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Calderén problem

Medical imaging, Electrical Impedance Tomography:

div(y(x)Vu) =0  in Q,
u=r"r on 0f)

where Q C R” bounded domain, v € L*(Q2) positive.
Boundary measurements given by DN map
A'y = fy&,u|ag.

Inverse problem: given A,, determine .



Calderén problem

Model case of inverse boundary problems for elliptic equations
(Schrodinger, Maxwell, elasticity).

Related to:
» optical tomography
> inverse scattering
» travel time tomography and boundary rigidity
» hybrid imaging methods

» invisibility



Calderén problem

Uniqueness results:

Calderén (1980): linearized problem
Sylvester-Uhlmann (1987): n > 3, v € C%(Q)
Nachman (1996): n =2, v € W?P(Q)
Astala-Paivarinta (2006): n =2, v € L*(Q)
Haberman-Tataru (2012): n > 3, v € C(Q)
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v
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We are interested in the partial data problem where
measurements are made only on subsets of the boundary.



Partial data problem

Prescribe voltages on [p, measure currents on [y:



Partial data problem

Let I'p and Iy be open subsets of 0L2. Define partial Cauchy
data set

CWFD’F"’ = {(ulrp,v0,ulr,); div(yVu) =0in Q, v e H(Q),
supp(ulsq) C Tp}.

Corresponds to prescribing Dirichlet data on ['p and measuring
Neumann data on [y.

Inverse problem: given C[>¥, determine .



Partial data problem

Substitution u = y~1/2v reduces conductivity equation
div(yVu) = 0 to Schrédinger equation (—A + q)v = 0.

If g € L>(Q2), define

Coo™ = {(ulrp, Opulry); (A + q)u=0in Q, u € Ha(Q),
supp(ulon) C Mo}

Here HA(Q) = {u € [3(Q); Au € L*(Q)}.

Inverse problem: given Cj2'%, determine q.



Partial data problem

Four main approaches for uniqueness:

1.
2. Reflection approach (Isakov 2007)

3.

4. Linearized case (Dos Santos-Kenig-Sjostrand-Uhlmann

Carleman estimates (Kenig-Sjostrand-Uhlmann 2007)

2D case (Imanuvilov-Uhlmann-Yamamoto 2010)

2009)

The first two approaches work in dimensions n > 3. Will
describe them in more detail.



Strategy of proof

Lemma (Integration by parts)
IfTp, Ty C O are open and if Cnger — C(;DJ—N, then

/(Ch — q2)unthdx =0
Q
for any u; satisfying (—A + q;)u; = 0 in Q and
supp(uilaa) C Tp, supp(talon) C Ty. (*)
To show g1 = go, enough that the set of products of solutions
{thu; (A +q;)u; =0in Q, u; satisfy ()}

is dense in L1(9).



Strategy of proof

Use special complex geometrical optics solutions
un et Pa, (~A+q)u=0, supp(ulsg) C Mo
Here 7 > 0 is a large parameter and
{lim wu,} dense in LY(Q).
T—00
Here ¢ is a limiting Carleman weight: Carleman estimate
+T C +T1 o0
le" Vi@ = — e (=A + g)vilizg), v e ().

(Also need boundary terms.) The function a is an amplitude.



Strategy of proof

Condition for a limiting Carleman weight ¢, V¢ # 0:
7 C +7p [e's)
€577V 12() < —He Av| 2, veCT), 7> 1.

Results from Dos Santos-Kenig-S-Uhlmann (2009):

» conformally invariant condition

» if n > 3, only six basic forms for ¢:

X1 X2
xi, loglx|, —5, arctan—,
x| X1

» if n =2, any harmonic function is OK



Carleman estimate approach (KSU 2007)

i) ( FN

» [p and 'y roughly complementary, need to overlap
» [p can be very small, but then 'y has to be very large

» proof uses weights ¢(x) = log |x — xo| and Carleman
estimates with boundary terms



Reflection approach (Isakov 2007)

L'y

» local data: [p =Ty =T, no measurements needed on [y

» the inaccessible part of the boundary, Iy, has strict
restrictions (part of a hyperplane or part of a sphere)

» proof uses weights ¢(x) = x; and reflection about Ig



2D and linearized cases

Theorem (Imanuvilov-Uhlmann-Yamamoto 2010)

Let Q C R? be a bounded domain and let ' C {2 be open. If
q1, g2 € CH(Q) for some a > 0 and if

Crr Crr

q2 )

then g1 = go.

Theorem (Dos Santos-Kenig-Sjostrand-Uhlmann

2009)

Let Q C R" be a bounded domain, n > 2, and let [ C 90f2 be
open. The Cauchy data set qu,r linearized at g = 0 uniquely
determines q.



New results

Recall main approaches:
1. Carleman estimates
2. Reflection approach

3. 2D case

4

. Linearized case

We unify approaches 1 and 2 and extend both. In particular,
we relax the requirements on the inaccessible part in 2, and
allow to use complementary (sometimes disjoint) sets as in 1.

The methods work for n > 3, also on certain Riemannian
manifolds, and sometimes reduce the question to integral
geometry problems of independent interest.



New results

The first results are local results: given measurements on
I C 09, coefficients are determined in a neighborhood of .

Proof reduces to an integral geometry problem (Helgason
support theorem): recover a function locally from its integrals
over lines, great circles, or hyperbolic geodesics in a certain
neighborhood.

Instead of being completely flat or spherical, the inaccessible
part [g can be conformally flat only in one direction, e.g.

» cylindrical set (leads to integrals over lines)
» conical set (integrals over great circle segments)

» surface of revolution (integrals over hyperbolic geodesics).



Cylindrical sets

Theorem (Kenig-S 2012)

Let Q C R x Qg where Qy C R? is convex, let [ = 9Q \ T,
and suppose that [ satisfies

Mo CR x (0 \ E)
for some open set E C 0. If q1, g, € C(Q) and if
Cgl,r — C;Q,r’

then g1 = g in QN (R x chyz(E)).

Corresponds to ¢(x) = x;. Similar result obtained
independently by Imanuvilov and Yamamoto (2012).



Conical sets

Theorem (Kenig-S 2012)

Let Q C {rw; r > 0,w € My} where My C S? is convex, let
= 0Q\ Ny, and suppose that Iy satisfies

Mo C{rw; r>0,we M\ E}
for some open set E C OM,. If g1, g, € C(Q) and if
rr_ ~rr
th - Cflz )

then g1 = q» in QN (R x chs2(E)).

Corresponds to ¢(x) = log |x|. Convex hull in 52 taken with
respect to great circle segments.



Remarks

» convexity not required: if the inaccessible part is concave,
recover the coefficient everywhere

» it is not required that 'p = 'y, can use somewhat
complementary sets as in Kenig-Sjostrand-Uhlmann
» sometimes [p and 'y can be disjoint, for instance if

Ip={x€dQ; (x—x)- v(x) <0}
My ={x€0Q; (x —x)-v(x) >0}

and if {x € 0Q; (x — x) - ¥(x) = 0} has measure zero in
99, then C;>™v determines g everywhere.

Zo ( I'n



Beyond the convex hull

Let Q C R x Qo where Qy C R? is convex, let [ = 9Q \ Ty,
and suppose that [y satisfies

Mo C R x (9% \ E)

for some open set £ C 9€). From measurements on T,
recover coefficient in QN (R x chg2(E)). Can one go beyond
the convex hull?

Qo

o0\ E



Beyond the convex hull

A continuous curve 7 : [0, L] — Qq is a broken ray if it consists
of straight line segments that are reflected according to
geometrical optics (angle of incidence = angle of reflection)
when they hit 0€.

0%\ E



Beyond the convex hull

Theorem (Kenig-S 2012)

Let Q C R x Qg where Qy C R? is a bounded domain, let
=00\ 'y where Iy satisfies for some open E C 09

Mo C R x (9% \ E).

If g1, q2 € C(Q) and C[" = CL.T, then for any nontangential

broken ray v : [0, L] — Qo W/th endpoints on E, and given any
real number A, one has

/0 e (qy — g2)" (20 7(1)) dt = 0.

Here ()" is the Fourier transform in the x; variable, and
g1 — gz is extended by zero to R3\ Q.



Beyond the convex hull

Question

Let o C R” strictly convex and £ C 9€2y open. Is a function
f € C(£o) determined by its integrals over broken rays
starting and ending on E?

o\ E

v

Eskin (2004): rays reflecting off convex obstacles
lImavirta (2013): partial results for unit disk

Hubenthal (2013): microlocal analysis for unit square

v

v

v

related to (but not the same as) the v-line transform



Components of proof

Need Carleman estimate with boundary terms:

1 T T
—2 [ @ elonp ds + e g

C
< ;Heiw(—AﬂL DVl Ve CP(RQ), vl =0
Kenig-Sjostrand-Uhlmann (2007) use convexified weights

1 2
Ve =@+ —gi, e > 0 small.
eT 2

Carleman estimate leads to solutions of (—A + g)u = 0 with
» good control on {x € 89' dyo(x) < 0}
» no control on {x € 0Q; 0,p(x) = 0}.



Components of proof

Need Carleman estimate with boundary terms:

1 T T
1 / @) O dS + € g

T

C _
S ﬁHeiT@(—A + q>V||i2(Q), vV € COO(Q), V|aQ =0.

We use modified weights

1> 1
805:90+_99_+_K’ g > 0 small, 0,//‘€‘a§2<0-
eT 2 T

Carleman estimate leads to solutions of (—A + g)u = 0 with
» good control on {x € 9Q; d,(x) < 0}
» weak control on {x € 0Q2; 0,p(x) = 0}.



Components of proof

Some arguments can also be done by reflection, e.g. if g is
part of a graph

rO C {(X17X2777(X2)); X1, X2 € R}

where 1 is a function R — R. Flattening the boundary by
x3 — x3 — 1(xz) transforms the Euclidean Laplacian into

3
; 1 0
Ag ~ Z gjkaxjaxm (gjk(x)) = ( ) :

= 0 go(X2, X3)

Reflecting across x3 = 0 generates a Lipschitz singularity in
the metric go. However, the singularity only appears in the
lower right corner, and methods for the anisotropic Calderén
problem (Kenig-S-Uhlmann 2011) still apply.



Components of proof

Suppose 2 is part of a cylinder R x Q4 and
Mo CR x (0 \ E)

where Qo C R? and E C 99q. Use complex geometrical optics
solutions as 7 — 00,

u(xy, X') ~ e v, (X))

where v (x) is a reflected Gaussian beam quasimode in €,
concentrating near a broken ray v with endpoints on E:

I(=2 = 7)vellizge) = O(75), lvellizaone) = O(T),
v, |2 dx" — 4.

Cf. Dos Santos-Kurylev-Lassas-S (upcoming).



Summary

In the Calderén problem with partial data for n > 3:

» possible to ignore measurements on sets that are part of
cylindrical sets, conical sets, or surfaces of revolution

» local uniqueness results that determine coefficients near
the measurement set

» global uniqueness under certain size or concavity
conditions, or if the broken ray transform is invertible

Survey with Kenig: " Recent progress in the Calderén problem
with partial data” (2013).



Open questions

Question (Local data for n > 3)

If Q CR", n>3,if [ is any open subset of 912, and if
q1, g2 € L>(Q), show that C))F = C)" implies g1 = go.

Question (Data on disjoint sets for n = 2)

If Q C R?, if [p and Iy are disjoint open subsets of 99, and
if g1, g2 € L°(RQ), show that CJp'v = C[o"V implies g = .



