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Introduction

I Clinical trials are often designed to evaluate two treatments in
the presence of covariates (prognostic factors).

I Design problem: proportional allocation to treatments when the
variances of response to the two treatments are different.

I If the focus is the treatment difference and there are no
covariates, unequal (Neyman) allocation minimizes the variance
of the estimated treatment difference.

I Contrariwise, if estimation of both treatment effects (rather than
the difference) is the aim, equal allocation is optimum, however
unequal the variances.

I However, surprisingly, these results no longer hold if the effects
of the covariates are also of interest.



Personalised Medicine

I In the design of clinical trials often randomize over covariates,
leading to a similar structure of the covariates for the treatments.

I In sequential trials restricted randomization can avoid selection
bias. Here only consider trials in which all patients are recruited
before the trial starts.

I Randomization assumes effect of prognostic factors is not itself
of interest; the parameters for the effects of the covariates are
ignored.

I In personalized medicine imperative to estimate not only the
treatment effects but also the effects of the covariates, so that
the appropriate treatment can be chosen for each patient.



The Model

I The two-treatment model with covariates for observation i is

yi = βT f (xi) + σδεi = α1δi + α2(1− δi) +
k∑

j=1

γjxij + σδiεi.

I The treatment indicator δi is one if treatment 1 is allocated and is zero
otherwise.

I The heterogeneity of variance is modelled by σ2
δ with:

σ2
δ =

{
σ2

1 (δi = 1)
σ2

2 (δi = 0).

I The errors εi are independent with a standard normal distribution
N (0, 1).

I As well as the treatment effect αj, the response depends linearly on the
values of k covariates x1, . . . , xk. There is no constant term in the model.
The total number of parameters to be estimated is p = k + 2.



Models and D-optimality

I In the regression model
E Y = Fβ,

F is an n× p matrix of known constants which may include powers and products
of the k covariates x. The ith row of f is f T (xi). The additive normal errors for
observation i have variance σ2

i . With

Σ = diag σ2
i

the (weighted) least squares estimate of β is

β̂ = (FT Σ−1F)−1FT Σ−1y,

with information matrix FT Σ−1F and covariance matrix (FT Σ−1F)−1.
I The volume of the confidence region for all p parameters is inversely proportional

to the square root of the determinant |FT Σ−1F|. Designs which maximize this
determinant are called D-optimum; they minimize the generalized variance of β̂.



Continuous and Exact Designs

I It is helpful to avoid dependence of the design on n.
I Continuous designs are represented by the measure ξ over the design region X .

If the design has trials at n distinct points in X ,

ξ =

{
x1 x2 . . . xn
w1 w2 . . . wn

}
.

I The information matrix for the continuous design ξ with the heteroskedastic
model

M(ξ) =
t∑

i=1

wif (xi)f T(xi)/σ
2
i .

I The standardized variance of the predicted response for continuous designs is

d(x, ξ) = f T(x)M−1(ξ)f (x)/σ2
i .

I The D-optimality of a proposed optimum continuous design can be checked
using the General Equivalence Theorem relating maximization of log |M(ξ)|, or
equivalently |M(ξ)|, to properties of d(x, ξ).

I Let the maximum over X of d(x, ξ) be d̄(ξ) and suppose ξ∗ maximizes
log |M(ξ)|. Then d̄(ξ∗) = p, the dimension of β.



Background to the Design

I With constant error variance σ2, the optimum design does not
depend on the value of σ2

I With two variances, the optimum design depends on the ratio
τ = σ2

2/σ
2
1 . Without loss of generality we take σ2

1 = 1. Assume τ
known.

I The designs put weight w on treatment 1 and weight 1− w on
treatment 2.

ξ =

{
T1 T2
w 1− w

}
.

I There is a symmetry between optimum designs for τ and those
calculated for the ratio σ2

1/σ
2
2 = 1/τ. If w∗ is the optimum weight

for τ , the optimum weight for 1/τ is 1− w∗.



The Information Matrix
I Proceed by assuming that a particular class of designs is optimum, and then

show that it satisfies the equivalence theorem for a much wider class, and so is
optimum in that class too.

I The optimum design does not depend on the scaling of the k linear factors. Take
the design region X as the cube for which −1 ≤ xj ≤ 1, (j = 1, . . . , k).

I Assume (test this) the optimum design for the k linear factors is a 2k factorial at
the points ±1, with complete factorials at both treatment levels. (Interactions?)

I Calculation of the information matrix for the design requires

n∑
i=1

x2
ij/σ

2
i = w + (1− w)/τ (j = 1, . . . , k).

I For the general design putting weight w on the trials of the 2k factorial for
treatment 1, the information matrix is

M(ξ) =


w 0 0 · · · 0
0 (1− w)/τ 0 · · · 0
0 0 w + (1− w)/τ · · · 0
...

...
...

. . .
...

0 0 0 · · · w + (1− w)/τ

 .



No or One Covariate

I The diagonal information matrix has determinant

|M(ξ)| = w(1− w)[{w + (1− w)/τ}k]/τ

= w(1− w)[{1 + w(τ − 1)}k]/τ k+1,

which is to be maximized as a function of w. The term in τ k+1 does not affect the
optimum value of w.

I 1. Find optimum weight w∗.
2. Prove it is optimum not just for 2k factorial

I No covariate: k = 0. |M(ξ)| ∝ w(1− w), so that the optimum value w∗ = 1/2,
even though the variances are unequal. X

I One covariate: k = 1. Find w to maximize

h = w(1− w)(wτ + 1− w),

so that w∗ =
(2− τ)−

√
(1− τ + τ 2)

3(1− τ)
.

Initial check: w∗ = 0.5 when τ = 1 (L’Hôpital’s rule).



One Covariate: Optimality

I Limits. Rearranging the derivative of h

(3w∗ − 1)(w∗ − 1)− τw∗(3w∗ − 2) = 0.

As τ → 0,w∗ → 1/3. As τ →∞, w∗ → 2/3.
I Symmetric in τ and 1/τ . Much less extreme than Neyman allocation (no

covariate), when the limits of w∗ are 0 and 1.
I Check Optimality. Use Equivalence Theorem.

M−1(ξ) = diag
(

1
w

τ

1− w
τ

1 + w(τ − 1)

)
.

I The check of optimality requires d̄(ξ), the maximum of d(x, ξ), over the whole of
the design region X . We consider separately the allocations of treatments 1 and
2.



One Covariate: Equivalence Theorem
I Treatment 1. For treatment 1, Var(y) = 1 and

f (x) = (1 0 x)T ,

d1(x, ξ) =
1
w

+
τx2

1 + w(τ − 1)
.

A maximum for x = ±1, so it is only necessary to check at these points. For the
optimum design the value of d̄1(ξ∗) will be 3. Need to verify that

1
w∗

+
τ

1 + w∗(τ − 1)
=

2τw∗ + (1− w∗)

w∗{τw∗ + (1− w∗)}
= 3,

which follows by simplification from expression for w∗.
I Treatment 2. For treatment 2, Var(y) = τ and

f (x) = (0 1 x)T ,

Divide by τ to allow for heterogeneity:

d2(x, ξ) =
1

1− w
+

x2

1 + w(τ − 1)
,

again a maximum at x = ±1. Similar arguments show the maximum value,
d̄2(ξ∗) = 3. Thus the design is indeed D-optimum over X .



Several Covariates

I The arguments are similar
I With k covariates the D-optimum design now maximizes the information matrix

h = w(1− w)(wτ + 1− w)k}.

Differentiation and putting the derivative equal to zero yields a polynomial of
degree k + 1 to be solved for the optimum weight. It is easiest directly to
maximize h numerically.

I Limits. Rearranging the derivative in terms including and excluding τ

[{(k + 2)w− 1}(w− 1)− τw{(2 + k)w− (k + 1)}](τw + 1− w)k−1 = 0.

As τ → 0, the equation becomes {(k + 2)w− 1}(1− w)k = 0. So the limiting
value of w∗ is 1/(k + 2). Likewise, for large τ the dominant equality becomes
(2 + k)w− (k + 1) = 0, so that w∗ = (k + 1)/(k + 2). Again, the weights for τ
and 1/τ sum to one.

I The designs for extreme τ become less balanced as the number of covariates k
increases.



Several Covariates: Optimality

I Generalization of the arguments for k = 1 shows that the optimum design for k
factors is of the 2k factorial form. Namely:

I treatment 1.
f (x) = (1 0 x1 . . . xk)T ,

At the factorial points (the maximum),

d1(x, ξ) =
1
w

+
kτ

1 + w(τ − 1)
.

I Setting this value of d̄1(ξ), i.e. d̄1(w∗), equal to the value of k + 2 for the optimum
design, yields the quadratic

w∗(w∗ − 1)(k + 2)(1− τ)− w∗(1 + τ) + 1 = 0.

I Similar result when allocating treatment 2.
I Solving this equation also yields the value of w∗, more easily than numerical

maximization.



Numerical

Variance Number of variables k
ratio τ 1 2 3 5 7 10

0 0.3333 0.25 0.2 0.1429 0.1111 0.0833
0.2 0.3681 0.2873 0.2347 0.1712 0.1346 0.1018
0.4 0.4046 0.3333 0.2812 0.2124 0.1700 0.1305
0.6 0.4402 0.3876 0.3432 0.2756 0.2284 0.1808
0.8 0.4725 0.4458 0.4202 0.3735 0.3333 0.2843
1 0.5 0.5 0.5 0.5 0.5 0.5

1.25 0.5275 0.5542 0.5798 0.6265 0.6667 0.7157
1.667 0.5598 0.6124 0.6568 0.7244 0.7716 0.8192

2.5 0.5954 0.6667 0.7188 0.7876 0.8300 0.8695
5 0.6319 0.7127 0.7653 0.8288 0.8654 0.8982
∞ 0.6667 0.75 0.8 0.8571 0.8889 0.9167

Weights w∗ on treatment 1 for D-optimum designs as a function of τ and k: first and

last lines, limiting weights as τ → 0 and 1. For all k, the weights are 0.5 for τ = 1. For

fixed k, reading down each column gives a symmetrical sigmoid curve which becomes

increasingly steep around τ = 1 as k increases. The values of τ in the lower half of the

table are the reciprocals of those in the upper half, so that, working out from τ = 1, the

weights for τ and 1− τ sum to one.



Nuisance Parameters

I Using optimum design theory when only the α are of interest, the γ beng
nuisance parameters.

yi = βT f (xi) + σδεi = α1δi + α2(1− δi) +
k∑

j=1

γjxij + σδiεi.

I Generalized D- or DA-optimality is useful when only some linear combinations of
the parameters are of interest. A particular case is Ds-optimality, when the linear
combinations pick out subsets of parameters.

I Let A be a p× s matrix of known constants, with s < p. Then the DA-optimum
design minimizes the generalized variance |AT M−1(ξ)A|. For s = 1 we obtain the
p× 1 vector a and the scalar variance aT M−1(ξ)a is minimized.



Neyman Allocation Again
I With the vector a = (1 − 1 0 . . . 0)T , the design minimizes Var(α̂1 − α̂2).
I From the information matrix the design therefore minimizes

aT M−1(ξ)a = 1/w + τ/(1− w).

Differentiation and setting the derivative to zero yields

w∗ = 1/(
√
τ + 1) = σ1/(σ1 + σ2),

the Neyman solution, since τ = σ2
2/σ

2
1 .

I For the optimum design for the two treatment parameters individually

A =

(
1 0 0 . . . 0
0 1 0 . . . 0

)T

,

when the quantity to be minimized is

|AT M−1(ξ)A| =

∣∣∣∣ 1/w 0
0 τ/1− w

∣∣∣∣ =
τ

w(1− w)
,

so that w∗ = 1/2, regardless of the value of τ . (See Fedorov).



Estimation of τ

I D-optimum designs for homoskedastic regression do not depend on the
value of σ2 (although power will).

I The heteroskedastic designs here do depend on the value of τ .

I The value of τ can be estimated from a sequential experiment.
I For each n estimate σ2

j from patients who have received treatment j using
unweighted least squares. (So obtain j sets of estimates of the parameters
α and γ).

I Hence obtain an estimate of τ .
I Use this estimate to construct Σ and so obtain one set of parameter

estimates and then in the sequential design.

I Is this the best procedure? Could iterate the estimation of τ .


