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Introduction

Introduction

When a model has mean vector µ = Xβ, with X an incidence matrix, its
observations vector can be partitioned into sub-models whose components
have identical mean values. These will be the partitioned models.
We introduce a necessary and sufficient balance condition for partitioned
mixed models to have Ordinary Least Squares Estimators, OLSE, for β
that are Uniformly Best Unbiased Estimators, UBLUE, i.e., Best Linear
Unbiased Estimators, BLUE, whatever the variance components.
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Introduction

Introduction

This condition is derived, from an extension of the identification of OLSE
and Gauss-Markov Estimators, GME, in models with variance-covariance
matrix V(σ2) = σ2M, when certain conditions hold.
The approach between this extension also leads to least squares like
estimators of the variance components.
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Introduction

Introduction
We also consider special models to illustrate the applications range of the
balance condition:

Stair nesting

Balanced cross-nesting

both class of models with OBS, having variance-covariance matrices that
are all linear combinations, with non-negative coefficients, of known
orthogonal projection matrices that are pairwise orthogonal, that add up to
In.
These models were introduced by Nelder, and play an important role in the
theory of randomized block designs, see Caliński & Kageyama (2000, 2003).
We also present a third model for which the balance condition holds but
without OBS. This last example may be considered as a counter-example
to the assumption that all models for which the balance condition holds are
OBS.
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Framework and Balance

Framework

We will put y ∼ (Xβ, σ2M) to indicate that vector y has mean vector Xβ
and variance-covariance matrix σ2M. For those models the equality of the
OLSE

β̃ =
(
X>X

)−1
X>y

and GME
β̂ =

(
X>M−1X

)−1
X>M−1y

has been studied as well as related subjects, by e.g., Kuskal (1968),
Puntanen & Styan (1989), Krämer et al. (1996), Jaeger & Krämer (1998),
Gotu (2001), Isotalo & Puntanen (2009) and Baksalary et al. (2013).
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Framework and Balance

Framework
In this study, the Kruskal condition

R(VX) ⊆ R(X),

with R(L) the range space for matrix L, plays a central part. Since the
GME are, for the models, BLUE, the question under study may be
rephrased as obtaining conditions for the OLSE being BLUE. This new
formulation may also be considered for models with more than one variance
component, namely for models, y ∼

(
Xβ; V(σ2)

)
, with

variance-covariance matrices

V(σ2) =
w∑
i=1

σ2i Mi

with σ2i ≥ 0 and Mi = XiX>i , i = 1, . . . ,w .
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Framework and Balance

Framework

Besides the Kruskal condition we will consider the commutativity condition,
in which T, the orthogonal projection matrix on R(X), commutes with V.
This condition was considered by Zyskind (1967) and Zmyślony (1980).
Taking σ2 = σ2

0 for a model y ∼
(
Xβ; V

(
σ2
0
))
, both conditions are

necessary and sufficient for β̃ to be BLUE, thus they will be equivalent.
Then

R
(
V
(
σ2
0
))
⊆ R(X)

if and only if
V
(
σ2
0
)
T = TV

(
σ2
0
)
.
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Framework and Balance

Framework

Proposition 1

The following statements for models y ∼
(
Xβ; V

(
σ2)), σ2i ≥ 0, i =

1, . . . ,w , are equivalent:

(a) whatever σ2 ≥ 0, R
(
V
(
σ2
)
X
)
⊆ R(X);

(b) whatever σ2 ≥ 0, V
(
σ2
)
T = TV

(
σ2
)
;

(c) β̃ is UBLUE.
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Framework and Balance

Balance
Let X be a n × k incidence matrix. Since the reordering matrices are
orthogonal and β̃ is invariant for orthogonal transformation

◦
y = Py, with

P orthogonal, we can assume that the observations are grouped according
to mean values in to sub-vectors wit r1 . . . rk components. Thus, with
D(· · · ) indicating a blockwise diagonal matrices, we will have
X = D(1r1 · · ·1rk ), and

T = D
(
1
r1

Jr1 · · ·
1
rk

Jrk

)
,

where Jr = 1r1>r .
Let δi have all w components null but the i-th which is 1, then
V(δi ) = Mi , i = 1, . . . ,w , and so (a) holds whatever σ2i ≥ 0,
i = 1, . . . ,w , if and only if

R (MiX) ⊆ RX, i = 1, . . . ,w .
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Framework and Balance

Balance
Taking

Mi =

 Mi ,1,1 · · · Mi ,1,k
...

...
Mi ,k,1 · · · Mi ,k,k

 i = 1, . . . ,w ,

where Mi ,`,h is r` × rh, ` = 1, . . . , k , h = 1, . . . , k , i = 1, . . . ,w . It is now
easy to see that (a) holds if and only if

Mi ,`,h1rh =
ti,`,h
r`

1r`

1r`Mi ,`,h = (Mi ,h,`1r`)> =
ti,h,`
rh

1>rh =
ti,h,`
rh

1>rh
with ti ,`,h the sum of the elements of Mi ,`,h, ` = 1, . . . , k , h = 1, . . . , k ,
i = 1, . . . ,w .
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Framework and Balance

Balance

Mean Driven Balance

Since the partition of matrices Mi is carried out according to the mean
values, the previous expressions convey a Mean Driven Balance.

Proposition 2

Models y ∼
(
Xβ; V(σ2)

)
, with X = D (1r1 · · ·1rk ), have OLSE which

are UBLUE if and only if they enjoy MDB.
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Framework and Balance

Balance

Let us now assume that we had not grouped the observations according to
their mean values and take C1, . . . ,Ck to be the sets of indexes of
observations with identical mean values.
Then Mi ,`,h will be the sub-matrix of Mi obtained selecting the elements
with row and column indexes belonging to C` and Ch respectively.
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Framework and Balance

Balance

We now consider a stronger version of MDB for which we establish the
following proposition.

Proposition 3

The model has MDB whatever the sets C1, . . . ,Ck if, with Mi = [mi ,t,d ]

we have mi ,t,t =
◦
mi , t = 1, . . . , n and mi ,t,d = τi

◦
mi , t 6= d , i =

1, . . . ,w .
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Estimation

Variance components

With
◦
T = In −T the orthogonal projection matrix on the orthogonal

complement Ω⊥ of Ω,
◦
y =

◦
Ty will have the variance-covariance matrix

V
(
σ2) =

w∑
i=1

σ2i
◦
Mi

with

◦
Mi =

◦
TMi

◦
T =


◦
mi ,1,1 · · · ◦

mi ,1,n
...

...
◦
mi ,n,1 · · · ◦

mi ,n,n

 i = 1, . . . , n.
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Estimation

Variance components

Now the vector of principal elements of V
(
σ2) will be σ2, with

B =


◦
m1,1,1 · · · ◦

mw ,1,1
...

...
◦
m1,n,n · · · ◦

mw ,n,n

 .
The principal elements are the variance of the components

◦
y1 · · ·

◦
yn, of

◦
y,

and, since they have null mean value, the mean values of their squares
z1, . . . , zn. We thus get the OLSE like estimator

σ̃2 =
(
B>B

)−1
BZ.
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Estimation

Variance components
If y and, consequently,

◦
y are normal, the variance-covariance matriz for Z

will be, see Schott (1997),

VZ
(
σ2) = 2


Var

(◦
y1

)2
· · · Cov

(◦
y1,

◦
yn

)2
...

...

Cov
(◦
yn,

◦
y1

)2
· · · Var

(◦
yn

)2
 .

Thus we can apply the GLSE approach starting with σ̃2
0 = σ̃2 and

successively complete the

σ̃2
u+1 =

(
B>VZ

(
σ̃2
u

)
B
)−1

B>VZ

(
σ̃2
u

)−1
Z

till
∥∥∥σ̃2

u+1 − σ̃2
u

∥∥∥ is sufficiently null.
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Special cases

Stair nesting
In models with stair nesting a first fixed effects factor, with w levels, nests
in succession k random effects factor.

fixed effects factor

1st random effects factor

2nd random effects factor

3rd random effects factor

Figure: Stair nesting
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Special cases

Stair nesting
This model can be written as

y = Xβ +
k∑

i=1

Xiβi ,

with β fixed and the β1, . . . ,βk independent, with null mean vectors and
variance-covariance matrices σ21Ic1 , . . . , σ

2
kIck . Moreover, we will have

X = D (1r1 · · ·1rk )

Xi = D
(
Ir1 · · · Iri ,1ri+1 · · ·1aw

)
i = 1, . . . ,w − 1

Xw = D (Ir1 · · · Irw ) = In

where n =
w∑
i=1

ai is the number of observations.
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Special cases

Stair nesting
From the expression of X above, we can see that the observations are
grouped according to mean values. We also see that βi has

ci =
i∑

h=1

rh+w+i i = 1, . . . ,w

components, and that the mean vector and variance-covariance of y are
µ = Xβ

V
(
σ2) =

r∑
i=1

σ2i Mi

with 
Mi = D

(
Ir1 · · · Iri ,Jri+1 · · ·Jrw

)
i = 1, . . . , k − 1

Mw = D (Ir1 , · · · , Irw ) = In.
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Special cases

Stair nesting

It is now straightforward to see that the condition for MDB holds since

Mi =

 Mi ,1,1 · · · Mi ,1,k
...

...
Mi ,k,1 · · · Mi ,k,k

 i = 1, . . . , k

with Mi ,`,` = Ir` , ` = 1, . . . , i , Mi ,`,` = Jr` , ` = i + 1, . . . ,w , and
M`,h = 0r`×r` , ` 6= h. Thus we have established the following proposition.

Proposition 4

Stair nesting designs enjoy MDB, so their OLSE are UBLUE.
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Special cases

Balanced cross-nesting

Let there be u factors with b1, . . . , bu levels that cross and only one
observation for each of the

n =
u∏

j=1

bj

treatments. The first v factors are the ones with fixed effects and the
factor levels will be j` = 1, . . . , b`, ` = 1, . . . u.
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Special cases

Balanced cross-nesting
So the treatments and the observations can be ordered according to the
indexes

i(j) =
k−1∑
`=1

(j` − 1)
u∏

h=`+1

bh + ju,

so the densities will be grouped into

k =
v∏

`=1

b`

sub-vectors each with

r =
u∏

`=v+1

b`

observations with identical mean values.
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Special cases

Balanced cross-nesting

The parameters of this model correspond to the subsets C of
u = {1, . . . , u}. To C = ∅ is associated the general mean value µ = β(∅).
If #(C ) = 1 [> 1], β(C ) will be constituted by the level effects
[interactions between levels] of the factor or factors with indexes in C .
These sets and corresponding parameters may be ordered according to the
indexes

k(C ) = 1 +
∑
`∈C

2`−1,

these associated to the fixed [random] effects part having indexes
h = 1, . . . , 2v [h = 2v + 1, . . . , 2u].
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Special cases

Balanced cross-nesting

Moreover, see Fonseca et al. (2003), the model may be written as

y =
2u∑
h=1

Xhβh

with

Xh =
u⊗

`=1

Xh,` h = 1, . . . , 2u

where ⊗ represents the Kronecker matrix product and Xh,` = 1b` [Ibh ]
when ` /∈ Ch [` ∈ Ch], ` = 1, . . . u, h = 1, . . . , 2u.
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Special cases

Balanced cross-nesting

If the βh, h = 2v + 1, . . . , 2u, are independent, with null mean vectors and
variance-covariance matrices σ2hIch , h = 2v + 1, . . . , 2u, we have

V
(
σ2) =

2u∑
h=2v+1

σ2hMh,

where

Mh =
u⊗

`=1

Mh,`, h = 1, . . . , 2u,

with Mh,` = Jb` [Ib` ] when ` /∈ Ch [` ∈ Ch], ` = 1, . . . , u, h = 1, . . . , 2u.
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Special cases

Balanced cross-nesting
Taking

u⊗
`=1

Mh,` =

 mh,1,1 · · · mh,1,k
...

...
mh,k,1 · · · mh,k,k

 h = 1, . . . , 2u,

we have

Mh =

 mh,1,1Wh · · · mh,1,kWh
...

...
mh,k,1Wh · · · mh,k,kWh

 h = 1, . . . , 2u

with

Wh =
u⊗

`=v+1

Mh,` h = 1, . . . , 2u.
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Special cases

Balanced cross-nesting

We now have the following proposition

Proposition 4

The balanced cross nesting enjoys MDB.
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Special cases

On OBS

Now, see Mexia et al. (2010), a model

y = Xβ +
w∑
i=1

Xiβi

with β fixed and the β1, . . . ,βw independent with null mean vectors and
variance-covariance matrices σ21Ic1 , . . . , σ

2
wIcw , has OBS if

R ([X1 · · ·Xm]) = Rn

and the matrices Mi = XiX>i , i = 1, . . . ,w , commute.
It is now easy to see that the models for stair nesting and balanced cross
nesting enjoy OBS.

29 / 36
MDB and UBLUE

N



Special cases

On OBS
To show that a model may have MDB without having OBS, we take, with

X =

[
1r1 0r1

0r2 1r2

]
; Xi =

[
Xi ,1 0
0 Xi ,2

]
i = 1, 2

X3 =

[
Ir1 0
0 Ir2

]
,

where the sub matrices 0 are null.
Assuming β to be fixed and the β1,β2 and β3 to be independent with null
mean vectors and variance-covariance matrices σ21Ic1 , σ

2
2Ic2 and σ23Ic3 , if,

with Mi ,` = Xi ,`M>
i ,`, ` = 1, 2, i = 1, 2,

Mi ,`1r` = ti ,`1r` ` = 1, 2; i = 1, 2, 3,

the model will have MDB.
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Special cases

On OBS

But, if M1,1 and M2,2 do not commute, M1 and M2 don’t commute and
the model does not have OBS. For instance, taking

X1,1 =

 1 1
0 1
1 0

 ; X2,1 =

 0 1
1 1
1 1

 ,
matrices M1,1 and M2,1 do not commute.
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A final result

A final result
We established the equivalence of the Kruskal condition

R (VX) ⊆ R(X)

and the Zyskind & Zmyślony commutativity condition

VT = TV

using the fact that both were necessary and sufficient for the OLSE of
models y ∼

(
Xβ;σ2V

)
being Uniformly Minimum Variance Unbiased

Estimator, UMVUE.

Proposition 6

We have R(VX) ⊆ R(X) if and only if VT = TV.
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