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ABOUT CORDIAL VOLTERRA INTEGRAL OPERATORS

(Vϕu)(t) =
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ϕ
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)
u(s)ds, (Vϕ,au)(t) =

ˆ t

0

1

t
ϕ
(s
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)
a(t, s)u(s)ds, 0 < t ≤ T.

Proposition. Let ϕ ∈ L1(0, 1), a ∈ Cm(4T ) for an m ≥ 0, where 4T ={
(t, s) : 0 ≤ s ≤ t ≤ T

}
. Then Vϕ,a ∈ L(Cm), i.e. Vϕ,a is a linear bounded

operator in Cm = Cm[0, T ]. Operator Vϕ,a ∈ L(Cm) with ϕ 6= 0 is compact if

and only if a(0, 0) = 0. In particular, Vϕ ∈ L(Cm) for m = 0, 1, ... It holds

‖ Vϕ ‖L(Cm)≤
´ 1
0 | ϕ(x) | dx, Vϕt

λ = ϕ̂(λ)tλ, where ϕ̂(λ) =
´ 1
0 x

λϕ(x)dx,

Reλ ≥ 0, is the (shifted) Mellin transform of ϕ,

σL(Cm)(Vϕ) = {0} ∪ {ϕ̂(k) : k = 0, 1, ...,m− 1} ∪ {ϕ̂(λ) : Reλ ≥ m} ,

σL(Cm)(Vϕ,a) = a(0, 0)σL(Cm)(Vϕ).
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THE PROBLEM

ˆ t

0

1

t
ϕ
(s
t

)
a(t, s)u(s)ds = f (t), 0 < t ≤ T, or Vϕ,au = f. (1)

Assumptions: for an r ∈ R (mostly we are interested in case r = 0), it holds that

ˆ 1

0

xr | ϕ(x) | dx <∞, (2)

ˆ 1

0

xr+1(1− x) | ϕ′(x) | dx <∞, (3)

ϕ̂(r) :=

ˆ 1

0

xrϕ(x)dx > 0, (4)

ψβ(x) := βϕ(x) + xϕ′(x) ≥ 0 (0 < x < 1) for a β < r + 1; (5)

for an m ≥ 0, it holds that

a ∈ Cm+1(4T ), and a(t, t) = 1 (0 ≤ t ≤ T ). (6)
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MAIN RESULTS

Theorem 1. Assume (2)-(6) for r = 0. Then Vϕ,a is injective in C,

V −1ϕ,a ∈ L(Cm+1, Cm), Cm+1 ⊂ Vϕ,a(C
m) ⊂ Cm.

Corollary 1. Assume (2)-(6) for an r ∈ R. Then for any f of the form

f (t) = trfr(t), fr ∈ Cm+1, equation (1) has a unique solution u of a similar form

u(t) = trur(t), ur ∈ Cm. Namely, ur is a unique solution in Cm of the equation

Vϕr,aur = fr with ϕr(x) = ϕ(x)xr (0 < x < 1) which satis�es (2)-(6) for r = 0,

hence the inverse V −1ϕr,a
∈ L(Cm+1, Cm) exists.

Proof sceme of Theorem 1. Rewrite (1) as

Vϕu + Vϕ,bu = f, b(t, s) = a(t, s)− 1, b(t, t) ≡ 0.

From [5] we know that under conditions (2)-(5) for r = 0, Vϕ is injective in

C and V −1ϕ ∈ L(Cm+1, Cm). We prove that Vϕ,b ∈ L(Cm, Cm+1) and that this

operator is compact if ∂b/∂t |t=s=0= 0. Thus equation (1) is equivalent to the

second kind equation

u + V −1ϕ Vϕ,bu = V −1ϕ f.
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The compactness of V −1ϕ Vϕ,b ∈ L(Cm) can be achieved by treating (1) w.r.t.

new unknown u(t) = e−µtu(t) with µ = ∂a(t, s)/∂t
∣∣
t=s=0

; this changes b(t, s) into

b(t, s) = a(t, s)e−µ(t−s). Now ∂b/∂t |t=s=0= 0, and Vϕ,b ∈ L(Cm, Cm+1) is compact.

We show that the homogeneous equation u + V −1ϕ Vϕ,bu = 0 has in C only the

trivial solution. The claims of the Theorem follow by the Fredholm alternative. �

Introduce the weighted space Cm,r
? = Cm,r

? (0, T ] consisting of functions u ∈
Cm(0, T ] such that �nite limits limt→0 t

k−ru(k)(t), k = 0, ...,m, exist; the norm in

Cm,r
? is de�ned by

‖ u ‖Cm,r?
= max

0≤k≤m
sup

0<t≤T
tk−r | u(k)(t) | .

Theorem 2. Assume (2)-(6) for an r ∈ R. Then Vϕ,a is injective in C0,r
? ,

V −1ϕ,a ∈ L(Cm+1,r
? , Cm,r

? ), Cm+1,r
? ⊂ Vϕ,a(C

m,r
? ) ⊂ Cm,r

? .

Also for Hoelder spaces, a counterpart of Theorem 1 can be established.
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APPLICATION TO ABEL TYPE EQUATION´ t
0 (tγ − sγ)−νg(s/t)a(t, s)u(s)ds = tλf (t), (7)

where γ,ν,λ are real parameters,

γ > 0, 0 < ν < 1, λ + γν > 0, 0 6= g ∈ W 1,∞(0, 1), g ≥ 0, g′ ≥ 0. (8)

With respect to uβ(t) = tβu(t), β = 1−λ−γν, equation (9) can be represented

in the form of cordial equation (1) with the core function

ϕ(x) = x−β(1− xγ)−νg(x), β = 1− λ− γν < 1, satisfying (2)-(5) for r = 0.

Applying Theorem 1 we obtain

Theorem 3. Assume (8) and a ∈ Cm+1(4T ) for an m ≥ 0, a(t, t) 6= 0

(0 ≤ t ≤ T ). Then for any f ∈ Cm+1 equation (7) has a unique solution of the

form u(t) = t−βuβ(t), β = 1− λ− γν < 1, uβ ∈ Cm, ‖ uβ ‖Cm≤ c ‖ f ‖Cm+1.

In case g ≡ 1 equation (7) has been studied by Atkinson [9]; then Theorem 3

slightly strengthens the result of Atkinson: instead of a ∈ Cm+1(4T ), in [9] it is

assumed that a ∈ Cm+2(4T ).
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STABILITY OF THE SOLUTION

Consider the perturbed equation Vϕ,ãu = f̃ .

Theorem 4. Let ϕ satisfy (2)-(5) for r = 0, a ∈ Cm+1(4T ) for an m ≥ 0,

and a(t, t) 6= 0 for 0 ≤ t ≤ T , whereas ã ∈ Ck+1(4T ) for a k, 0 ≤ k ≤ m. Then

there exists a δ0 > 0 such that condition

‖ ã− a ‖Ck+1(4T )≤ δ0

implies the existence of a unique solution ũ = V −1ϕ,ã f̃ ∈ Ck of the perturbed equation

Vϕ,ãu = f̃ for any f̃ ∈ Ck+1. For u = V −1ϕ,af ∈ Cm, the stability estimate

‖ ũ− u ‖Ck≤ c
(
‖ ã− a ‖Ck+1(4T ) + ‖ f̃ − f ‖Ck+1

)
holds with a constant c independent of perturbed data ã and f̃ .
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For a perturbation of ϕ, the result is di�erent (Theorems 5 and 6).

Theorem 5. Assume (2)-(6) for r = 0. Then there is a δ0 > 0 such that for

any ϕ̃ satisfying βϕ̃(x) + xϕ̃′(x) ≥ 0 (0 < x < 1) with a β < 1 independent of ϕ̃

(cf. (5)), condition

δ :=

ˆ 1

0

(
| ϕ̃(x)− ϕ(x) | +x(1− x) | ϕ̃′(x)− ϕ′(x) |

)
dx ≤ δ0

implies the existence of the inverses V −1ϕ̃,a ∈ L(Ck+1, Ck), and

‖ V −1ϕ̃,af − V −1ϕ,af ‖Ck→ 0 as δ → 0, ∀f ∈ Ck+1, k = 0, ...,m,

‖ V −1ϕ̃,a − V −1ϕ,a ‖L(Ck+1,Ck−1)≤ cδ, k = 1, ...,m, with c independent of ϕ̃.
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Let us concretise the last theorem for the case ϕ̃ = ϕε,

ϕε(x) =

{
ϕ(x), 0 < x ≤ 1− ε

ϕ(1− ε)(1− ε)βx−β, 1− ε < x ≤ 1
, 0 < ε ≤ ε0. (9)

Theorem 6. Under conditions (2)-(6),

‖ V −1ϕε,a
f − V −1ϕ,af ‖Ck→ 0 as ε→ 0, ∀f ∈ Ck+1, 0 ≤ k ≤ m,

‖ V −1ϕε,a
− V −1ϕ,a ‖L(Ck+1,Ck−1)≤ cδε, 1 ≤ k ≤ m,

where

δε :=

ˆ 1

0

(
| ϕ(x)− ϕε(x) | +x(1− x) | ϕ̃′(x)− ϕ′ε(x) |

)
dx

≤ (1 + (| β | +β)ε)

ˆ 1

1−ε
ϕ(x)dx +

ˆ 1

1−ε
x(1− x)ϕ′(x)dx.
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POLYNOMIAL COLLOCATION

Denote by Πn = Πn,[0,T ] the Chebyshev interpolation projector to the space

Pn of polynomials of degree ≤ n: for v ∈ C, Πnv ∈ Pn, (Πnv)(ti) = v(ti), i =

0, ..., n, where ti = T
2

(
1 + cos 2i+1

2(n+1)π
)

are the Chebyshev knots in the interval

[0, T ]. Consider the solving of equation (1) by the collocation method

un ∈ Pn, ΠnVϕ,aun = Πnf.

Theorem 7. Assume that ϕ satis�es (4)-(5) for r = 0 and, for a ν ∈ [0, 1),

| xk(1 − x)kϕ(k)(x) | ≤ cx−ν(1 − x)−ν (0 < x < 1), k = 0, 1, 2,

whereas a satis�es (6) for an m ≥ 1, and ∂a(t, s)/∂t |t=s=0= 0. Then for any

f ∈ Cm+1 equation (1) has a unique solution u ∈ Cm, for su�ciently big n there

is a unique collocation solution un ∈ Pn, and with c independent of n, T and f ,

‖ u− un ‖C ≤ cTmn−m(1 + log n) ‖ u(m) ‖C .
Using an idea of [2] the method can be reorganised into a discrete version of

complexity O(n3) �ops and accuracy ‖ u−un ‖C ≤ cTmn−m+1(1 + log n)2 ‖ u ‖Cm.
Notice a high accuracy of methods if T is small.
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SPLINE COLLOCATION

Consider uniformly spaced grid points ih, i = 0, ..., N , h = T/N , splines (in

general discontinuous at ih, i = 1, ..., N − 1) of degree n − 1, n ≥ 1, and some

collocation (interpolation) parameters τ1, ..., τn, 0 ≤ τ1 < τ2 < ... < τn ≤ 1.

Introduce corresponding spline interpolation projector PN in a usual way.

1. Solving equation u + V −1ϕ Vϕ,bu = V −1ϕ f . It is easy to justify the spline

collocation method uN + PNV
−1
ϕ Vϕ,buN = PNV

−1
ϕ f since we may assume the com-

pactness of V −1ϕ Vϕ,b ∈ L(C). But numerical realisation of the method is usually

too complicated because of factor V −1ϕ . Neverteless, if V −1ϕ has a representation

V −1ϕ = Vψ(D?−βI) for a ψ ∈ L1(0, 1), where (D?u)(t) = (tu(t))′, (10)

then, with ψ in the hand, discrete versions of spline collocation are easily realisable;

moreover, (11) implies the compactness of V −1ϕ ∈ L(Cm+1, Cm). For instance, for

ϕ(x) = x−β(1 − xγ)−ν, β < 1, γ > 0, 0 < ν < 1, representation (10) holds with

ψ(x) = γ sin(πν)
π x−β+γ(1−ν)(1− xγ)ν−1.

A possibility to represent V −1ϕ in form (10) is an open problem, in general.
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2. Solving a second kind version of (1) free of V −1ϕ . Consider �rst the

case where (2)-(6) for r = 0 are accomplished by condition
´ 1
0 x | ϕ

′(x) | dx < ∞;

then a �nite limit limx→1 ϕ(x) := ϕ(1) > 0 exists. Applying D? − βI to both sides

of equation Vϕu + Vϕ,bu = f , rewrite (1) in an equivalent form

ϕ(1)u = Vψβu+Vψβ ,bu−Vϕ,b1u+(D?−βI)f (11)

with ψβ ≥ 0 introduced in (5) and b1(t, s) = t ∂b(t, s)/∂t. Operators Vψβ ,b and Vϕ,b1

are compact in C, operator Vψβ is noncompact. To the second kind cordial Volterra

integral equation (11) one can apply the results [3,4,7] about the convergence and

optimal convergence speed of spline collocation methods and their discrete versions,

as well as about the matrix form of those. We omit detailed reformulations (those

are quite straightforward) but we recall that a special �applicability condition� is

necessary. Namely, for the simpli�ed equation ϕ(1)u = Vψβu+f, the unique solvabil-

ity of the spline collocation system corresponding to �rst subintervals [ih, (i+ 1)h],

i = 1, ..., i0, must be either assumed or, if possible, established; here i0 is su�ciently

big but independent of N , see [3,4,7] for details.
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3. Case
´ 1
0 x | ϕ

′(x) | dx =∞. Assuming still (2)-(6) for r = 0, we propose to

approximate ϕ by ϕε de�ned in (9) and to solve the regularized equation Vϕε,au = f

equivalent to (cf. (11))

ϕε(1)u = Vψβ;εu + Vψβ;ε,bu − Vϕε,b1u + (D? − βI)f ; (12)

here ψβ;ε(x) := βϕε(x) + xϕ′ε(x). Note that ϕε inherits from ϕ properties (2)-(6),

r = 0, but
´ 1
0 x | ϕ

′
ε(x) | dx < ∞. Theorem 4 enables to control the error caused

by the approximation of ϕ by ϕε.

4. A hybrid polynomial/spline collocation method: on [0, T0] solve (1)

by polynomial collocation of degree n and continue on [T0, T ] by spline collocation

of degree m − 1 for equation (11) or (12). Taking T0 ∈ (0, T ) small, say, of order

0.1, a prescribed accuracy of polynomial collocation on [0, T0] can be achieved for a

relatively small n (see Theorem 7). For su�ciently small h, the applicability con-

dition of spline collocation on [T0, T ] is ful�lled. By this strategy one can overcome

the di�culties caused by the noncompactness of operators Vψβ and Vψβ;ε.
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