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Classical Linear Model

Consider a classical linear model with observed response
variable y; and covariates x; = (X1, - - , Xjp,)’ as follows,

Vi=XiBp+e, 1<i<n,

where 8, = (81, , Bp,)’ is a pp-dimensional vector of the
unknown parameters, and ¢;’s are independent and identically
distributed with center 0 and variance o2.

Subscript nin p, indicates that the number of coefficients may
increase with the sample size n.

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem
Candidate Full Model Estimation

S. Ejaz Ahmed Big Data Analysis



Candidate Full Model Estimation
A Great Deal of Redundancy in the Candidate Full Model

Model Selection & Estimation Problem

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem
Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem
Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem
Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Subspace — Candidate Submodel

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem
Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Subspace — Candidate Submodel

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

We want to estimate 8 when it is plausible that 3 lie in the
subspace
HB =h

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

We want to estimate 8 when it is plausible that 3 lie in the
subspace
HB =h

@ Human Eye: Uncertain Prior Information (UPI)

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

We want to estimate 8 when it is plausible that 3 lie in the
subspace
HB =h

@ Human Eye: Uncertain Prior Information (UPI)
@ Machine Eye: Auxiliary Information (AE)

S. Ejaz Ahmed Big Data Analysis



Model Selection & Estimation Problem

We want to estimate 8 when it is plausible that 3 lie in the
subspace

HG =h

@ Human Eye: Uncertain Prior Information (UPI)
@ Machine Eye: Auxiliary Information (AE)

UPlor Al: HB=h

In many applications it is assumed that model is sparse, i.e.

B = (B, 8s), B2=0.
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Candidate Full Model Estimation

@ Maximum Likelihood
@ Least Square
@ Ridge regression Or any other

A Revealing Tale of Overfitted Model

@ Gauss offered two justifications for least squares: First,
what we now call the maximum likelihood argument in the
Gaussian error model. Second, the concept of risk and the
start of what we now call the Gauss-Markov theorem.

@ Stein’s 1956 paper revealed that neither maximum
likelihood estimators nor unbiased estimators have
desirable risk functions when the dimension of the
parameter space is not small.
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Candidate Submodel Estimation

/éSM — BFM o (XIX)—1 H/(H(Xlx)—1H/)—1 (H,éFM o h)

A Unrevealing Tale of Underfitted Model

Submodel Estimators are BIASED!!!

An interesting application of the restriction is that 8 can be
partitioned as 8 = (8, 85)’, if model is sparse, then 3, =0
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Sparsity is the Name of the Game? Really!

Unbearable Truth about Submodel Estimation

E(B1) = B1 — (X{X1) "X} X22.
Clearly 34 is a biased estimator.

@ unless the regression coefficients corresponding to deleted
variables (3.) are zero

@ or the retained variables are orthogonal to the deleted
variables, XX, = 0

@ Submodel estimates have smaller MSE than Full model
estimates when the deleted regression variables have
regression coefficients that are smaller than the standard
errors of their estimates in full model.

@ A naive data analyst may not comprehend that by dropping
X> from the model,S/he risk letting X>3» covertly influence
the estimation and testing of 3.
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HOW TO CONTROL BIAS

Pretest Estimation Strategy

The pretest estimator (PTE) of 3 based on 3™ and 3 is
defined as

BT =M — (8™ — B I(Th <xf,0), P22 1,

I(A) is an indicator function of a set A and xf,w is the a-level

critical value of the distribution of T, under Hy.
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HOW TO CONTROL BIAS

~ ~ ~

BS =B+ (1-(p-2)T, ") (B - B), P23,
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HOW TO CONTROL BIAS

~

B =AM+ (1-(p-2)T,") (B - %), p2=3,

Possible over-shrinking problem is defined as

B =M+ (1- (o - 2)T, ") (B — g,

where z* = max(0, z).
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Executive Summary

@ Bancroft (1944) suggested two problems on preliminary
test strategy.

e Data pooling problem based on a pretest. This stream
followed by a host of researchers.

e Model misspecification problem in linear regression model
based on a pretest.

@ Stein (1956, 1961) developed highly efficient shrinkage
estimators in balanced designs. Most statisticians have
ignored these (perhaps due to lack of understanding)

@ Modern regularization estimation strategies based on
penalized least squares with penalties extend Stein’s
procedures powerfully.
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Big Data Analysis — High Dimensional Estimation

Problem

Penalty Estimation Strategy

@ The penalty estimators are members of the penalized least
squares (PLS) family and they are obtained by optimizing a
quadratic function subject to a penalty.

@ A popular version of the PLS is given by Tikhonov (1963)
regularization.

@ A generalized version of penalty estimator is the bridge
regression (Frank and Friedman,1993).
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Big Data Analysis

Penalty Estimation Strategy

@ For a given penalty function 7(-) and regularization
parameter A, the general form of the objective function can
be written as

o(B) = (y — XB)"(y — XB) + A (B),
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Big Data Analysis

Penalty Estimation Strategy

@ For a given penalty function 7(-) and regularization
parameter A, the general form of the objective function can
be written as

o(B) = (y — XB)"(y — XB) + A (B),

@ Penalty function is of the form

p
©(B8)=>_ 18", v>0. (1)

=1
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Big Data Analysis

Penalty Estimation Strategy

For v = 2, we have ridge estimates which are obtained by
minimizing the penalized residual sum of squares

P 2 P
B9 = arg min ||y — X3l + A IBIP, 2
j=1 j=1
A is the tuning parameter which controls the amount of
shrinkage and || - || = || - ||2 is the L, norm.

S. Ejaz Ahmed Big Data Analysis



Big Data Analysis

Penalty Estimation Strategy

S. Ejaz Ahmed Big Data Analysis



Big Data Analysis

Penalty Estimation Strategy

@ For ~ < 2, it shrinks the coefficient towards zero, and
depending on the value of ), it sets some of the
coefficients to exactly zero.

S. Ejaz Ahmed Big Data Analysis



Big Data Analysis

Penalty Estimation Strategy

@ For ~ < 2, it shrinks the coefficient towards zero, and
depending on the value of ), it sets some of the
coefficients to exactly zero.

@ The procedure combines variable selection and shrinking
of the coefficients of a penalized regression.

S. Ejaz Ahmed Big Data Analysis



Big Data Analysis

Penalty Estimation Strategy

@ For ~ < 2, it shrinks the coefficient towards zero, and
depending on the value of ), it sets some of the
coefficients to exactly zero.

@ The procedure combines variable selection and shrinking
of the coefficients of a penalized regression.

@ An important member of the penalized least squares family
is the L1 penalized least squares estimator, which is
obtained when v = 1.

S. Ejaz Ahmed Big Data Analysis



Big Data Analysis

Penalty Estimation Strategy

@ For ~ < 2, it shrinks the coefficient towards zero, and
depending on the value of ), it sets some of the
coefficients to exactly zero.

@ The procedure combines variable selection and shrinking
of the coefficients of a penalized regression.

@ An important member of the penalized least squares family
is the L1 penalized least squares estimator, which is
obtained when v = 1.

@ This is known as the Least Absolute Shrinkage and
Selection Operator (LASSO): Tibshirani(1996)
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Big Data Analysis
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Big Data Analysis
Penalty Estimation Strategy

@ LASSO is closely related to the ridge regression and its
solutions are similarly obtained by replacing the squared
penalty || 3|2 in the ridge solution (3) with the absolute
penalty ||5;]|1 in the LASSO-

BLASSO _ arg mﬂin

p 2 p
Y=Y X8| +AD 1Bl ()
j=1 j=1

Good Strategy if Model is Truly Sparse
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Penalty Estimation Family Ever Growing!!

Adaptive LASSO (aLASSO)
Elastic Net Penalty
Minimax Concave Penalty (MCP)
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Innate Difficulties: Can Signals be Septated from

Noise?

@ All penalty estimators may not provide an estimator with
both estimation consistency and variable selection
consistency simultaneously.

@ aLASSO, SCAD, and MCP are Oracle (asymptoticaly).

@ Asymptotic properties are based on assumptions on both
true model and designed covariates.

@ Sparsity in the model (most coefficients are exactly 0), few
are not

@ Nonzero coefficients are big enough to to be separated
from zero ones.
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Innate Difficulties: Ultrahigh Dimensional Features

@ In genetic micro-array studies, nis measured in hundreds,
the number of features p per sample can exceed millions!!!

@ 22,500 unique proteins, implies about 253,000,000
possible protein-protein interactions. So far 42,000 are
identified.

@ penalty estimators may not be efficient when the dimension
p becomes extremely large compared with sample size n.

@ There are still challenging problems when p grows at a
non-polynomial rate with n.

@ Non-polynomial dimensionality poses substantial
computational challenges.

@ The developments in the arena of penalty estimation is still
infancy.
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Can Noise be Septated from Signals?

Pretest and Shrinkage Strategies are Useful in this Situation

Extension and Comparison with non-penalty Estimators

@ Ahmed et al. (2008, 2009) for partially linear models.

@ Fallahpour, Ahmed and Doksum (2010) and Ahmed and
Fallahpour (2014)for partially linear models with Random
Coefficient autoregressive Errors.

@ Ahmed and Fallahpour (2012) for Quasi-likelihood models.

@ Ahmed et al. (2012) for Weibull censored regression
models.
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Penalty Estimation

Extension and Comparison with non-penalty Estimators

@ S. E. Ahmed (2014). Penalty, Pretest and Shrinkage
Estimation: Variable Selection and Estimation. Springer.
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Penalty Estimation

Extension and Comparison with non-penalty Estimators

@ S. E. Ahmed (2014). Penalty, Pretest and Shrinkage
Estimation: Variable Selection and Estimation. Springer.

@ S. E. Ahmed (Editor). Perspectives on Big Data Analysis:
Methodologies and Applications. To be published by
Contemporary Mathematics, a co-publication of American
Mathematical Society and CRM, 2014.
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Shrinkage Estimation for Big Data

@ The classical shrinkage estimation methods are limited to
fixed p.

@ The asymptotic results depend heavily on a maximum
likelihood full estimation with component-wise consistency
at rate of \/n.

@ When p, > n, a component-wise consistent estimator of
Bn is not available since 3, is not identifiable.

@ Here 3, is not identifiable in the sense that there always
exist two different estimations of 3,, ﬁ,g) and ﬁf,z), such
that xjﬂ,(f) = x§ﬁ§,2) for1 <i<n.
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Shrinkage Estimation for Big Data

@ we write the p,—dimensional coefficients vector
Bn = ( . @én)’,, where 31, is the coefficient vector for
main covariates, 3», include all nuisance parameters.

@ Sub-vectors 31, 825, have dimensions py,, Pon,
respectively, where p;, < nand pi, + pon = Pn.

@ Let Xy, and Xo, be the sub-matrices of X, corresponding
to B1, and 3o, respectively.

@ Let us assume true parameter vector

Bo = (Bot,- -+ +Bop,) = (B0, Bao)'-
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Shrinkage Estimator for High Dimensional Data

@ Let Sig and Sy represent the corresponding index sets for
B10 and B3oq, respectively.

@ Specifically, S;g includes important predictors and S»q
includes sparse and weak signals satisfying the following
assumption.

(A0) |Boj| = O(n=*), for Vj € Sp, where ¢ > 1/2 does not
change with n.

@ Condition (A0) is considered to be the sparsity of the
model. A simpler representation for the finite sample is that
Boj = 0 Vj € Spo, that is, most coefficients are 0 exactly.
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Shrinkage Estimator for High Dimensional Data

A Class of Submodels

@ Predictors indexed by S;q are used to construct a
submodel.

@ However, other predictors, especially ones in Syo may also
make some contributions to the response and cannot be
ignored.

Consider
UPI or AI . (5’20), = 0p2n.
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A Candidate Submodel Estimator

We make the following assumptions on the random error and
design matrix of the true model:

(A1) The random error ¢;’s are independent and identically
distributed with mean 0 and variance 0 < 02 < co. Further,
E(€e") < oo, for an even integer m not depending on n.

(A2) pip > 0, for all n, the smallest eigenvalue of C12,

Under (A1-A2) and UPI/AE, the submodel estimator (SME) of
B1n is defined as

Afry = (X/1 nX1 n)_1 X/1 nY-
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A Candidate Full Model Estimator

Weighted Ridge Estimation

We estimate an estimator of 3, by minimizing a partial
penalized objective function,

B(rn) = argmin{||y — X1,81n — X2n/32nH2 + rnHﬁZnHz}

where “|| - ||” is the ¢> norm and r, > 0 is a tuning parameter.
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Weighted Ridge Estimation

Since p, >> n and under the sparsity assumption
Define

apn=cn"* 0<w<1/2 ¢ >0.

We define a weighted ridge estimator of 3, is denoted as

JUR 31V (1)
(rn,an) = <ﬁ Alr. a n)>, where

B ( n) = /31n(rn)

and for j ¢ Sy,

P - { Jr0 Ao

0, otherwise.
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Weighted Ridge Estimation

o We call B(r,,, anp) as a weighted ridge estimator from two
aspects.

@ We use a weighted ridge instead of ridge penalty for the
HD shrinkage estimation strategy since we do not want to
generate some additional biases caused by an additional
penalty on 3¢, if we already have a candidate subset
model.

e Here 81YA(r,) changes with r, and B¥/A(r,, an) changes
with both r, and aj.

@ For the notation’s convenienceA, we denote the weighted
ridge estimators as SR and BYVF.
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A Candidate HD Shrinkage Estimator

A HD shrinkage estimators (HD-SE) 35 is
Bin = BI7 — (h=2)T, (81 - BT,
h > 2 is the number of nonzero elements in B/~

To = (BYVRY (XM X2)B0R /52, (4)
M =1,- X1n(X/1nX1n)71X/1n

@ 52 is a consistent estimator of o2.

@ For example, we can choose
62 =X, (yvi — xi8°M)2/(n — 1) under UPI or Al.
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A Candidate HD Positive Shrinkage Estimator

A HD positive shrinkage estimator (HD-PSE),
BISE = Bi = ((h—2)T, (BT - B3,

where (a); =1 and afor a > 1 and a < 1, respectively.
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Consistency and Asymptotic Normality

Weighted Ridge Estimation

Let s2 = o2d/, 3, 'd, for any p12, x 1 vector d,, satisfying
[dnll < 1.

n
n'2sy dy (B4R — Brao) = 128,y e Sy "2+ 0p(1)
i=1

dAN(0,1).
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Asymptotic Distributional Risk

Define

31 = limp o X/1 nX1n/n7 Yoo = liMmp00 X/anZI’l/na
32 = limp o0 X/1 nXZn/na 321 = limp o0 Xénxm/n,
oot = liMpyee 17 1X5, Xon — X5, X1n(X , X1n) ™' X] ,X2n
Snt12 = liMpyee 171X Xen — X] , Xon(X5,X2n) =1 X5, X115
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Asymptotic Distributional Risk (ADR)

Kn:Bo=n""28 and PBao=0p,,
8= (61,02, 0p,,) € WP, 6, s fixed.

@ Define A, = 6/2,722‘1(5,

o n'/2d} s; (8%, — Bio) is asymptotically normal under
{Kn}, where 82, = o2d; )21 d,.

@ The asymptotic distributional risk (ADR) of d} .37, is

ADR(d,,81,) = lim E{[n"/2s;d} (87, — Br0)I*}.
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Asymptotic Distributional Risk

Under regularity conditions and K, and suppose there exists

0 < ¢ < 1suchthat c = IlmrHOO s;2d), =1 dq,, we have
ADR( in 1n )_1 (53-)
ADR(d},35)) =1 (1 = ¢)(1 - Ag,,), (5b)

ADR(d},85,) = 1 — E[gi (22 + )], (5¢)
ADR(d},,875) = 1 — E[g2(22 + 6)], (5d)

d) (2,1 201200 1 2, dip
d; (2;1112n122;21212n212;111)d1n.
Syrds,zo — N(0,1)
dop = S =, dis
S5n = Ao, % ;55 1 d2n

S. Ejaz Ahmed Big Data Analysis

Ad1n =



Asymptotic Distributional Risk

— / ,
g1(x) = lim (1 —-c¢) Pan — 2 o_ X'((p2n + 2)d2pd5, )x |
n—oo X' o0 1X sgnx/2n22.1 X

G() = limye P72 (1 - ¢) <2 _ X((Pen + 2)d2nd’2n)X>]

X' Y22 1X 82, X' S0 1X
(X' 221X > pop — 2)
+1liMps00[(2 — 852X 82n85,X)(1 — ) I(X' S a2 1X < P2n — 2)
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Moral of the Story
By Ignoring the Bias, it will Not go away!

@ Submodel estimator provided by some existing variable
selection techniques when p, > n are subject to BIAS.

@ The prediction performance can be improved by the
shrinkage strategy.

@ Particulary when an under-fitted submodel is selected by
an aggressive penalty parameter.
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Moral of the Story
By Ignoring the Bias, it will Not go away!

@ When p > n, we assume the true model is sparse in the
sense that most coefficients goes to 0 when n — oc.

@ However, it is realistic to assume that some 3; may be
small, but not exactly 0.

@ Such predictors with small amount of influence on the
response variable are often ignored incorrectly in HD
variable selection methods.

@ We borrow (re-gain) some information from those
predictors using the shrinkage strategy to improve the
prediction performance.
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Engineering Proof: Simulation

@ In all experiments, ¢;’s are simulated from i.i.d standard
normal random variables, Xis = (£))* + &fis), Where &g,
and 5(2,3), i=1,---,n,s=1,--- ppare also independent
copies of standard normal distribution.

@ In all sampling experiments, we let p, = n“ for different
sample size n, where « changes from 1 to 1.8 with an

increment of 0.2. The HD-PSE is computed for r, = p},/8
and a, = 0.1n~1/3,
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Simulation Results
Engineering Proof

@ The performance of an estimator of 3 will be appraised
using the mean squared error (MSE) criterion.

@ All computations were conducted using the R statistical
software.

@ We have numerically calculated the relative MSE of the
estimators with respect to 37 by simulation.

@ The simulated relative efficiency (SRI%) of the estimator 3°
to the maximum likelihood estimator 3™ is denoted by
5 MSE(3YF)
FM . qoy __
SRE(B™ : B°) = MSE(F)
@ A SRE larger than one ingicates the degree of superiority

of the estimator 3° over 3WA.
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Simulation Results

Engineering Proof

Relative Performance

@ We let 810 = (1.5, 3,2)’ be fixed for every design.
@ Let A* = ||B2 — 0]|? varying between 0 and 4.

@ We choose n = 30 or 100.
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Table: Simulated RMSEs

S. Ejaz Ahmed ig Data Analysis



(n7 p) A* SM PSE (n p) A* SM PSE

1in in in in

0.00 16.654 4.101 0.00 8.953 5.385

0.05 8.202 3.446 0.05 4.456 3.794

0.20 2855 2.610 0.20 1.551 3.216

0.25 2.074 2.437 0.25 1.422 2.833

0.30 1.857 2.180 0.30 1.091 2.459

(30,30) 0.35 1.643 1.949 (30,59) 0.35 0.986 2.447
0.80 0.649 1.506 0.80 0.542 1.601

250 0232 1.160 250 0.234 1.171

3.30 0.170 1.095 3.30 0.210 1.108

0.00 12.672 4.260 0.00 5546 5.388

0.05 2546 3.538 0.05 1.255 1.900

0.10 1.129 3.256 0.15 0.441 1.322

0.20 0.628 2.948 0.20 0.361 1.382

0.25 0.481 3.366 0.25 0.316 1.358

(100,158) 0.40 0.311 2272 (100,398) 0.40 0.198 1.543
140 0.110 1.500 1.40 0.096 1.826

3.10 0.066 1.181 3.10 0.079 1.304

3.50 0.060 1.217 3.50 0.075 1.297
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Figure: The top three panels (a-c) are for n = 30 and p, = 30,59, 117 from the left
to the right. The bottom panels (d-f) are for n = 100 and p, = 158,251, 398 from the
left to the right. Solid curves: RMSE(B5M); Dashed curves: RMSE(B{5F).
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Shrinkage Versus Penalty Estimators

@ Performance of HD-PSE relative to penalty estimators including
Lasso, ALasso, SCAD, MCP and Threshold Ridge (TR).

@ Welet By =(1.5,3,2,0.1,--- ,0.1), Boo = 0;02,7.
—_———
pin—3

@ The model includes some predictors with weak signals. We
consider n = 30 and p;, = 3,4, 10, 20.

@ We choose a= 3.7 and v = 3 for SCAD and MCP, respectively.

@ For TR, we choose a, = csn~'/3 and A = ¢;(loglog n)®/a2,
where ¢ and ¢7 are two tuning parameters.

@ All tuning parameters are chosen using the generalized cross
validation.
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ASM APSE ASCAD AMCP AALasso ALasso ATR
P1_ Pn 1in in in in 131n 131n in

3 30 23.420 8.740 14.486 14.247 11.399 3.130 1.097
59 9.900 6.951 7.588 7.499 6.244 1.257 0.015
231 4.292 4.291 2568 2622 2714 0.166 0.003
456 3.977 3977 1739 1576 2.059 0.099 0.002

4 30 15.055 6.882 11.809 11.291 9.528 2.830 0.993
59 6.954 4933 5260 5204 4469 0.966 0.019
231 3.605 3.605 2222 2.154 2.045 0.167 0.004
456 3.184 3.184 1648 1.436 1.703 0.102 0.003

10 30 7528 4526 1232 1.469 2.391 1.497 1.001
59 3.809 3.534 0.493 0.538 0.746 0.321 0.032
231 2212 2212 0.104 0.083 0.117 0.034 0.005
456 1.997 1997 0.052 0.032 0.050 0.017 0.003

20 30 4603 3.139 0.099 0.128 0.892 0.599 0.981
59 2231 2194 0.016 0.018 0.067 0.031 0.013
231 1.489 1.489 0.002 0.002 0.003 0.002 0.002
456 1.392 1.392  0.001 0.001 0.002 0.001 0.001
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Threshold Ridge Regression

A Threshold ridge (TR) for 1 < j < p, of j; is given by (Shao and
Deng (2008))

ATR _ gj; |§/| > @n,
/ 07 |B]| S al’h

where

i=1

2
n Pn Pn
B, = arg mﬂin Z (y,- - x,-,ﬂ,-) + AZ@,?
j j=1 j=1

anda,=cn“forO<w<1/2and c> 0.
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Shrinkage Versus Penalty Estimators
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Shrinkage Versus Penalty Estimators

@ The submodgl estimator dominates all other estimators in the
class, since 3™ is computed based on the true submodel.
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Shrinkage Versus Penalty Estimators

@ The submodgl estimator dominates all other estimators in the
class, since 3™ is computed based on the true submodel.

@ SCAD and MCP work better than the HD-PSE for smaller py,.
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@ The submodgl estimator dominates all other estimators in the
class, since 3™ is computed based on the true submodel.
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@ HD-PSE performs better than penalty estimators for larger py,.

@ Penalty estimators are even less efficient than the weighted
ridge estimate.
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Shrinkage Versus Penalty Estimators

@ The submodgl estimator dominates all other estimators in the
class, since 3™ is computed based on the true submodel.

@ SCAD and MCP work better than the HD-PSE for smaller py,.
@ HD-PSE performs better than penalty estimators for larger py,.

@ Penalty estimators are even less efficient than the weighted
ridge estimate.

@ This phenomenon can be explained by the existence of
predictors with weak effects, which cannot be separated from
zero effects using Lasso-type methods.
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Shrinkage Versus Penalty Estimators

@ The submodgl estimator dominates all other estimators in the
class, since 3™ is computed based on the true submodel.

@ SCAD and MCP work better than the HD-PSE for smaller py,.
@ HD-PSE performs better than penalty estimators for larger py,.

@ Penalty estimators are even less efficient than the weighted
ridge estimate.

@ This phenomenon can be explained by the existence of
predictors with weak effects, which cannot be separated from
zero effects using Lasso-type methods.

@ The predictors are designed to be correlated, the weighted ridge
estimator can generate a better estimation at the starting point.
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Microarray Data Example

@ We apply the proposed HD-PSE strategy to the data set
reported in Scheetz et al. (2006) and also analyzed by Huang,
Ma and Zhang (2008).

@ In this dataset, 120 twelve-week-old male offsprings of F1
animals were selected for tissue harvesting from the eyes for
microarray analysis.

@ The microarrays used to analyze the RNA from the eyes of these
F2 animals contain over 31, 042 different probe sets (Affymetric
GeneChip Rat Genome 230 2.0 Array).
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Microarray Data Example

@ Huang, Ma and Zhang (2008) studied a total of 18,976 probes
including gene TRIM32, which was recently found to cause
Bardet-Biedl syndrome (Chiang et al. (2006)), a genetically
heterogeneous disease of multiple organ systems including the
retina.

@ A regression analysis was conducted to find the probes among
the remaining 18,975 probes that are most related to TRIM32
(Probe ID: 1389163_at). Huang et al (2008) found 19 and 24
probes based on Lasso and adaptive Lasso methods,
respectively.

@ We compute HD-PSEs based on two different candidate subset
models consisting of 24 and 19 probes selected from Lasso and
adaptive Lasso, respectively.
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Microarray Data Example

@ In the largest full set model, we consider at most 1,000 probes
with the largest variances. Other smaller full set model with top
Pn probes are also considered.

@ Here we choose different p,’s between 200 and 1, 000.

@ The relative prediction error (RPE) of the estimator 3; relative to
weighted ridge estimator 3% is computed as follows

S lly = Ses XaBYRIP
S lly = Yje s XaB5712

where 7 is the index of the submodel including either 24 or 19
elements.

RPE(3) =
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@ We generalized the classical Stein’s shrinkage estimation to a
high-dimensional sparse model with some predictors with weak
signals.

@ When p, grows with n quickly, it is reasonable to suspect that
most predictors do not contribute, that is model is sparse.

@ We proposed a HD shrinkage estimation strategy by shrinking a
weighted ridge estimator in the direction of a candidate
submodel.
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@ Existing penalized regularization approaches have some
advantages of generating a parsimony sparse model, but tends
to ignore the possible small contributions from some predictors.

@ Lasso-type methods provide estimation and prediction only
based on the selected candidate submodel, which is often
inefficient with the existence of mild or weak signals.

@ Our proposed HD shrinkage strategy takes into account possible
contributions of all other possible nuisance parameters and has
dominant prediction performances over submodel estimates
generated from Lasso-type methods, which depend strongly on
the sparsity assumption of the true model.
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Is Classical Shrinkage Estimation Dead?
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Long Live L, Shrinkage!
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Is Classical Shrinkage Estimation Dead?

Long Live L, Shrinkage!
Long Live L, Shrinkage!
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World’s Data is Growing Exponentially!

@ How to Acquire, Manage, Process, Analyze and Make Sense of
Big Data?

@ Big data is the future of Science and Trans-disciplinary research
in Statistical Sciences is a must.

@ "Think of big data as an epic wave gathering now, starting to
crest," says the Harvard Business Review. "If you want to catch
it, you need people who can surf"

@ By 2015 there will be 4.4 M jobs available globally for Big Data
analysis.

@ Are we training "Wave Jockeys"?
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World’s Data is Growing Exponentially!

@ A greater collaboration between statisticians, computer
scientists and social scientists (Facebook clicks, Netflix queues,
and GPS data, a few to mention, 12 billions devices are
connected to internet).

@ Data is never neutral and unbiased, we must pull expertise
across a host of fields to combat the biases in the estimation.

@ Need to be careful with algorithmic based predictions. For
example, protein interaction prediction.

@ "The purpose of computing is insight, not numbers." R.W.
Hamming, 1962.

@ "Big Data can’t tell us why easily — it can only tell us the what,
but most often that’s enough." Mayer-Schonberger, CBC Radio.
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Clash of Cultures
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Clash of Cultures

@ Study classical problems - Classical assumptions
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Clash of Cultures

@ Study classical problems - Classical assumptions

@ Exact/Analytic Solutions
@ Low-dimensional Data Analysis
@ Work Alone or in Small Teams

@ Gilory of the Individual
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Clash of Cultures
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Clash of Cultures

@ Complex Problems, Approximate Solutions
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Clash of Cultures

World is Changing

@ Complex Problems, Approximate Solutions
@ Visualizing Complex Data - Use of Technology
@ High-Dimensional Statistical Inference

@ Think Tanks - Trans-disciplinary Research
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Clash of Cultures

@ Complex Problems, Approximate Solutions

@ Visualizing Complex Data - Use of Technology
@ High-Dimensional Statistical Inference
@ Think Tanks - Trans-disciplinary Research

@ Gilory of the Research Team
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Thanks a bundle!

Thank you and thanks to organizers!
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