The Calderón problem with partial data

Mikko Salo
University of Jyväskylä

Joint work with Carlos Kenig (Chicago)

Linköping, April 3, 2013

Calderón problem

Medical imaging, Electrical Impedance Tomography:

$$
\left\{\begin{aligned}
\operatorname{div}(\gamma(x) \nabla u) & =0 & & \text { in } \Omega, \\
u & =f & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{n}$ bounded domain, $\gamma \in L^{\infty}(\Omega)$ positive.
Boundary measurements given by DN map

$$
\Lambda_{\gamma}:\left.f \mapsto \gamma \partial_{\nu} u\right|_{\partial \Omega} .
$$

Inverse problem: given Λ_{γ}, determine γ.

Calderón problem

Model case of inverse boundary problems for elliptic equations (Schrödinger, Maxwell, elasticity).

Related to:

- optical tomography
- inverse scattering
- travel time tomography and boundary rigidity
- hybrid imaging methods
- invisibility

Calderón problem

Uniqueness results:

- Calderón (1980): linearized problem
- Sylvester-Uhlmann (1987): $n \geq 3, \gamma \in C^{2}(\bar{\Omega})$
- Nachman (1996): $n=2, \gamma \in W^{2, p}(\Omega)$
- Astala-Päivärinta (2006): $n=2, \gamma \in L^{\infty}(\Omega)$
- Haberman-Tataru (2012): $n \geq 3, \gamma \in C^{1}(\bar{\Omega})$

We are interested in the partial data problem where measurements are made only on subsets of the boundary.

Partial data problem

Prescribe voltages on Γ_{D}, measure currents on Γ_{N} :

Partial data problem

Let Γ_{D} and Γ_{N} be open subsets of $\partial \Omega$. Define partial Cauchy data set

$$
\begin{aligned}
C_{\gamma}^{\Gamma_{D}, \Gamma_{N}}=\left\{\left(\left.u\right|_{\Gamma_{D}},\left.\gamma \partial_{\nu} u\right|_{\Gamma_{N}}\right) ;\right. & \operatorname{div}(\gamma \nabla u)=0 \text { in } \Omega, u \in H^{1}(\Omega) \\
& \left.\operatorname{supp}\left(\left.u\right|_{\partial \Omega}\right) \subset \Gamma_{D}\right\} .
\end{aligned}
$$

Corresponds to prescribing Dirichlet data on Γ_{D} and measuring Neumann data on Γ_{N}.

Inverse problem: given $C_{\gamma}^{\Gamma_{D}, \Gamma_{N}}$, determine γ.

Partial data problem

Substitution $u=\gamma^{-1 / 2} v$ reduces conductivity equation $\operatorname{div}(\gamma \nabla u)=0$ to Schrödinger equation $(-\Delta+q) v=0$.

If $q \in L^{\infty}(\Omega)$, define

$$
\begin{aligned}
C_{q}^{\Gamma_{D}, \Gamma_{N}}=\left\{\left(\left.u\right|_{\Gamma_{D}},\left.\partial_{\nu} u\right|_{\Gamma_{N}}\right) ;\right. & (-\Delta+q) u=0 \text { in } \Omega, u \in H_{\Delta}(\Omega), \\
& \left.\operatorname{supp}\left(\left.u\right|_{\partial \Omega}\right) \subset \Gamma_{D}\right\} .
\end{aligned}
$$

Here $H_{\Delta}(\Omega)=\left\{u \in L^{2}(\Omega) ; \Delta u \in L^{2}(\Omega)\right\}$.
Inverse problem: given $C_{q}^{\Gamma_{D}, \Gamma_{N}}$, determine q.

Partial data problem

Four main approaches for uniqueness:

1. Carleman estimates (Kenig-Sjöstrand-Uhlmann 2007)
2. Reflection approach (Isakov 2007)
3. 2D case (Imanuvilov-Uhlmann-Yamamoto 2010)
4. Linearized case (Dos Santos-Kenig-Sjöstrand-Uhlmann 2009)

The first two approaches work in dimensions $n \geq 3$. Will describe them in more detail.

Strategy of proof

Lemma (Integration by parts)
If $\Gamma_{D}, \Gamma_{N} \subset \partial \Omega$ are open and if $C_{q_{1}}^{\Gamma_{D}, \Gamma_{N}}=C_{q_{2}}^{\Gamma_{D}, \Gamma_{N}}$, then

$$
\int_{\Omega}\left(q_{1}-q_{2}\right) u_{1} u_{2} d x=0
$$

for any u_{j} satisfying $\left(-\Delta+q_{j}\right) u_{j}=0$ in Ω and

$$
\begin{equation*}
\operatorname{supp}\left(\left.u_{1}\right|_{\partial \Omega}\right) \subset \Gamma_{D}, \quad \operatorname{supp}\left(\left.u_{2}\right|_{\partial \Omega}\right) \subset \Gamma_{N} \tag{*}
\end{equation*}
$$

To show $q_{1}=q_{2}$, enough that the set of products of solutions

$$
\left\{u_{1} u_{2} ;\left(-\Delta+q_{j}\right) u_{j}=0 \text { in } \Omega, \quad u_{j} \text { satisfy }(*)\right\}
$$

is dense in $L^{1}(\Omega)$.

Strategy of proof

Use special complex geometrical optics solutions

$$
u \approx e^{ \pm \tau \varphi} a, \quad(-\Delta+q) u=0, \quad \operatorname{supp}\left(\left.u\right|_{\partial \Omega}\right) \subset \Gamma_{D, N}
$$

Here $\tau>0$ is a large parameter and

$$
\left\{\lim _{\tau \rightarrow \infty} u_{1} u_{2}\right\} \text { dense in } L^{1}(\Omega)
$$

Here φ is a limiting Carleman weight: Carleman estimate

$$
\left\|e^{ \pm \tau \varphi} v\right\|_{L^{2}(\Omega)} \leq \frac{C}{\tau}\left\|e^{ \pm \tau \varphi}(-\Delta+q) v\right\|_{L^{2}(\Omega)}, \quad v \in C_{c}^{\infty}(\Omega)
$$

(Also need boundary terms.) The function a is an amplitude.

Strategy of proof

Condition for a limiting Carleman weight $\varphi, \nabla \varphi \neq 0$:

$$
\left\|e^{ \pm \tau \varphi} v\right\|_{L^{2}(\Omega)} \leq \frac{C}{\tau}\left\|e^{ \pm \tau \varphi} \Delta v\right\|_{L^{2}(\Omega)}, \quad v \in C_{c}^{\infty}(\Omega), \tau \gg 1
$$

Results from Dos Santos-Kenig-S-Uhlmann (2009):

- conformally invariant condition
- if $n \geq 3$, only six basic forms for φ :

$$
x_{1}, \quad \log |x|, \quad \frac{x_{1}}{|x|^{2}}, \quad \arctan \frac{x_{2}}{x_{1}}
$$

- if $n=2$, any harmonic function is OK

Carleman estimate approach (KSU 2007)

- Γ_{D} and Γ_{N} roughly complementary, need to overlap
- Γ_{D} can be very small, but then Γ_{N} has to be very large
- proof uses weights $\varphi(x)=\log \left|x-x_{0}\right|$ and Carleman estimates with boundary terms

Reflection approach (Isakov 2007)

$$
\Gamma_{D}=\Gamma_{N}=\Gamma
$$

- local data: $\Gamma_{D}=\Gamma_{N}=\Gamma$, no measurements needed on Γ_{0}
- the inaccessible part of the boundary, Γ_{0}, has strict restrictions (part of a hyperplane or part of a sphere)
- proof uses weights $\varphi(x)=x_{1}$ and reflection about Γ_{0}

2D and linearized cases

Theorem (Imanuvilov-Uhlmann-Yamamoto 2010) Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain and let $\Gamma \subset \partial \Omega$ be open. If $q_{1}, q_{2} \in C^{4, \alpha}(\bar{\Omega})$ for some $\alpha>0$ and if

$$
C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma},
$$

then $q_{1}=q_{2}$.
Theorem (Dos Santos-Kenig-Sjöstrand-Uhlmann 2009)

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, $n \geq 2$, and let $\Gamma \subset \partial \Omega$ be open. The Cauchy data set $C_{q}^{\Gamma, \Gamma}$ linearized at $q=0$ uniquely determines q.

New results

Recall main approaches:

1. Carleman estimates
2. Reflection approach
3. 2D case
4. Linearized case

We unify approaches 1 and 2 and extend both. In particular, we relax the requirements on the inaccessible part in 2 , and allow to use complementary (sometimes disjoint) sets as in 1.

The methods work for $n \geq 3$, also on certain Riemannian manifolds, and sometimes reduce the question to integral geometry problems of independent interest.

New results

The first results are local results: given measurements on $\Gamma \subset \partial \Omega$, coefficients are determined in a neighborhood of Γ.

Proof reduces to an integral geometry problem (Helgason support theorem): recover a function locally from its integrals over lines, great circles, or hyperbolic geodesics in a certain neighborhood.

Instead of being completely flat or spherical, the inaccessible part Γ_{0} can be conformally flat only in one direction, e.g.

- cylindrical set (leads to integrals over lines)
- conical set (integrals over great circle segments)
- surface of revolution (integrals over hyperbolic geodesics).

Cylindrical sets

Theorem (Kenig-S 2012)
Let $\Omega \subset \mathbb{R} \times \Omega_{0}$ where $\Omega_{0} \subset \mathbb{R}^{2}$ is convex, let $\Gamma=\partial \Omega \backslash \Gamma_{0}$, and suppose that Γ_{0} satisfies

$$
\Gamma_{0} \subset \mathbb{R} \times\left(\partial \Omega_{0} \backslash E\right)
$$

for some open set $E \subset \partial \Omega_{0}$. If $q_{1}, q_{2} \in C(\bar{\Omega})$ and if

$$
C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma},
$$

then $q_{1}=q_{2}$ in $\bar{\Omega} \cap\left(\mathbb{R} \times \operatorname{ch}_{\mathbb{R}^{2}}(E)\right)$.
Corresponds to $\varphi(x)=x_{1}$. Similar result obtained independently by Imanuvilov and Yamamoto (2012).

Conical sets

Theorem (Kenig-S 2012)
Let $\Omega \subset\left\{r \omega ; r>0, \omega \in M_{0}\right\}$ where $M_{0} \subset S^{2}$ is convex, let $\Gamma=\partial \Omega \backslash \Gamma_{0}$, and suppose that Γ_{0} satisfies

$$
\Gamma_{0} \subset\left\{r \omega ; r>0, \omega \in \partial M_{0} \backslash E\right\}
$$

for some open set $E \subset \partial M_{0}$. If $q_{1}, q_{2} \in C(\bar{\Omega})$ and if

$$
C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma}
$$

then $q_{1}=q_{2}$ in $\bar{\Omega} \cap\left(\mathbb{R} \times \operatorname{ch}_{S^{2}}(E)\right)$.
Corresponds to $\varphi(x)=\log |x|$. Convex hull in S^{2} taken with respect to great circle segments.

Remarks

- convexity not required: if the inaccessible part is concave, recover the coefficient everywhere
- it is not required that $\Gamma_{D}=\Gamma_{N}$, can use somewhat complementary sets as in Kenig-Sjöstrand-Uhlmann
- sometimes Γ_{D} and Γ_{N} can be disjoint, for instance if

$$
\begin{aligned}
& \Gamma_{D}=\left\{x \in \partial \Omega ;\left(x-x_{0}\right) \cdot \nu(x)<0\right\} \\
& \Gamma_{N}=\left\{x \in \partial \Omega ;\left(x-x_{0}\right) \cdot \nu(x)>0\right\}
\end{aligned}
$$

and if $\left\{x \in \partial \Omega ;\left(x-x_{0}\right) \cdot \nu(x)=0\right\}$ has measure zero in $\partial \Omega$, then $C_{q}^{\Gamma_{D}, \Gamma_{N}}$ determines q everywhere.

Beyond the convex hull

Let $\Omega \subset \mathbb{R} \times \Omega_{0}$ where $\Omega_{0} \subset \mathbb{R}^{2}$ is convex, let $\Gamma=\partial \Omega \backslash \Gamma_{0}$, and suppose that Γ_{0} satisfies

$$
\Gamma_{0} \subset \mathbb{R} \times\left(\partial \Omega_{0} \backslash E\right)
$$

for some open set $E \subset \partial \Omega_{0}$. From measurements on Γ, recover coefficient in $\bar{\Omega} \cap\left(\mathbb{R} \times \mathrm{ch}_{\mathbb{R}^{2}}(E)\right)$. Can one go beyond the convex hull?

Beyond the convex hull

A continuous curve $\gamma:[0, L] \rightarrow \bar{\Omega}_{0}$ is a broken ray if it consists of straight line segments that are reflected according to geometrical optics (angle of incidence $=$ angle of reflection) when they hit $\partial \Omega_{0}$.

Beyond the convex hull

Theorem (Kenig-S 2012)

Let $\Omega \subset \mathbb{R} \times \Omega_{0}$ where $\Omega_{0} \subset \mathbb{R}^{2}$ is a bounded domain, let $\Gamma=\partial \Omega \backslash \Gamma_{0}$ where Γ_{0} satisfies for some open $E \subset \partial \Omega_{0}$

$$
\Gamma_{0} \subset \mathbb{R} \times\left(\partial \Omega_{0} \backslash E\right)
$$

If $q_{1}, q_{2} \in C(\bar{\Omega})$ and $C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma}$, then for any nontangential broken ray $\gamma:[0, L] \rightarrow \bar{\Omega}_{0}$ with endpoints on E, and given any real number λ, one has

$$
\int_{0}^{L} e^{-2 \lambda t}\left(q_{1}-q_{2}\right)^{\wedge}(2 \lambda, \gamma(t)) d t=0 .
$$

Here $(\cdot)^{\wedge}$ is the Fourier transform in the x_{1} variable, and $q_{1}-q_{2}$ is extended by zero to $\mathbb{R}^{3} \backslash \bar{\Omega}$.

Beyond the convex hull

Question

Let $\Omega_{0} \subset \mathbb{R}^{n}$ strictly convex and $E \subset \partial \Omega_{0}$ open. Is a function $f \in C\left(\bar{\Omega}_{0}\right)$ determined by its integrals over broken rays starting and ending on E ?

- Eskin (2004): rays reflecting off convex obstacles
- Ilmavirta (2013): partial results for unit disk
- Hubenthal (2013): microlocal analysis for unit square
- related to (but not the same as) the v-line transform

Components of proof

Need Carleman estimate with boundary terms:

$$
\begin{aligned}
& -\frac{1}{\tau} \int_{\partial \Omega}\left(\partial_{\nu} \varphi\right) e^{ \pm 2 \tau \varphi}\left|\partial_{\nu} v\right|^{2} d S+\left\|e^{ \pm \tau \varphi} v\right\|_{L^{2}(\Omega)}^{2} \\
& \quad \leq \frac{C}{\tau^{2}}\left\|e^{ \pm \tau \varphi}(-\Delta+q) v\right\|_{L^{2}(\Omega)}^{2}, \quad v \in C^{\infty}(\bar{\Omega}),\left.\quad v\right|_{\partial \Omega}=0
\end{aligned}
$$

Kenig-Sjöstrand-Uhlmann (2007) use convexified weights

$$
\varphi_{\varepsilon}=\varphi+\frac{1}{\varepsilon \tau} \frac{\varphi^{2}}{2}, \quad \varepsilon>0 \text { small. }
$$

Carleman estimate leads to solutions of $(-\Delta+q) u=0$ with

- good control on $\left\{x \in \partial \Omega ; \partial_{\nu} \varphi(x)<0\right\}$
- no control on $\left\{x \in \partial \Omega ; \partial_{\nu} \varphi(x)=0\right\}$.

Components of proof

Need Carleman estimate with boundary terms:

$$
\begin{aligned}
& -\frac{1}{\tau} \int_{\partial \Omega}\left(\partial_{\nu} \varphi\right) e^{ \pm 2 \tau \varphi}\left|\partial_{\nu} v\right|^{2} d S+\left\|e^{ \pm \tau \varphi} v\right\|_{L^{2}(\Omega)}^{2} \\
& \quad \leq \frac{C}{\tau^{2}}\left\|e^{ \pm \tau \varphi}(-\Delta+q) v\right\|_{L^{2}(\Omega)}^{2}, \quad v \in C^{\infty}(\bar{\Omega}),\left.\quad v\right|_{\partial \Omega}=0
\end{aligned}
$$

We use modified weights

$$
\varphi_{\varepsilon}=\varphi+\frac{1}{\varepsilon \tau} \frac{\varphi^{2}}{2}+\frac{1}{\tau} \kappa, \quad \varepsilon>0 \text { small },\left.\quad \partial_{\nu} \kappa\right|_{\partial \Omega}<0
$$

Carleman estimate leads to solutions of $(-\Delta+q) u=0$ with

- good control on $\left\{x \in \partial \Omega ; \partial_{\nu} \varphi(x)<0\right\}$
- weak control on $\left\{x \in \partial \Omega ; \partial_{\nu} \varphi(x)=0\right\}$.

Components of proof

Some arguments can also be done by reflection, e.g. if Γ_{0} is part of a graph

$$
\Gamma_{0} \subset\left\{\left(x_{1}, x_{2}, \eta\left(x_{2}\right)\right) ; x_{1}, x_{2} \in \mathbb{R}\right\}
$$

where η is a function $\mathbb{R} \rightarrow \mathbb{R}$. Flattening the boundary by $x_{3} \mapsto x_{3}-\eta\left(x_{2}\right)$ transforms the Euclidean Laplacian into

$$
\Delta_{g} \approx \sum_{j, k=1}^{3} g^{j k} \partial_{x_{j}} \partial_{x_{k}}, \quad\left(g_{j k}(x)\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & g_{0}\left(x_{2}, x_{3}\right)
\end{array}\right) .
$$

Reflecting across $x_{3}=0$ generates a Lipschitz singularity in the metric g_{0}. However, the singularity only appears in the lower right corner, and methods for the anisotropic Calderón problem (Kenig-S-Uhlmann 2011) still apply.

Components of proof

Suppose Ω is part of a cylinder $\mathbb{R} \times \Omega_{0}$ and

$$
\Gamma_{0} \subset \mathbb{R} \times\left(\partial \Omega_{0} \backslash E\right)
$$

where $\Omega_{0} \subset \mathbb{R}^{2}$ and $E \subset \partial \Omega_{0}$. Use complex geometrical optics solutions as $\tau \rightarrow \infty$,

$$
u\left(x_{1}, x^{\prime}\right) \approx e^{ \pm \tau x_{1}} v_{\tau}\left(x^{\prime}\right)
$$

where $v_{\tau}\left(x^{\prime}\right)$ is a reflected Gaussian beam quasimode in Ω_{0}, concentrating near a broken ray γ with endpoints on E :

$$
\begin{gathered}
\left\|\left(-\Delta-\tau^{2}\right) v_{\tau}\right\|_{L^{2}\left(\Omega_{0}\right)}=O\left(\tau^{-K}\right), \quad\left\|v_{\tau}\right\|_{L^{2}\left(\partial \Omega_{0} \backslash E\right)}=O\left(\tau^{-K}\right), \\
\left|v_{\tau}\right|^{2} d x^{\prime} \rightharpoonup \delta_{\gamma} .
\end{gathered}
$$

Cf. Dos Santos-Kurylev-Lassas-S (upcoming).

Summary

In the Calderón problem with partial data for $n \geq 3$:

- possible to ignore measurements on sets that are part of cylindrical sets, conical sets, or surfaces of revolution
- local uniqueness results that determine coefficients near the measurement set
- global uniqueness under certain size or concavity conditions, or if the broken ray transform is invertible

Survey with Kenig: "Recent progress in the Calderón problem with partial data" (2013).

Open questions

Question (Local data for $n \geq 3$)
If $\Omega \subset \mathbb{R}^{n}, n \geq 3$, if Γ is any open subset of $\partial \Omega$, and if $q_{1}, q_{2} \in L^{\infty}(\Omega)$, show that $C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma}$ implies $q_{1}=q_{2}$.

Question (Data on disjoint sets for $n=2$)
If $\Omega \subset \mathbb{R}^{2}$, if Γ_{D} and Γ_{N} are disjoint open subsets of $\partial \Omega$, and if $q_{1}, q_{2} \in L^{\infty}(\Omega)$, show that $C_{q_{1}}^{\Gamma_{D}, \Gamma_{N}}=C_{q_{2}}^{\Gamma_{D}, \Gamma_{N}}$ implies $q_{1}=q_{2}$.

