D(u) \nabla V \right) \cdot n \ d\sigma$$

where (U, V, f) are taken from a subset of $\mathbb{R} \times W^{1,\infty}(\Omega) \times H^2(\Omega)$.

One spatial dimension,
$$\Omega=[0,1]$$
, linear potential $V=Ux$
$$\partial_x(G(u)\partial_x u-D(u)U)=0$$

Measurements = flux measurements on boundary

One spatial dimension, $\Omega = [0, 1]$, linear potential V = Ux

$$\partial_{\mathsf{x}}(\mathsf{G}(\mathsf{u})\partial_{\mathsf{x}}\mathsf{u}-\mathsf{D}(\mathsf{u})\mathsf{U})=0$$

Measurements = flux measurements on boundary

Reconstruction of *D*:

• $u(0) = u(1) = u_0 \Rightarrow$ constant stationary solutions u_0

$$j_{meas} = G(u_0)\underbrace{\partial_x u_0}_{=0} - D(u_0)U$$

 $\Rightarrow D(u_0) = -\frac{j_{meas}}{U}$

 \Rightarrow Can identify D from flux measurements

Reconstruction of G:

Linearise around equal Dirichlet boundary conditions, i.e.

$$u_R = u_L + \epsilon$$
:

$$\partial_{\mathsf{x}}(\mathsf{G}(\mathsf{u}_0)\nabla\mathsf{u}-\mathsf{D}'(\mathsf{u}_0)\mathsf{u}\mathsf{U})=0.$$

Linearised flux:

$$j_{meas} = G(u_0)\nabla u - D'(u_0)uU$$

Transformation $u = e^{cx}v$ (Semiconductors) and Integration yields

$$G(u_0) = -D'(u_0)U / \log \left(1 - \frac{\epsilon}{u_R + \frac{j_{meas}}{D'(u_0)U}}\right)$$

Numerical Examples

$$G(u) = u, D(u) = u(1 - u)$$

$$(G(u_0)u_x - D'(u_0)u^{\boldsymbol{U}})_x = 0$$

Differentiability

Define parameter-to-solution map

$$\mathcal{T}: \mathcal{D}(\mathcal{T}) \times \mathbb{R} \times W^{1,\infty}(\Omega) \times H^2(\Omega) \to H^1(\Omega)$$

(G, D, V, f) $\mapsto u$, u solving $\mathcal{DP}(G, D; U, V, g)$

then:

Theorem

Let $D, G \in C^1(\mathcal{I})$ (i.e. $E \in C^3(\mathcal{I})$). Then for given $(V, f) \in W^{1,\infty}(\Omega) \times H^2(\partial \Omega)$ the operator \mathcal{T} is Frechét differentiable with respect to D, G.

Proof (sketch):

$$e(G, D, u) = \operatorname{div}(G(u)\nabla u - D(u)U\nabla V) = 0$$

Generalised inverse function theorem. Main difficulty:

$$\frac{\partial e}{\partial u}(G, D; u)v = \operatorname{div}(G(u)\nabla v + (G'(u)\nabla u - D'(u)U\nabla V)v).$$

Identifiability (I)

Consider two solutions $(u_1; G_1, D)$, $(u_2; G_2, D)$ with fluxes

$$j_i = G_i(u_i)\partial_x u_i - D(u_i)U, i = 1, 2.$$

Theorem

If $j_1 = j_2$, then the following relation holds:

$$0 = \int_0^1 \left[(G_1(u_1) - G_2(u_1)) \partial_x u_1 \right] \cdot \partial_x \lambda \ dx,$$

where λ is a solution of

$$p(x)\lambda_{xx}+q(x)UV_x\lambda_x=0, \quad x\in\Omega=[0,1],$$

supplemented with

$$\lambda(0) = 0, \quad \lambda(1) = 1,$$

with $p, q \in L^{\infty}(\Omega)$, $p > 0 \text{ in } \Omega$.

Identifiability (II)

Definition (Distinguishability, cf. Duchateau (1995))

Two continuous functions $f,g:[a,b]\to\mathbb{R}$ are called distinguishable if $f\neq g$ and f-g changes sign only finitely many times on [a,b].

Identifiability (II)

Definition (Distinguishability, cf. Duchateau (1995))

Two continuous functions $f,g:[a,b]\to\mathbb{R}$ are called distinguishable if $f\neq g$ and f-g changes sign only finitely many times on [a,b].

Theorem

Let $(u_1; G_1, D)$ and $(u_2; G_2, D)$ denote two solutions. Furthermore assume G_i , i = 1, 2 bounded in $L^1(\Omega)$. We define the interval

$$\mathcal{I} = \left[\inf_{x \in \Omega} u, \sup_{x \in \Omega} u \right]$$

Then the exists a sets of finitely many Dirichlet B.C.s (u_L^i, u_R^i) (with corresponding fluxes j_1^i , j_2^i) such that the functions (G_1, G_2) are not distinguishable on \mathcal{I} if j_1^i and j_2^i are identical.

Identifiability (Proof)

• Maxiumum principle in [0, 1]:

$$sign(u_x) = sign(u_L - u_R),$$

 $\lambda_x > 0$

• In each interval \mathcal{I}_G^k , we can choose boundary values u_L and u_R such that the values of u_1 lie in this interval (due to the maximum principle). Then we have

$$0 = \int_{\Omega} (G_1(u_1) - G_2(u_1))(u_1)_{x} \lambda_{x} \ dx.$$

 \Rightarrow contradiction and $G_1 = G_2$ on \mathcal{I}_G^k .

Numerical Examples

$$G(u) = u$$
, $D(u) = u(1 - u)$, $U = 0.25$

Conclusion & Outlook

- Well-Posedness of the Direct Problem
- Identifiability (1D)
- Frechét differentiability (strong regularity assumptions)
- Landweber-Kaczmarz scheme

Future Work:

- Time-dependent case
- multiple space dimensions (numerics, identifiability, etc.)

M. Burger, J.-F. P., M.-T. Wolfram

Identification of non-linearities in transport-diffusion models of crowded motion.

Preprint: UCLA-CAM report No. 11-80, 2011

http://www.jfpietschmann.eu