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Quantum ergodicity

I M is a compact n-dimensional domain (or Riemannian
manifold) with smooth boundary ∂M.

I φj are the orthonormalized eigenfunctions of the Laplace
operator ∆ on M with D or N boundary condition.

One says that quantum ergodicity holds if

lim
N→∞

1

N

N∑
j=1

∣∣∣∣〈Qφj , φj〉 − ∫
S∗M

σQ(x , ξ) dω

∣∣∣∣2 = 0 (*)

for every pseudodifferential operator Q, where σQ is the principal
symbol of Q and dω = dx dξ

Vol (S∗M) is the normalized measure on the

phase space S∗M = {x ∈ M, ξ ∈ Sn−1}.
The quantum ergodicity theorem states that (*) is true whenever
the billiard flow in the phase space is ergodic. Various versions of
this theorem were proved in papers by Shnirelman, Colin de
Verdière, Helffer–Martinez–Robert, Zelditch-Zworski and others.



Our model

I Σ ⊂ M be a closed smooth surface of codimension one,
which splits M into two disjoint parts M+ and M−.

I A is the differential operator such that A|M± = c±∆
where c+ and c− are nonnegative constants.

The domain of A consists of functions u from the Sobolev space
H2(M \ Σ), satisfying the D or N boundary condition on ∂M and
the transmission ‘boundary’ conditions on Σ

u+|Σ = u−|Σ and c+∂nu+|Σ = − c−∂nu−|Σ ,

where u± = u|M± and ∂n is the normal derivative.

Our main goal was to find out under what assumptions on the
associated classical dynamics we have quantum ergodicity.

Remark. Branching billiards also occur in problems described by
systems of partial differential equations, higher order equations,
and on quantum graphs. Our results can be carried over in a
straightforward manner to those situations.



Propagation of singularities

It is known that singularities of solutions to the wave equation
∂2
t u(t, x)− Au(t, x) propagates along billiard trajectories. The

trajectory emanating from a fixed point in a fixed direction is
uniquely defined until it hits the set Σ. Then, generally speaking,
it splits into two geodesics according to the standard law of
geometric optics. One of them is obtained by reflection, the other
is the refracted trajectory which goes through Σ but changes its
direction. For some angles of incidence the refracted trajectory
does not exists, and then one says that there is full inner reflection.

The trajectory obtained by consecutive reflections and/or
refractions is called a billiard trajectory. Generally speaking, there
are infinitely many billiard trajectories originating from a given
point in a given direction. Moreover, the set of these trajectories is
typically uncountable.



Classical dynamics of branching billiards: geometry

I x tκ(y , η) is the billiard trajectory originating from y ∈ M in the
direction η, where κ is an index specifying the type of
trajectory.

I (x tκ(y , η), ξtκ(y , η)) is the corresponding billiard trajectory in
the phase space, where ξtκ = ẋ tκ is the (co)tangent vector.

I Φt
κ is the shift in the phase space along the billiard

trajectories (x tκ, ξ
t
κ) of type κ.

The mapping Φt
κ : (y , η) 7→ (x tκ(y , η), ξtκ(y , η)) is a homogeneous

canonical transformation in the sense of symplectic geometry
=⇒ it preserves the measure dω on S∗M.

Definition. The branching billiard system as a family of
multi-valued canonical transformations Φt , mapping (y , η) ∈ S∗M
into the set Φt(y , η) =

⋃
κ Φt

κ(y , η).



Bad trajectories

A billiard trajectory is not well-defined if

I it hits Σ ∪ ∂M infinitely many times in a finite time, or

I the angle of incidence or the angle of refraction is zero.

Trajectories of the first type are called dead-end, trajectories of the
second type are said to be grazing.

The set of starting points (y , η) ∈ S∗M of grazing trajectories has
measure zero. However, there are reasons to believe that the set of
starting points of dead-end trajectories may have a positive
measure.

I OT is the set of points (y , η) ∈ S∗M such that all the billiard
trajectories (x tκ(y , η), ξtκ(y , η)) of length T are well defined
and experience only finitely many reflections and refractions.

Assumption. OT is a set of full measure in S∗M for each T > 0.

=⇒ the multi-valued canonical transformations Φt are defined on a
set of full measure in S∗M for all t > 0.



The unitary group U(t) = e−itA
1/2

Let Q be a pseudodifferential operator with suppQ ⊂ OT . Then,
on the time interval [0,T ), we have U(t)Q =

∑
κ Uκ(t)Q modulo

an integral operator with an infinitely smooth kernel, where Uκ(t)
are Fourier integral operators (FIOs) associated with Φt

κ. The
principal symbol σκ(t; y , η) of the FIO Uκ(t) is the function on
the billiard trajectory (x tκ(y , η), ξtκ(y , η)) defined as follows.

(1) σκ is constant on every segment of (x tκ, ξ
t
κ) and σκ ≡ 1 on the

first segment.

(2) If (x tκ, ξ
t
κ) hits Σ at a point (x , ξ) where there exist reflected

and refracted trajectories, then σκ is multiplied either by a
reflection coefficient τ ′(x , ξ) or by a refraction coefficient τ ′′(x , ξ),
where τ ′ and τ ′′ are real numbers such that (τ ′)2 + (τ ′′)2 = 1.

(3) If (x tκ, ξ
t
κ) hits the boundary ∂M or the surface Σ at a point of

full inner reflection (x , ξ) then σκ is multiplied by a complex
number τ(x , ξ) such that |τ(x , ξ)| = 1.

The coefficients τ ′(x , ξ), τ ′′(x , ξ) and τ(x , ξ) depend on the angle
of incident and can be explicitly evaluated.



Propagation of energy

We call the number |σκ(t; y , η)|2 the weight of the trajectory
(x sκ(y , η), ξsκ(y , η)), s ∈ [0, t]. It can be thought of as the
proportion of energy transmitted along the billiard trajectory, or
the probability for a particle to travel along this trajectory.

Since (τ ′(x , ξ))2 + (τ ′′(x , ξ))2 = 1 and |τ(x , ξ)| = 1 , we have the
following conservation of energy law:∑

(x tκ ,ξ
t
κ)

|σκ(t, y , η)|2 = 1 ,

where the sum is taken over all distinct billiard trajectories of
‘length’ t originating from (y , η).

The geometric definition of the branching billiard system does not
take into account the propagation of energy and, therefore, is not
sufficient for the study of ‘quantum’ properties of A.



Classical dynamics of branching billiards: weights

I w c
(x ,ξ)(t, y , η) =

∑
(x tκ ,ξ

t
κ) |σκ(t, y , η)|2,

I wd
(x ,ξ)(t, y , η) =

∣∣∑
(x tκ ,ξ

t
κ) σκ(t, y , η)

∣∣2,

where the sums are taken over all distinct billiard trajectories
originating from (y , η) and ending at (x , ξ) at the time t.

I w c
(x ,ξ) can be thought of as the proportion of energy

transmitted from (y , η) into (x , ξ) along all trajectories.

I wd
(x ,ξ) does not seem to admit a simple physical interpretation.

The difference between wd
(x ,ξ) and w c

(x ,ξ) is in the contributions
from recombining billiard trajectories, i.e. such trajectories that
(x tκ, ξ

t
κ) = (x tκ′ , ξ

t
κ′) but (x sκ, ξ

s
κ) 6= (x sκ′ , ξ

s
κ′) for some s ∈ (0, t).∑

(x ,ξ)∈Φt(y ,η)

wd
(x ,ξ)(t, y , η) =

∑
(x ,ξ)∈Φt(y ,η)

w c
(x ,ξ)(t, y , η) = 1

The latter inequality is obvious. The former is an inverse result.



Classical dynamics of branching billiards: operators

Definition. The classical transfer operators Θc
t and the diagonal

transfer operators Θd
t in the space of L∞-functions on S∗M are

defined for times t > 0 by the equalities

(Θc
t f )(y , η) :=

∑
(x ,ξ)∈Φt(y ,η)

w c
(x ,ξ)(t, y , η) f (x , ξ) ,

(Θd
t f )(y , η) :=

∑
(x ,ξ)∈Φt(y ,η)

wd
(x ,ξ)(t, y , η) f (x , ξ) .

Remark. Θd
t and Θc

t are uniformly bounded in the spaces
Lp(S∗M) and are isometries in L1(S∗M).

Remark. The operators Θc
t form a semigroup, whereas Θd

t Θd
s may

not coincide with Θd
t+s .



Ergodicity

Definition. Θt is ergodic if for all f ∈ L∞(S∗M)

2T−2

∫ T

0

∫ t

0
(Θs f ) (y , η) ds dt →

∫
S∗M

f (y , η)dω(y , η) (1)

as T → +∞ almost everywhere in S∗M.

Remark. The traditional definition of ergodicity assumes that

t−1

∫ t

0
(Θs f )ds →

∫
S∗M

f (y , η) dω(y , η) (2)

as t → +∞ almost everywhere.

(2) =⇒(1) but, generally speaking, the converse is not true.
(2)⇐⇒(1) if there are no branching trajectories.

Main Theorem. Ergodicity of the diagonal dynamics Θd
s implies

quantum ergodicity.



Sketch of proof

(a) Develop a symbolic calculus for FIOs. We need precise
formulae for the symbols of compositions and adjoints, so that
the usual statements like
“the composition is a FIO associated with the composition of
the canonical transformations, whose principal symbol is a
half-density with values in the Keller–Maslov bundle which
can be calculated as explained on the pages ... of [...]”
do not help.

(b) Obtain an asymptotic formula for
∑

λj<λ
〈Vφj , φj〉, where λj

and φj are eigenvalues and eigenfunctions, and V is a FIO.

(c) Note that 〈Aφj , φj〉 = 〈ATφj , φj〉, where

AT := T−1
∫ T

0 U(−t)AU(t)dt . Assume that the average of
the principal symbol over S∗M is zero. Then it sufficient to
show that lim supN→∞N−1

∑N
j=1〈A∗TATφj , φj〉 = 0.

(d) Substitute the FIO representation for U(t) and obtain an
asymptotic formula for 〈A∗TATφj , φj〉, using (a) and (b).
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