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Calderón problem

Medical imaging, Electrical Impedance Tomography:

{

div(γ(x)∇u) = 0 in Ω,
u = f on ∂Ω

where Ω ⊂ R
n bounded domain, γ ∈ L∞(Ω) positive.

Boundary measurements given by DN map

Λγ : f 7→ γ∂νu|∂Ω.

Inverse problem: given Λγ, determine γ.



Calderón problem

Model case of inverse boundary problems for elliptic equations
(Schrödinger, Maxwell, elasticity).

Related to:

◮ optical tomography

◮ inverse scattering

◮ travel time tomography and boundary rigidity

◮ hybrid imaging methods

◮ invisibility



Calderón problem

Uniqueness results:

◮ Calderón (1980): linearized problem

◮ Sylvester-Uhlmann (1987): n ≥ 3, γ ∈ C 2(Ω)

◮ Nachman (1996): n = 2, γ ∈ W 2,p(Ω)

◮ Astala-Päivärinta (2006): n = 2, γ ∈ L∞(Ω)

◮ Haberman-Tataru (2012): n ≥ 3, γ ∈ C 1(Ω)

We are interested in the partial data problem where
measurements are made only on subsets of the boundary.



Partial data problem

Prescribe voltages on ΓD , measure currents on ΓN :



Partial data problem

Let ΓD and ΓN be open subsets of ∂Ω. Define partial Cauchy

data set

C ΓD ,ΓN
γ = {(u|ΓD , γ∂νu|ΓN ) ; div(γ∇u) = 0 in Ω, u ∈ H1(Ω),

supp(u|∂Ω) ⊂ ΓD}.

Corresponds to prescribing Dirichlet data on ΓD and measuring
Neumann data on ΓN .

Inverse problem: given C ΓD ,ΓN
γ , determine γ.



Partial data problem

Substitution u = γ−1/2v reduces conductivity equation
div(γ∇u) = 0 to Schrödinger equation (−∆+ q)v = 0.

If q ∈ L∞(Ω), define

C ΓD ,ΓN
q = {(u|ΓD , ∂νu|ΓN ) ; (−∆+ q)u = 0 in Ω, u ∈ H∆(Ω),

supp(u|∂Ω) ⊂ ΓD}.

Here H∆(Ω) = {u ∈ L2(Ω) ; ∆u ∈ L2(Ω)}.

Inverse problem: given C ΓD ,ΓN
q , determine q.



Partial data problem

Four main approaches for uniqueness:

1. Carleman estimates (Kenig-Sjöstrand-Uhlmann 2007)

2. Reflection approach (Isakov 2007)

3. 2D case (Imanuvilov-Uhlmann-Yamamoto 2010)

4. Linearized case (Dos Santos-Kenig-Sjöstrand-Uhlmann
2009)

The first two approaches work in dimensions n ≥ 3. Will
describe them in more detail.



Strategy of proof

Lemma (Integration by parts)
If ΓD , ΓN ⊂ ∂Ω are open and if C ΓD ,ΓN

q1
= C ΓD ,ΓN

q2
, then

∫

Ω

(q1 − q2)u1u2 dx = 0

for any uj satisfying (−∆+ qj)uj = 0 in Ω and

supp(u1|∂Ω) ⊂ ΓD , supp(u2|∂Ω) ⊂ ΓN . (∗)

To show q1 = q2, enough that the set of products of solutions

{u1u2 ; (−∆+ qj)uj = 0 in Ω, uj satisfy (∗)}

is dense in L1(Ω).



Strategy of proof

Use special complex geometrical optics solutions

u ≈ e±τϕa, (−∆+ q)u = 0, supp(u|∂Ω) ⊂ ΓD,N .

Here τ > 0 is a large parameter and

{ lim
τ→∞

u1u2} dense in L1(Ω).

Here ϕ is a limiting Carleman weight: Carleman estimate

‖e±τϕv‖L2(Ω) ≤
C

τ
‖e±τϕ(−∆+ q)v‖L2(Ω), v ∈ C∞

c (Ω).

(Also need boundary terms.) The function a is an amplitude.



Strategy of proof

Condition for a limiting Carleman weight ϕ, ∇ϕ 6= 0:

‖e±τϕv‖L2(Ω) ≤
C

τ
‖e±τϕ∆v‖L2(Ω), v ∈ C∞

c (Ω), τ ≫ 1.

Results from Dos Santos-Kenig-S-Uhlmann (2009):

◮ conformally invariant condition

◮ if n ≥ 3, only six basic forms for ϕ:

x1, log |x |,
x1

|x |2
, arctan

x2

x1
, . . . .

◮ if n = 2, any harmonic function is OK



Carleman estimate approach (KSU 2007)

◮ ΓD and ΓN roughly complementary, need to overlap

◮ ΓD can be very small, but then ΓN has to be very large

◮ proof uses weights ϕ(x) = log |x − x0| and Carleman
estimates with boundary terms



Reflection approach (Isakov 2007)

◮ local data: ΓD = ΓN = Γ, no measurements needed on Γ0
◮ the inaccessible part of the boundary, Γ0, has strict

restrictions (part of a hyperplane or part of a sphere)

◮ proof uses weights ϕ(x) = x1 and reflection about Γ0



2D and linearized cases

Theorem (Imanuvilov-Uhlmann-Yamamoto 2010)
Let Ω ⊂ R

2 be a bounded domain and let Γ ⊂ ∂Ω be open. If
q1, q2 ∈ C 4,α(Ω) for some α > 0 and if

C Γ,Γ
q1

= C Γ,Γ
q2

,

then q1 = q2.

Theorem (Dos Santos-Kenig-Sjöstrand-Uhlmann

2009)
Let Ω ⊂ R

n be a bounded domain, n ≥ 2, and let Γ ⊂ ∂Ω be
open. The Cauchy data set C Γ,Γ

q linearized at q = 0 uniquely
determines q.



New results

Recall main approaches:

1. Carleman estimates

2. Reflection approach

3. 2D case

4. Linearized case

We unify approaches 1 and 2 and extend both. In particular,
we relax the requirements on the inaccessible part in 2, and
allow to use complementary (sometimes disjoint) sets as in 1.

The methods work for n ≥ 3, also on certain Riemannian
manifolds, and sometimes reduce the question to integral
geometry problems of independent interest.



New results

The first results are local results: given measurements on
Γ ⊂ ∂Ω, coefficients are determined in a neighborhood of Γ.

Proof reduces to an integral geometry problem (Helgason
support theorem): recover a function locally from its integrals
over lines, great circles, or hyperbolic geodesics in a certain
neighborhood.

Instead of being completely flat or spherical, the inaccessible
part Γ0 can be conformally flat only in one direction, e.g.

◮ cylindrical set (leads to integrals over lines)

◮ conical set (integrals over great circle segments)

◮ surface of revolution (integrals over hyperbolic geodesics).



Cylindrical sets

Theorem (Kenig-S 2012)
Let Ω ⊂ R× Ω0 where Ω0 ⊂ R

2 is convex, let Γ = ∂Ω \ Γ0,
and suppose that Γ0 satisfies

Γ0 ⊂ R× (∂Ω0 \ E )

for some open set E ⊂ ∂Ω0. If q1, q2 ∈ C (Ω) and if

C Γ,Γ
q1

= C Γ,Γ
q2

,

then q1 = q2 in Ω ∩ (R× chR2(E )).

Corresponds to ϕ(x) = x1. Similar result obtained
independently by Imanuvilov and Yamamoto (2012).



Conical sets

Theorem (Kenig-S 2012)
Let Ω ⊂ {rω ; r > 0, ω ∈ M0} where M0 ⊂ S2 is convex, let
Γ = ∂Ω \ Γ0, and suppose that Γ0 satisfies

Γ0 ⊂ {rω ; r > 0, ω ∈ ∂M0 \ E}

for some open set E ⊂ ∂M0. If q1, q2 ∈ C (Ω) and if

C Γ,Γ
q1

= C Γ,Γ
q2

,

then q1 = q2 in Ω ∩ (R× chS2(E )).

Corresponds to ϕ(x) = log |x |. Convex hull in S2 taken with
respect to great circle segments.



Remarks
◮ convexity not required: if the inaccessible part is concave,

recover the coefficient everywhere
◮ it is not required that ΓD = ΓN , can use somewhat

complementary sets as in Kenig-Sjöstrand-Uhlmann
◮ sometimes ΓD and ΓN can be disjoint, for instance if

ΓD = {x ∈ ∂Ω ; (x − x0) · ν(x) < 0}

ΓN = {x ∈ ∂Ω ; (x − x0) · ν(x) > 0}

and if {x ∈ ∂Ω ; (x − x0) · ν(x) = 0} has measure zero in
∂Ω, then C ΓD ,ΓN

q determines q everywhere.



Beyond the convex hull
Let Ω ⊂ R× Ω0 where Ω0 ⊂ R

2 is convex, let Γ = ∂Ω \ Γ0,
and suppose that Γ0 satisfies

Γ0 ⊂ R× (∂Ω0 \ E )

for some open set E ⊂ ∂Ω0. From measurements on Γ,
recover coefficient in Ω ∩ (R× chR2(E )). Can one go beyond
the convex hull?



Beyond the convex hull

A continuous curve γ : [0, L] → Ω0 is a broken ray if it consists
of straight line segments that are reflected according to
geometrical optics (angle of incidence = angle of reflection)
when they hit ∂Ω0.



Beyond the convex hull

Theorem (Kenig-S 2012)
Let Ω ⊂ R× Ω0 where Ω0 ⊂ R

2 is a bounded domain, let
Γ = ∂Ω \ Γ0 where Γ0 satisfies for some open E ⊂ ∂Ω0

Γ0 ⊂ R× (∂Ω0 \ E ).

If q1, q2 ∈ C (Ω) and C Γ,Γ
q1

= C Γ,Γ
q2

, then for any nontangential

broken ray γ : [0, L] → Ω0 with endpoints on E , and given any
real number λ, one has

∫ L

0

e−2λt(q1 − q2)̂ (2λ, γ(t)) dt = 0.

Here ( · )̂ is the Fourier transform in the x1 variable, and
q1 − q2 is extended by zero to R

3 \ Ω.



Beyond the convex hull

Question
Let Ω0 ⊂ R

n strictly convex and E ⊂ ∂Ω0 open. Is a function
f ∈ C (Ω0) determined by its integrals over broken rays
starting and ending on E?

◮ Eskin (2004): rays reflecting off convex obstacles

◮ Ilmavirta (2013): partial results for unit disk

◮ Hubenthal (2013): microlocal analysis for unit square

◮ related to (but not the same as) the v-line transform



Components of proof

Need Carleman estimate with boundary terms:

−
1

τ

∫

∂Ω

(∂νϕ)e
±2τϕ|∂νv |

2 dS + ‖e±τϕv‖2L2(Ω)

≤
C

τ 2
‖e±τϕ(−∆+ q)v‖2L2(Ω), v ∈ C∞(Ω), v |∂Ω = 0.

Kenig-Sjöstrand-Uhlmann (2007) use convexified weights

ϕε = ϕ+
1

ετ

ϕ2

2
, ε > 0 small.

Carleman estimate leads to solutions of (−∆+ q)u = 0 with

◮ good control on {x ∈ ∂Ω ; ∂νϕ(x) < 0}

◮ no control on {x ∈ ∂Ω ; ∂νϕ(x) = 0}.



Components of proof

Need Carleman estimate with boundary terms:

−
1

τ

∫

∂Ω

(∂νϕ)e
±2τϕ|∂νv |

2 dS + ‖e±τϕv‖2L2(Ω)

≤
C

τ 2
‖e±τϕ(−∆+ q)v‖2L2(Ω), v ∈ C∞(Ω), v |∂Ω = 0.

We use modified weights

ϕε = ϕ+
1

ετ

ϕ2

2
+

1

τ
κ, ε > 0 small, ∂νκ|∂Ω < 0.

Carleman estimate leads to solutions of (−∆+ q)u = 0 with

◮ good control on {x ∈ ∂Ω ; ∂νϕ(x) < 0}

◮ weak control on {x ∈ ∂Ω ; ∂νϕ(x) = 0}.



Components of proof

Some arguments can also be done by reflection, e.g. if Γ0 is
part of a graph

Γ0 ⊂ {(x1, x2, η(x2)) ; x1, x2 ∈ R}

where η is a function R → R. Flattening the boundary by
x3 7→ x3 − η(x2) transforms the Euclidean Laplacian into

∆g ≈
3

∑

j ,k=1

g jk∂xj∂xk , (gjk(x)) =

(

1 0
0 g0(x2, x3)

)

.

Reflecting across x3 = 0 generates a Lipschitz singularity in
the metric g0. However, the singularity only appears in the
lower right corner, and methods for the anisotropic Calderón
problem (Kenig-S-Uhlmann 2011) still apply.



Components of proof

Suppose Ω is part of a cylinder R× Ω0 and

Γ0 ⊂ R× (∂Ω0 \ E )

where Ω0 ⊂ R
2 and E ⊂ ∂Ω0. Use complex geometrical optics

solutions as τ → ∞,

u(x1, x
′) ≈ e±τx1vτ (x

′)

where vτ (x
′) is a reflected Gaussian beam quasimode in Ω0,

concentrating near a broken ray γ with endpoints on E :

‖(−∆− τ 2)vτ‖L2(Ω0) = O(τ−K), ‖vτ‖L2(∂Ω0\E) = O(τ−K ),

|vτ |
2 dx ′ ⇀ δγ .

Cf. Dos Santos-Kurylev-Lassas-S (upcoming).



Summary

In the Calderón problem with partial data for n ≥ 3:

◮ possible to ignore measurements on sets that are part of
cylindrical sets, conical sets, or surfaces of revolution

◮ local uniqueness results that determine coefficients near
the measurement set

◮ global uniqueness under certain size or concavity
conditions, or if the broken ray transform is invertible

Survey with Kenig: ”Recent progress in the Calderón problem
with partial data” (2013).



Open questions

Question (Local data for n ≥ 3)
If Ω ⊂ R

n, n ≥ 3, if Γ is any open subset of ∂Ω, and if
q1, q2 ∈ L∞(Ω), show that C Γ,Γ

q1
= C Γ,Γ

q2
implies q1 = q2.

Question (Data on disjoint sets for n = 2)
If Ω ⊂ R

2, if ΓD and ΓN are disjoint open subsets of ∂Ω, and
if q1, q2 ∈ L∞(Ω), show that C ΓD ,ΓN

q1
= C ΓD ,ΓN

q2
implies q1 = q2.


