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Outline

• With primary emphasis on categorical data, my talk
presents cautions, questions, and challenges regarding:
(1) Wald inference (tests and CI’s) with binary responses
(2) Ordinary linear modeling of ordinal responses
(3) Behavior and choice of residuals for GLMs
(4) “Objective” Bayesian inference for high-dimensional data
(5) Modeling nonnegative responses
(6) GEE for marginal multinomial models

• Talk has style of tutorial/overview rather than new research,
but topics relevant (I hope!) in a conference on perspectives
about linear statistical inference.

• Motivation: These topics drew my interest while recently
writing a book,
Foundations of Linear and Generalized Linear Models
(to be published by Wiley 2015).
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(1) Wald inference with Large Effects for Binary Data

Infinite maximum likelihood (ML) β̂ in binary regression models
occur when complete separation occurs in the space of
explanatory variables (Albert and Anderson 1984).

Example: y = 1 at x = 1, 2, 3, and y = 0 at x = 4, 5, 6

1 2 3 4 5 6

x

y

0
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Infinite Logistic Regression Effects and R Output

--------------------------------------------------- ------------------

> x <- c(1,2,3,4,5,6); y <- c(1,1,1,0,0,0) # complete separa tion

> fit <- glm(y ˜ x, family = binomial(link = logit))

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 165.3 407521.4 0 1 # x estimate is

x -47.2 115264.4 0 1 # actually -infinity

Number of Fisher Scoring iterations: 25

> logLik(fit)

’log Lik.’ -1.107576e-10 (df=2) # maximized log-likelihoo d = 0

--------------------------------------------------- ------------------
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Large Effects: Wald Inference Can Perform Poorly

Wald methods:

• Test H0: β = 0 with z = β̂/(SE) (or z2 ∼ χ2, df = 1)

• Confidence interval (95%): β̂ ± 1.96(SE)

where SE is unrestricted ML estimate of standard error.

As |β| in a logistic regression model increases (for fixed n),
Fisher information decreases so quickly that SE grows faster
than β (Hauck and Donner 1977).

Example: y ∼ binomial(n, π) distribution, model logit(π) = β.
Test H0: β = 0 (i.e., π = 0.50).

β̂ = logit(π̂) with π̂ = y/n has asymptotic var. [nπ(1 − π)]−1.

Wald chi-squared: (β̂/SE)2 = [logit(π̂)]2[nπ̂(1 − π̂)].
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Large Effects: Wald Inference Can Perform Poorly

Suppose n = 25.

π̂ = 24
25 stronger evidence against H0: π = 0.50 than π̂ = 23

25 .

Wald statistic = 9.7 when π̂ = 24/25
Wald statistic = 11.0 when π̂ = 23/25.

For comparison, likelihood-ratio statistics are 26.3 and 20.7.

• Note: For large or infinite effects, likelihood-ratio (LR) tests
and LR test-based confidence intervals remain valid.

• With infinite ML estimates, can smooth data and produce
finite estimates using (1) Bayesian approach, (2) penalized
likelihood with aim of reducing bias (Firth, 1993), which
corresponds to Bayesian posterior mode with Jeffreys prior.

• Extensions of poor Wald behavior to other GLMs?
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ex. Poor Wald performance: CI for binomial parameter

Wald methods for categorical data perform poorly for
probabilities near 0 or 1

(for proportions, differences, odds ratio, relative risk).

e.g., for binomial(n, π), 95% Wald confidence interval for π is

π̂ ± 1.96
√

π̂(1 − π̂)/n.

Much worse than interval inverting score test of H0: π = π0 with
test statistic

z =
π̂ − π0√

π0(1 − π0)/n
,

or approximation to score CI that adds 2 ‘successes’ and 2
‘failures’ before forming Wald CI (Agresti and Coull 1998).
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ex. Coverage prob’s of Wald, “add 2+2” adjusted CI
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(2) Ordinal Data: Bias in Using Linear Model with OLS

With ordinal categorical responses,

e.g.,

patient quality of life (excellent, good, fair, poor)

pain (none, little, considerable, severe)

political philosophy (liberal, moderate, conservative)

many researchers (especially in social sciences) assign scores
to ordered categories and use ordinary regression methods,
estimating parameters using least squares.
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Ordinal Data: Bias in Using Linear Model with OLS

Example of bias: Floor effect

For ordinal y, it’s often realistic to assume underlying continuous
latent variable y∗.

Suppose
y∗ = 20.0 + 0.6x − 40z + ǫ

x ∼ uniform(0, 100), P (z = 0) = P (z = 1) = 0.50, ǫ ∼ N(0, 102).

For random sample of n = 100, suppose

y = 1 if y
∗ ≤ 20, y = 2 if 20 < y

∗ ≤ 40, y = 3 if 40 < y
∗ ≤ 60,

y = 4 if 60 < y
∗ ≤ 80, y = 5 if y

∗

> 80.
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Floor effect with ordinal data

Fit model y = α + β1x + β2z + β3(x · z) + ǫ

to investigate effects and possible interaction.

When x < 50 with z = 1, high P (y∗ ≤ 20) = P (y = 1).

Because of floor effect, slope of least squares line when z = 1
only half of when z = 0. Interaction is statistically and practically
significant.

Such spurious effects would not occur with a true ordinal model,
such as cumulative logit model

logit[P (y ≤ j)] = αj + β1x + β2z

or cumulative probit model (implied by ǫ ∼ N(0, σ2))

Φ−1[P (y ≤ j)] = αj + β1x + β2z.
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(3) Behavior of Residuals for GLM Fits

For a n × 1 vector y of response observations with µ = E(y),
V = var(y), consider a GLM

η = g(µ) = Xβ

for link function g, model matrix X with p explanatory variables.
Maximum likelihood (ML) fitted values µ̂.

“Ordinary linear model”: identity link µ = Xβ, and V = σ2I.

• Ordinary linear model exploits orthogonal decomposition

y = µ̂ + (y − µ̂) (i.e., data = fit + residual).

• With GLMs, µ̂ and (y − µ̂) are not orthogonal when depart
from identity link and constant variance.
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Correlation(GLM Fitted Values, Residuals) Approx. 0?

• Conventional wisdom: As n increases, (y − µ̂) becomes
asymptotically uncorrelated with µ̂.

• For large n, if (y − µ̂) approximately uncorrelated with µ̂,
then V ≈ var(µ̂) + var(y − µ̂), and

var(y − µ̂) ≈ V 1/2[I − H ]V 1/2,

where H is a generalized hat matrix,

H = W 1/2X(XT WX)−1XT W 1/2

incorporating a diagonal weight matrix

W = diag{(∂µi/∂ηi)
2/var(yi)}.
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Correlation(GLM Fitted Values, Residuals) Approx. 0?

• But why, and under what conditions, is (y − µ̂)
asymptotically uncorrelated with µ̂? And for
small-to-moderate n, is corr(y − µ̂, µ̂) close enough to 0
that we can ignore it?

• It seems we need to consider two types of asymptotics:
Traditional n → ∞, and alternative with n fixed and
asymptotics applying to individual components, such as
binomial indices and Poisson expected counts in
contingency table.

• For the alternative, (small-dispersion asymptotics,
Jørgensen 1987), individual yi asymptotically normal,
(y − µ) and (µ̂ − µ) jointly have asymptotic normal
distribution, as does their difference.
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Correlation(GLM Fitted Values, Residuals) Approx. 0?

• Lovison (2014): If (y − µ̂) and µ̂ were not approximately
uncorrelated, one could construct an asymptotically
unbiased and more efficient estimator of µ using
µ̂∗ = [µ̂ + L(y − µ̂)] for a matrix L. But this contradicts the
ML estimator µ̂ being asymptotically efficient.

• Argument is an asymptotic version for ML estimators of one
in Gauss–Markov Theorem that unbiased estimators other
than least squares estimator have difference from that
estimator that is uncorrelated with it.

• Lovison shows weighted version of adjusted responses that
has approximately constant variance has orthogonality of
fitted values and residuals. On original scale, such residual
is “Pearson residual” ei = (yi − µ̂i)/

√
v(µ̂i) for variance

function v.
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Pearson residuals vs. standardized residuals

For contingency tables, Pearson residual is popular, because of
decomposition of Pearson chi-squared (and corresponding
decomposition of deviance provides deviance residual).

e.g., for Poisson counts {yi},

X2 =
∑

i

(yi − µ̂i)
2

µ̂i
=

∑

i

e2
i with ei =

yi − µ̂i√
v(µ̂i)

=
yi − µ̂i√

µ̂i
.

Editorial comment: Preferable to use standardized residual

ri =
yi − µ̂i

std. error(yi − µ̂i)
=

yi − µ̂i√
v(µ̂i)(1 − ĥii)

=
ei√

1 − ĥii

for “leverage” ĥii from the estimated hat matrix Ĥ .
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Pearson residuals vs. standardized residuals

• For small dispersion asymptotics, ri (but not Pearson ei) is
asymptotically standard normal when model holds.

• Appropriately recognizes redundancies in data.
e.g., for independence model (Poisson or multinomial) for
2 × 2 table of counts {yij} with fitted values

{µ̂ij = npi+p+j} for pi+ = (
∑

j yij)/n, p+j = (
∑

i yij)/n,

eij =
yij − µ̂ij√

µ̂ij

, rij =
yij − µ̂ij√

µ̂ij(1 − pi+)(1 − p+j)
.

In 2×2 tables, df = 1 (all four |yij − µ̂ij | identical).
Yet, all four Pearson residuals can take different values.

r11 = −r12 = −r21 = r22 and any r2
ij = X2.
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(4) Bayesian methods in large dimensions

• For “objective Bayesian” approach, how to select prior
distributions when model has very large number of
parameters p?

• Even with very diffuse prior, estimated posterior effect may
depend strongly on choice of prior.

Example: multinomial data with p outcome categories, p >> n.

Let yi = (yi1, . . . , yip) = multinomial trial for observation i.
yij = 1 when outcome in category j, yij = 0 otherwise.

Then
∑

j yij = 1.

Let nj =
∑

i yij = total number of observations in category j.

Here, for simplicity, consider model without explanatory
variables, let πj = P (yij = 1).
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Bayesian methods for multinomial with large p

• Consider Dirichlet prior, proportional to
∏p

j=1 π
αj−1
j .

• Posterior density is Dirichlet with parameters {nj + αj},
posterior mean of πj is (nj + αj)/(n +

∑
k αk).

{αj = 1}, uniform prior distribution over probability simplex,
smooths toward equi-probability model.

Example: Suppose n = 100 but p = 1000. πj has
prior mean = 0.001,
posterior mean = (nj + 1)/(n + p) = (nj + 1)/1100.

When nj = 1, nj/n = 0.010, posterior mean = 0.0018,
shrinking sample proportion nj/n toward 0.001.

What if nj = 100, nj/n = 1.0? Posterior mean = 0.092.
Prior is diffuse but has very strong impact on results.
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Bayesian methods for multinomial with large p

Berger (2013): Prior should have marginal posteriors close to
posterior we’d obtain in single-parameter case.

e.g., aim for posterior of πj to be approximately beta dist. with
parameters nj + 1 and n − nj + 1, which we’d obtain with
uniform prior for binomial with parameter πj .

So, use Dirichlet hyperparameters {αj = 2/p} instead of
{αj = 1}, yielding posterior mean for πj of (nj + 2/p)/(n + 2).

Example: With n = 100 observations in p = 1000 cells, this is
0.0098 when nj = 1 and is 0.980 when nj = 100.

But suppose n = 2, of which nj = 1. Posterior mean = 0.25.
Shrink nj/n = 1/2 based on only n = 2 so little toward 0.001?
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(5) Models for Nonnegative y that Merit More Use

1. Continuous responses

When y ≥ 0, standard deviation of y often grows proportionally
to mean.

Why not use GLM assuming gamma distribution for response?

Alternative to log-normal model, with advantages:

• With log link, modeling log[E(y)] rather than E[log(y)].

• Sometimes identity link is adequate.

Example: Modeling house selling prices (thousands of dollars)
in terms of size of house (square feet) and whether new

LinStat, August 25, 2014 – p. 22/32



Scatterplot (× = new, o = not new)
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Some summaries of model fits

Standardized residuals for outlier:
Normal: no interaction −4.2, interaction −3.8
Gamma: no interaction −1.5, interaction −1.5

Cook’s distance for outlier:
Normal: no interaction 1.3, interaction 1.0
Gamma: no interaction 0.03, interaction 0.02

AIC values:
Normal: no interaction 1086.1, interaction 1079.9
Gamma: no interaction 1049.5, interaction 1047.9

Normal models have σ̂ ≈ 52 for all µ.

Gamma models have σ̂ ≈ 0.33µ̂
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Models for Nonnegative y that Merit More Use

Count responses:

• Poisson models usually fail, because of overdispersion
(v(µ) = µ, mode = integer part of µ).

• Negative binomial (NB) GLM gives much more flexibility
(v(µ) = µ + µ2/k, mode can be 0 for any µ).

• But count data are often zero-inflated :

Examples are counts of activities for which many subjects
necessarily report 0, such as number of times during some
period of going to gym, having an alcoholic drink, smoking
marijuana, having sexual intercourse.
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Zero-Inflated Models

• NB sometimes adequate for zero-inflation, but fits poorly
when data strongly bimodal.

• Zero-inflated Poisson (ZIP, Lambert 1992) and zero-inflated
negative binomial (ZINB) provide mixture of ordinary count
data with one that places all its mass at 0.

• ZIP often does not allow sufficient dispersion for count-data
component. ZINB gives considerable flexibility.

ZINB: Simultaneous logistic model for P (y = 0) and NB loglinear
model for mean response

Example: Modeling horseshoe crab counts at
www.stat.ufl.edu/~aa/cda/crabs.pdf

Challenge: Random effects in ZINB (Min and Agresti 2005) and
overall summaries of effects
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(6) Improved Marginal Modeling of Multinomial Data

Data: Each subject has cluster of correlated observations
yi = (yi1, yi2, . . . , yiT )T

(e.g., repeated measures or longitudinal data)

For each yit marginally, g(µit) = xT
itβ.

For discrete data, ML awkward because of lack of simple
multivariate dist. characterized by pairwise correlations.

For E(yi) = µi and var(yi) = Vi, can use estimates that are
solutions of generalized estimating equations (GEE),

n∑

i=1

DT
i V −1

i (yi − µi) = 0.

with Di = ∂µi/∂β.
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Generalized estimating equations (GEE) approach

The GEE provide multivariate generalization of quasi-likelihood
methods, generalizing likelihood equations for univariate
response without specifying full multivariate distribution.

Steps of GEE Methodology:

• Assume marginal model for each component of µi.
• In Vi, assume “working” correlation structure

(e.g., exchangeable, autoregressive) for yi.
• Estimate of β consistent even if correlation structure

misspecified (if marginal model correct).
• Method uses “empirical” robust estimates of std. errors that

are valid even if correlation structure misspecified, based on
“sandwich” covariance matrix.
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GEE for correlated multinomial observations

• GEE method originally specified (Liang and Zeger 1986) for
univariate yit (e.g., binomial, Poisson).

• Extensions exist for multinomial (mainly ordinal) models
with c > 2 response categories; e.g., Lipsitz et al. (1994).

Let yijt = 1 if subject i makes response j for observation t.
Then, for each pair (s, t) of times, choose working
corr(yijs, yikt), such as exchangeable (= ρjk all s, t).

• Touloumis, Agresti, and Kateri (2013): Certain correlation
patterns do not correspond to legitimate joint multinomial
distribution, especially with large c.

• More sensible to model covariance based on structure for
“local” odds ratios, for ordinal and nominal responses.
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Multinomial GEE using working local odds ratios

For any s < t, suppose marginal P (yias = 1, yibt = 1) has
expected frequencies

log µ
(st)
ab = λ(st) + λ(s)

a + λ
(t)
b + β(st)uaub

log

[
µ

(st)
ab µ

(st)
a+1,b+1

µ
(st)
a,b+1µ

(st)
a+1,b

]
= β(st)(ua+1 − ua)(ub+1 − ub).

• For ordinal response, {ua} are fixed, monotone scores.
e.g., with {ua = a}, common local log odds ratio = β(st).
Exchangeable structure uses same β(st) for each s, t.

• For nominal response, treat {ua} as parameters, and this
structure is special case of Goodman’s (1979) RC model.
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Implementing nominal / ordinal multinomial GEE

• Strong efficiency gains over independence working
structure for studies with strong correlation and time-varying
covariates.

• Touloumis (2013) has implemented ordinal and nominal
local odds ratio structures with multgee R package.

http://cran.r-project.org/web/packages/multgee/multgee.pdf

Has convergence problems much less often than existing R
multinomial GEE routines.

(In R, I’ve had varying success using ordgee, repolr for ordinal
data. Nominal data?)

See also recent review of software for GEE for ordinal data by
Noorae, Molenberghs, and van den Heuvel (CSDA, 2014).
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Thanks to LinStat scientific committee for the invitation.
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