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What is experimental design?

• Optimal design of experiments is an approach to constructing
efficient experimental designs using a statistically motivated
optimality criterion

• The experiment arranged by the optimal design can save your
time, money or material

• Applications are in agriculture, industry, medical and genetic
research and many other areas

LinStat 2014 Alena Bachratá Comenius University



Optimal design of experiments Resource constraints Algorithm Applications Literatúra

What is experimental design?

Exact experimental design

ξ ∈ {0, 1, 2 . . . }n

ξ = [ξ(x1), ξ(x2), . . . , ξ(xn)]
T .

ξ(xi ) - the number of replicated trails in the design point xi ∈ X

X - a finite design space X = {x1, . . . , xn}

Approximate experimental design

ξ ∈ [0,∞)n.
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A measure of the quality of designs

Optimality criterion

φ : [0,∞)n → [0,∞).

We estimate unknown parameters of an underlying statistical
model, and the value φ(ξ) is a measure of the information about
the parameters of interest obtained from the experiment ξ.

For example, we can use D, E or A optimality criterion that
maximizes the determinant, the minimum eigenvalue or minimizes a
trace of an inverse of the Fisher information matrix, respectively.

Monotonicity

Augmentation of an experiment by additional trials cannot decrease
its quality for statistical inference, i.e., if designs ξ and ζ satisfy
ξ ≤ ζ componentwise, then φ(ξ) ≤ φ(ζ).
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Resource constraints

Standard constraint on design

ξ(x1) + ...+ ξ(xn) ≤ N.

General resource constraints
n∑

i=1

ar (xi )ξ(xi ) ≤ br , r ∈ {1, . . . , k},

ar (xi ) - the consumption of the r -th resource by a single trail in xi

ξ(xi ) - the number of trails in xi

br - a limit on the r -th resource

LinStat 2014 Alena Bachratá Comenius University



Optimal design of experiments Resource constraints Algorithm Applications Literatúra

Resource constraints

General resource constraints

n∑

i=1

ar (xi )ξ(xi ) ≤ br , r ∈ {1, . . . , k}.

Assumptions

• b1, ..., bk > 0

• ar (xi ) ≥ 0 for all r ∈ {1, . . . , k} and i ∈ {1, . . . , n}

• for all i ∈ {1, . . . , n} there exists r ∈ {1, . . . , k} such that
ar (xi ) > 0

Matrix form
Aξ ≤ b.
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Resource constraints
General resource constraints

n∑

i=1

ar (xi )ξ(xi ) ≤ br , r ∈ {1, . . . , k}.

Examples

• The total number of all trials

ξ(x1) + ...+ ξ(xn) ≤ N, a1(xi ) = 1, b1 = N

• The number of trials in design point xi , i ∈ {1, 2, . . . , n}

ξ(xi ) ≤ Ni , a2(xi ) = 1, a2(xj) = 0 for j 6= i , b2 = Ni

• The total cost of the experiment

a3(xi ) = cost(xi ) for all i ∈ {1, 2, . . . , n}, b3 = budget
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Initial design and set of all feasible designs

Initial design ξ(0) can be ξ(0)(x1) = . . . = ξ(0)(xn) = 0, or it can be
formed by the observations from a previous experiment.

The set of all feasible exact designs

Ξex = {ξ ∈ Z
n
+ : ξ(0) ≤ ξ,Aξ ≤ b}.

The set of all feasible approximate designs

Ξap = {ξ ∈ [0,∞)n : ξ(0) ≤ ξ, Aξ ≤ b}.

Maximal design ξM ∈ Ξex is a design that can not be augmented
without violation of some of the resource constraints.
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The main purpose

The general resource-constrained exact optimal design

ξ∗ ∈ arg max{φ(ξ) : ξ ∈ Ξex},

Ξex = {ξ ∈ Z
n
+ : ξ(0) ≤ ξ,Aξ ≤ b}.

We can write and solve also many problems from other
mathematical areas, in the form of the general problem

• knapsack problem

• t-optimal graphs in the graph theory

• optimal redundancy allocation in the reliability theory
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Example - Marine engineer

Inspired by Design of Comparative Experiments, R. A. Bailey, p.41, ex.2.2

A marine engineer wants to protect underwater metal components
against corrosion. His colleague has developed a new paint for that.
The engineer would like to estimate the degree of protection with
one coat and with two coats of paint.

He will paint some components once, some twice. Then immerse
them all in the tank of sea water. Later he will remove all of them,
and measure the amount of corrosion of each.

The tank has room only for 10 components. The paint is new, and
there is enough for 14 coats.

Advise the engineer how best to use his resources in his experiment.
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x - two2

x - one coat1

= {x ,x } = {one coat, two coats} - design1 2 ξ

coats
ξ(x )=01

ξ(x )=02

ξ
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x - two2

x - one coat1

= {x ,x } = {one coat, two coats} - design1 2 ξ

coats
ξ(x )=11

ξ(x )=02

ξ
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x - two2

x - one coat1

= {x ,x } = {one coat, two coats} - design1 2 ξ

coats
ξ(x )=21

ξ(x )=02

ξ
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x - two2

x - one coat1

= {x ,x } = {one coat, two coats} - design1 2 ξ

coats
ξ(x )=31

ξ(x )=02

ξ
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x - two2

x - one coat1

= {x ,x } = {one coat, two coats} - design1 2 ξ

coats
ξ(x )=41

ξ(x )=02

ξ
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x - two2

x - one coat1

= {x ,x } = {one coat, two coats} - design1 2 ξ

coats
ξ(x )=41

ξ(x )=12

ξ
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x - two2

x - one coat1

= {x ,x } = {one coat, two coats} - design1 2 ξ

coats
ξ(x )=41

ξ(x )=22

ξ
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x - two2

x - one coat1

= {x ,x } = {one coat, two coats} - design1 2 ξ

coats
ξ(x )=41

ξ(x )=32

ξ
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x2

x1

ζ ξ(x )= (x )1 1

ζ ξ(x )= (x )+12 2

Monotonicity: ( ) ( )Φ Φ≤ξ ζ

ξ

ζ
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x2

x1

Resource constraints a (x ) (x )+ br 1 1 rξ a (x ) (x )r 2 2ξ ≤

ξ
(0)
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x2

x1

ξ(x )+1 ξ(x ) 102 ≤

Resource constraints a (x ) (x )+ br 1 1 rξ a (x ) (x )r 2 2ξ ≤

ξ
(0)
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x2

x1

ξ(x )+1 ξ(x ) 102 ≤

Resource constraints a (x ) (x )+ br 1 1 rξ a (x ) (x )r 2 2ξ ≤

ξ
(0)

ξ(x )+2*1 ξ(x ) 142 ≤
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x2

x1

Initial design ξ
(0)

ξ
(0)
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x2

x1

ξ
(0)

Ξ ξ
ex

= { {0,1,2,...} : ≤ ≤
n

ξ ξ, ξ }
(0)

A b
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Ξ ξ
ap

= { [ , )0 : ≤ ≤∞
n

ξ ξ, ξ }
(0)

A b

x2

x1

ξ
(0)
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Maximal designs in view of monotonicityξ
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Known algorithms

ξ∗ ∈ arg max{φ(ξ) : ξ ∈ Ξex}

Small-size problems can be solved by using enumeration methods
(e.g. branch and bound). That guarantees finding a globally
optimal solution.

Large problems can’t be solved by an algorithm that can find a
provably optimal solution. We can use only a heuristic that leads to
an efficient feasible experimental design.

For the standard constraint, there exist several methods – exchange
algorithms, the Detmax algorithm (Mitchell 1974), rounding of
approximate designs, etc.

For general resource constraints, there is no universal method. Only
some methods for computing optimal designs under particular types
of constraints.
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Algorithm

The algorithm is based on excursions in the set of all feasible
designs Ξex.

Forward step

ζ = ξ + ei = (ξ(x1), . . . , ξ(xi ) + 1, . . . , ξ(xn))

Upper neighbours

U(ξ) = {ξ + e1, ..., ξ + en} ∩ Ξex

ξ ζ
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Algorithm

The algorithm is based on excursions in the set of all feasible
designs Ξex.

Backward step

ζ = ξ − ei = (ξ(x1), . . . , ξ(xi )− 1, . . . , ξ(xn))

Lower neighbours

L(ξ) = {ξ − e1, ..., ξ − en} ∩ Ξex

ξζ
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Attribute and the local heuristic evaluation of ξ

Attribute of the design – attr(ξ)

It assigns different values to substantially different designs and the
same value to essentially same designs. We choose attr(ξ) = Φ(ξ)
rounded to a given number of significant digits.

Tabu list T

The list of attributes of already visited designs. Instead of storing
complete designs we store only real-valued attributes and save time
and computer memory.

Local heuristic evaluation of the design – val(ξ)

A real number that roughly estimates how promising is ξ as a part
of an excursion leading to an efficient design.
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Local heuristic evaluation of ξ – val(ξ)

Let
val∗(ξ) = max{φ(ζ) : ζ ∈ Ξex, ξ ≤ ζ}

be an ideal evaluation leading to optimal design. We estimate
val∗(ξ) by a “max. approximate design” accessible from the design
ξ.

For every i ∈ {1, . . . , n}, let di (ξ) = max{d ≥ 0 : ξ + dei ∈ Ξex}.
The estimate of the direction towards “large” feasible designs is

d(ξ) = (d1(ξ), ..., dn(ξ))
T .

Let γ(ξ) = max{γ ≥ 0 : ξ + γd(ξ) ∈ Ξap}. Then the largest
feasible approximate design in the direction d(ξ) is ξ + γ(ξ)d(ξ).

The value
val(ξ) = φ(ξ + γ(ξ)d(ξ))

gives us a rough estimate of val∗(ξ).
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Algorithm
1-a. Let ξ be the current design. If attr(ξ) /∈ T ⇒ make a forward

step to a design ζ which is chosen such that it maximizes val

among all designs satisfying attr(ζ) /∈ T .

1-b. If attr(ξ) ∈ T ⇒ make a backward step to a design ζ which is
chosen such that it maximizes val among all designs satisfying
attr(ζ) /∈ T .

2. If we attempt a step, but there is no allowed design, then we
reverse the direction of the search. If all these attempts fail,
then we move to a random neighboring design.

3. Each time a maximal design is visited, the algorithm checks
whether it is better than the best design ξ∗ found so far.

4. After too many backward steps the excursion failed. We start
a new excursion from the currently best design.

5. The algorithm stops after given time.
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Application

We tested the algorithm on three different designs problems:

Designs for a block model with a constraint on the number of
blocks and on the number of uses of individual treatments

Designs for a quadratic model with simultaneous marginal and
cost constraints
Harman, R., Filová, L. (2014): Computing efficient exact designs of

experiments using integer quadratic programming.

Designs for a non-linear regression model with simultaneous
direct and cost constraints
Wright SE, Sigal BM, Bailer AJ (2010): Workweek Optimization of

Experimental Designs: Exact Designs for Variable Sampling Costs
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Design for a block model a)

Consider a block model with N blocks of size two and v treatments.
Assume that the independent observations Y1, ...,YN satisfy

E (Yj) = τ(t1( j ))− τ(t2( j )), j ∈ {1, . . . ,N}.

Where t1( j ) and t2( j ) are the treatments selected for the j-th
block, with effects τ(t1( j )) and τ(t2( j )). Var(Yj) = σ2 < ∞.

An experimental design is given by a selection of treatments
t1( j ), t2( j ) ∈ {1, . . . , v} to be used in the j-th block.

The design space can be viewed as the set of all possible pairs of
treatments

X = {(1, 2), (1, 3), . . . , (v − 1, v)}, |X| = n.
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Design for a block model

Only restriction is not to exceed the given number N of blocks

ξ(x1) + ...+ ξ(xn) ≤ N.

We have implemented our algorithm in the environment R and used
it to compute D-efficient designs for v = 16 treatments and
N = 15, . . . , 120 blocks.

We compared the designs with the results of a simulated annealing
method implemented in R package “smida”.

We run both algorithms for 2 minutes. In most cases our heuristic
found either the same or better designs than simulated annealing.
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Design for a block model
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N - number of blocks
eff - D-efficiencies relative to the best found exact design
Our algorithm – blue circles, Simulated annealing – red crosses
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Design for a block model b)

To illustrate the possibilities of our algorithm that go beyond the
scope of the “smida” package, assume that we have no explicit limit
on the number N of blocks, but upper limits on the numbers of
uses of treatment samples.

Assume that 5 treatments can be used at most 4 times, another 5
treatments at most 5 times, another 5 treatments at most 6 times
and one standard treatment at most 56 times. That creates k = 16
resource constraints.

We run algorithm ten times, each for 120 seconds.
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Design for a block model

The algorithm produces the design with N = 65 blocks that consists
of 20 blocks and of another 45 blocks that compare each of the
first 15 treatments three times against the standard treatment 16.

+

To our best knowledge, there is no optimal design heuristic capable
of solving this type of constraints.
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Conclusions

Resource constraints

• cover many types of practical experimental constraints

• lead to a set of exact designs with relatively nice properties

Algorithm

• works for any monotonic optimality criterion

• computes efficient solutions for problems under diverse
resource constraints
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