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Introduction

The scattering problem for time-harmonic waves (e.g., acoustic) in a
non-homogeneous medium can be modeled by the Helmholtz equation

∆u(x) + k2(1 + m(x))u(x) = 0, x ∈ Rn, n ≥ 2,

where k > 0 fixed, m(x) denotes the perturbation of the index of
refraction and the total wave u is equal to

u(x) = u0(x) + usc(x)

with the incident field u0 as the entire solution of the free Helmholtz
equation and usc as the scattered field.
We assume that m is compactly supported in some domain D ⊂ Rn and
belong to Lp(D) for some n

2 < p ≤ ∞.
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Introduction

Under u0 we understand the solution of

(∆ + k2)u0(x) = 0

in the form of Hergoltz function, i.e.

u0(x) =

∫
Sn−1

e ik(x ,ϑ)g0(ϑ) dϑ, g0 ∈ L2(Sn−1).

Here as usually Sn−1 is the unit sphere in Rn.
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Introduction

It is important that for any g0 ∈ L2(Sn−1) Hergoltz function u0 belongs to
the weighted space

L
2p
p−1

−δ (Rn),

where n
2 < p ≤ ∞, n ≥ 2, and δ > 1

2 −
n
2p .

The choice of such u0 can be justified by some works of Colton,
Hörmander, Sylvester and some others. The set of all such solutions we
denote by U0.
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Introduction

By Usc we denote the set of all solutions of the non-homogeneous
Helmholtz equation

∆u(x) + k2(1 + m(x))u(x) = f (x)

with compactly supported function f which belongs to L
2p
p+1 . This solution

must satisfy the Sommerfeld radiation condition at the infinity

lim
r→∞

r
n−1
2 (

∂u

∂r
− iku) = 0, r = |x |.

By Um we denote the set of all solutions of the Helmholtz equation in the
above form such that u0 ∈ U0 and usc ∈ Usc . The following result is true :

Theorem

For any m ∈ Lp(D), n
2 < p ≤ ∞, u0 ∈ U0, there exists a unique um ∈ Um

such that

‖um‖
L

2p
p−1
−δ (Rn)

≤ C
(
‖m‖Lp(D) + 1

)
‖u0‖

L
2p
p−1
−δ (Rn)
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Introduction

We prove the following fact (which can be also considered as the basis of
the approach).

Theorem

Every total wave um ∈ Um has a unique decomposition into an incident
wave u0 ∈ U0 plus a scattered wave usc ∈ Usc , and every incident wave
v0 ∈ U0 has a unique decomposition as a total wave vm ∈ Um minus a
scattered wave vsc ∈ Usc :

um(x) = u0(x) + usc(x), v0(x) = vm(x)− vsc(x).
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Formulation of the problem

As a consequence we may consider the interior transmission eigenvalue
problem for ”singular” m. The interior transmission eigenvalues problem is
to find positive values of parameter k for which there is a non-trivial pair
(u, v) solving

∆u(x) + k2(1 + m(x))u(x) = 0, x ∈ D,

∆v(x) + k2v(x) = 0, x ∈ D,

u(x) = v(x),
∂u(x)

∂ν
=
∂v(x)

∂ν
, x ∈ ∂D.

This problem arises naturally in inverse scattering theory. If k > 0 is not a
transmission eigenvalue then the far field pattern operator is injective with
dense range. In that case one can apply sampling method of Colton and
Kirsch and the factorization method of Kirsch and can define unknown
domain D. So, the elimination of such values of k is very important in
applications.
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Historical remarks

The problem was first introduced in 1988 by Colton and Monk in
connection with an inverse scattering problem for the reduced wave
equation.

Colton, Kirsch and Päivärinta, 1989 : the discreteness of this set.

Rynne and Sleeman, 1991 : connection with inverse scattering theory.

McLaughlin and Polyakov, 1994 : existence of transmission
eigenvalues for the constant contrast.

Kirsch, 1999, 2007 : Maxwell’s equations.

Colton, Päivärinta and Sylvester, 2007 : the characterization of real
transmission eigenvalues.
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Historical remarks

Päivärinta and Sylvester, 2008 : the existence of transmission
eigenvalues.

Cakoni, Gintides and Haddar, 2010 : the existence of infinitely many
transmission eigenvalues.

Cakoni, Colton and Haddar, 2010 : transmission eigenvalues in
presence of cavities.

Hickmann, 2010 (is not published) : transmission eigenvalues for
degenerate case.

Hitrik, Krupchyk, Ola and Päivärinta, 2010-2011 : transmission
eigenvalues for elliptic operators of arbitrary order with constant
coefficients.

....... (a lot of new publications nowadays).
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Index of refraction

It is important that all these results were obtained under the hypothesis
the perturbation of the index of refraction m is bounded, does not change
sign and satisfies the condition |m(x)| ≥ δ > 0 for all x . We mentioned
here one result of Hickmann (is not published) where some similar results
for the degenerate case are obtained but with very restricted contrast.
Unlike to this we assume that function m satisfies the following conditions :

c1ρ
β ≤ m(x) ≤ c2ρ

α, 0 < c1 ≤ c2

with
−1 < α ≤ β < 2 + α

where ρ(x) denotes the distance from x ∈ D to the boundary of D, that is
ρ(x) := inf

y∈∂D
|x − y |. You can see that the condition |m(x)| ≥ δ > 0 is not

satisfied (in general). We assume also some smoothness of function ρ(x)
in order to apply the Hardy inequality.
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Hardy inequality

Let us assume that σ > 1. Then there is a constant C > 0 such that for
all f ∈ C∞0 (D) ∫

D

ρ−σ|f (x)|2 dx ≤ C

∫
D

ρ−σ+2|∇f (x)|2 dx .

For the proof we refer to Necas (1962) or Triebel (1980). As the
consequence we obtain∫

D

ρ−σ+2|∇f (x)|2 dx ≤ C

∫
D

ρ−σ+4
∑
|γ|=2

|∂γf (x)|2 dx ,

where σ > 3.
These two inequalities justify the definition of the following weighted
Sobolev space H2

0,β(D).
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H2
0,β(D)

We define the weighted Sobolev space H2
0,β(D) as the closure of C∞0 (D)

with respect to the norm

‖f ‖2H2
0,β(D) =

∫
D

ρ−β ∑
|γ|=2

|∂γf (x)|2 + ρ−β−2|∇f (x)|2 + ρ−β−4|f (x)|2
 dx .

It can be easily seen that if β ≥ −2 then the following embeddings hold

H2
0,β(D) ⊂W 1

2,0(D) ⊂ L2(D),

where the latter embedding is compact. But in our further considerations
we assume that β > −1 any way.
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Quadratic forms

We consider the quadratic forms

Qτ (u) = Q0(u) + 2τRe

∫
D

u
1

m
∆u dx + τ

∫
D

u∆u dx + τ2
∫
D

(
1

m
+ 1)|u|2 dx ,

Q0(u) =

∫
D

1

m
|∆u|2 dx ,

where τ = k2, on the Hilbert space L2
−δ(D). If we choose δ satisfying

max(β − α

2
;−α

2
) ≤ δ < α

2
+ 2

then the domain of Qτ and Q0 satisfy

H2
0,β(D) ⊂ Dom(Qτ ) = Dom(Q0) ⊂ H2

0,α(D).
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Characterization

Theorem

k2 is a transmission eigenvalue of m if and only if there is a function
u ∈ Dom(Qτ ), u 6= 0, such that the following equality∫

D

1

m

(
∆ + k2(1 + m)

)
u(x)(∆ + k2)ϕ(x) dx = 0

holds for any ϕ ∈ Dom(Qτ ).
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Characterization

This theorem tells us that k2 is a transmission eigenvalue whenever the
operator

(∆ + k2)

(
1

m
(∆ + k2(1 + m))

)
= (∆ + k2(1 + m))

(
1

m
(∆ + k2)

)
has a nontrivial kernel in Dom(Qτ ). This function u is called a
transmission eigenfunction.
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Boundary conditions

The mentioned above inclusions and equality for the domains follow
directly from the Hardy inequality. Moreover the conditions for α and β
imply that if u ∈ H2

0,α(D) (as well as for H2
0,β(D)) then

u(x) = 0, ∂νu(x) = 0, x ∈ ∂D.

Another important property of these spaces is :
If δ < α

2 + 2 then the embedding

H2
0,α(D) ⊂ L2

−δ(D) ⊂ L2(D)

is compact. Actually the domain of the quadratic form Qτ is independent
on τ . It follows from the following properties.
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Continuous dependence of Qτ on τ

If we choose δ as above then for any 0 < ε < 1 there is a constant Cε > 0
such that

(1− ε)Q0(u)− Cε‖u‖2L2−δ(D) ≤ Qτ ≤ (1 + ε)Q0(u) + Cε‖u‖2L2−δ(D)

and

|Qτ1(u)− Qτ2(u)| ≤ C |τ1 − τ2|max(1; τ1; τ2)
(

Q0(u) + ‖u‖2L2−δ(D)

)
with some constant C > 0.
The second inequality illustrates the continuous dependence of Qτ on τ . A
direct consequence of these two facts is :
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Eigenvalues and their dependence on τ

Theorem

If −1 < α ≤ β < α + 2 and max(β − α
2 ;−α

2 ) ≤ δ < α
2 + 2, then the

spectrum of self-adjoint operator Lτ which is understood in the sense of
quadratic forms Qτ , is real, discrete, of finite multiplicity and has the only
one accumulation point at the infinity. Each eigenfunction ul(τ) depends
continuously on τ , belongs to H2

0,α(D) and therefore must vanish, together
with its derivatives, on ∂D. The eigenvalues can be characterized by the
min-max principle

λl(τ) = max
Vl

min
u∈V⊥l ∩Dom(Qτ ),‖u‖L2−δ(D)

=1
Qτ (u),

where Vl denotes any l−dimensional subspace of L2
−δ(D), l = 1, 2, ....

We can refer to Simon.
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Existence of transmission eigenvalues

The embedding
Dom(Qτ ) ⊂W 1

2,0(D),

where W 1
2,0(D) denotes usual Sobolev space of functions with compact

support, leads to the inequality

λ0 ≤ inf
u∈Dom(Qτ ),‖u‖L2(D)=1

∫
D

|∇u|2 dx ,

where λ0 is the first eigenvalue of the Dirichlet Laplacian in the domain D.
We introduce two constants :

S+ = sup
u∈Dom(Qτ ),‖u‖L2(D)=1

∫
D

m|u|2 dx ,

S− = sup
u∈Dom(Qτ ),‖u‖L2(D)=1

∫
D

1

m
|u|2 dx .
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Existence of transmission eigenvalues

There is one conditional theorem about existence of transmission
eigenvalues.

Theorem

If k2 < λ0
1+S+ then k2 is not a transmission eigenvalue. If k2 ≥ λ0

1+S+ and

λ0 ≥ 2
√
λl

(√
1 + S− +

√
S−
)

then there exist l + 1 transmission eigenvalues k2 with

λ0 − 2
√
λl
√

S− −
√
λ20 − 4λ0

√
λl
√

S− − 4λl

2(1 + S−)
≤ k2 ≤

≤
λ0 − 2

√
λl
√

S− +
√
λ20 − 4λ0

√
λl
√

S− − 4λl

2(1 + S−)
.
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Main result

Let us denote by Nm,D(τ) the number of all transmission eigenvalues
(counting multiplicity) less than or equal to τ . Our main result is the
following :

Theorem

Let D be a bounded domain in Rn, n ≥ 2. There is a constant K0 > 0,
depending on both m(x) and D, such that

Nm,D(τ) ≥ K0τ
n
2 − 1.

A particular consequence of this result is that there are infinitely many
transmission eigenvalues.
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Proof of the main result

We prove first the following proposition

Proposition

Suppose Nm0,D0(τ) ≥ 1, and suppose that {mj ,Dj}Kj=1 represent
translation of (m0,D0) (that is, mj(x) = m0(x + xj) on Dj = D0 + xj). If
Dj are disjoint, each Dj ⊂ D and m(x) ≥ mj(x) on each Dj , then

Nm,D(τ) ≥ K .

The proof is based on the continuous dependence of eigenvalues on τ and
the min-max characterization of the eigenvalues.
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Proof of the main result

The next step is :
Since it is known that unit ball in Rn with any constant contrast has
transmission eigenvalues (J. McLaughlin and Polyakov) then this
proposition assures that the unit cube has also (at least one) transmission
eigenvalues. If we denote by τ0(M, 1) the lowest transmission eigenvalue of
the cube with side 1 with constant contrast M then the lowest
transmission eigenvalue of the cube with side R and constant contrast M
will be equal to τ0(M,1)

R2 . It can be seen by scaling : indeed, if u(x) is a
transmission eigenfunction for the cube with side length 1, then u( x

R ) is a
transmission eigenfunction for the cube with side length R, and the
transmission eigenvalue decreases by a factor of R2.
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Proof of the main result

As an immediate consequence of this fact we obtain the following
proposition.

Proposition

Suppose m(x) > 0 in D and suppose that m(x) ≥ M on the disjoint union
of P cubes, all with identical side length R and all contained in D. Then

Nm,D

(
τ0(M, 1)

R2

)
≥ P.
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Proof of the main result

Remark

If we denote by P(R) the maximum number of disjoint cubes of radius R
contained in bounded open set G then

RnP(R)→ µ(G ), as R → 0,

where µ(G ) is the Lebesgue measure of G.
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Proof of the main result

Proposition

Let G be an open subset of D on which m(x) > M (if m is continuous
then we may choose G = {x ∈ D : m(x) > M}). Then

lim
τ→+∞

τ−
n
2 Nm,D(τ) ≥ (τ0(M, 1))−

n
2µ(G ).

The proof follows immediately from the previous proposition and remark if
we choose

R =

√
τ0(M, 1)

τ
.
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Proof of the main result

This proposition tells us that Nm,D(τ) + 1 is bounded from below, for
example, by

Nm,D(τ) + 1 ≥ τ
n
2

µ(G )

(1 + ε)(τ0(M, 1))
n
2

, for τ ≥ τ1,

with some τ1 > 0 depending on ε > 0. It is also bounded from below by 1,
for all τ ≥ 0. This means that the main theorem is completely proved.
It must be mentioned here that the dependence of τ0(M, 1) on the
constant contrast M is monotonic decreasing as well as µ(G ).
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Conclusions

1) It is shown the existence of real transmission eigenvalues for degenerate
contrasts, which may vanish at the boundary to an arbitrary high order,
but it is required some uniformity in the boundary behavior. The upper
and lower bounds must involve powers of ρ (distance to the boundary)
which differ by no more that two.
2) With similar restrictions, it is also allowed singular contrasts which grow
at the boundary more slowly than 1

ρ .
3) It is proved a lower bound of the counting function Nτ,D , similar to that
for Dirichlet eigenvalues. The number of Dirichlet eigenvalues less than or
equal to λ is asymptotic to

ωn

(2π)n
µ(D)λ

n
2 ,

where ωn is the volume of the unit ball in Rn. And the number of
transmission eigenvalues less than or equal τ satisfies the estimate

Nτ,D ≥ K0(m)µ(D)τ
n
2 − 1.
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Conclusions

4) Unfortunately, it is not known upper bound. The dependence of
τ0(M, 1) on the constant contrast M in the constant

K0(m) =
µ(x : m(x) > M)

2µ(D)(τ0(M, 1))
n
2

is monotonic decreasing (as well as µ(x : m(x) > M)), but it is known
little else at present.
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