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Multivariate linear regression

Yi=a+BX;+¢, i=1,...,n

Y € R": multivariate response

X e RP:
m Response reduction: non-stochastic predictors centered at 0
m Predictor reduction: stochastic

m ¢ € R": normal errors, mean 0 and covariance X > 0
m « € R": unknown intercept

m 3 € R™*P: unknown coefficients

m Goal: estimate 3, prediction.

MLE B of B is obtained by doing r univariate linear regressions,
one for each response.
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REGIEIS

Rationale for envelopes

Envelopes arise by parameterizing the MLM in terms of the
smallest subspace &€ C IR” so that (P¢ = projection onto &,

Qs =1-P¢)

Q:Y[X ~ QY
PeY I QeY|X

This implies that the impact of X on Y is concentrated in P¢ Y.
We refer to P¢ Y and Q¢ Y informality as the material and
immaterial parts of Y.
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REGIEIS

The conditions Q¢ Y | X ~ Qe Yand PeY 1L Q¢ Y | X hold if and
only if

span(f) C &
> = PgZPg + QgZQg.

m € envelops B := span(f).
m ¢ is a reducing subspace of .

m Formally, the intersection of all subspaces € with these
properties is called the Z-envelope of B and represented as
Ex(B) withu = dim(Ex(B)).

m Let the columns of the semi-orthogonal matrices I' € R"™**
and Ty € R ") be bases for &5 (B) and 8%(3).

Then B =Tn. £ =TQrI + yQul'Y, where Q > 0 and
Q, > 0.
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Rationale

The envelope model becomes
Y=oa+TnX+e IZ=TQI+ QY.

Estimation via maximum likelihood with u determined by AIC,
BIC, likelihood ratio testing, cross validation or a holdout
sample.

We are still interested in 3 and X, which depend on the
envelope €5 (B), but not on the particular basis I" selected to
represent it. 1 and the ’s are basis dependent.

Envelope estimator E =P;B, where B is the OLS estimator of 3.
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Motivation

How does envelope estimation work?
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Motivation

Multivariate regression with two responses, Y7 and Y5, and a
single predictor, X = 0 or 1, to indicate two populations.

(Y1 _ [« B1 €1
Y_<Y2>_(“2>+<32>X+<52>
o =E(Y1]X=0), 31 =E(Y11X =1) —E(Y11X =0),

o = E(Y5/X =0), B2 = E(Y2|X =1) — E(Y,|X = 0).

Standard estimators are obtained by substituting sample
moments.
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Motivation

Schematic representation of standard analysis
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Motivation

Schematic representation of standard analysis
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Motivation

Working mechanism of envelope model
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Motivation

Working mechanism of envelope model

Y, (st response)

Y, (2nd response)
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Cattle

Cattle data

The life cycle of the stomach and gut worm

Experiment: Two treatments, each assigned randomly to 30
cows. Weight measured at weeks 2, 4, 6, ...,16, 18, 19.

Do the treatment have a differential effect; if so, about when it is
apparent?
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Cattle

Cattle weight, week 12 vs week 14
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Cattle

The OLS estimate is B = (5.5, —4.8)T with bootstrap standard
errors (4.2,4.4)T, while the envelope estimate is
B = (5.4,—5.1)T with bootstrap standard errors (1.12, 1.07)7.

About 1500 observations would be needed for an OLS analysis
to yield the standard errors from an envelope analysis with 60
observations.

Next: Envelope analysis of the full data.
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Cattle

Profile plot of cattle data

Weight
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Y, = a+BXi+¢& X=0,1
B = OLSof B =Yun — Yur
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Cattle

Mean profile plot of cattle data

Fitted weight
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max; |B;|/SE(B;) =~ 1.3. LRT stat. for = 0 is about 27 on 10 df.
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Cattle

Fitted profile plots, after inferring that u = 5. From
envelope fit, |3;|/SE(B;) > 4.1 fori > 10.
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Estimation

Notes on Estimation

Dennis Cook | Envelopes: Methods for Efficient Estimation in Multivariate Statistics



Estimation

Maximum likelihood estimators

The estimated envelope EZ (B) can be represented as
Ex(B) =arg rrgin(log IPsSyxPslo +10g1QsSyQslo),

where | - [p means the product of the non-zero eigenvalues, and
8 is a u-dim subspace of R".
Estimators of other parameters:

m 3 =P:Bors,

~T ~

m =T Bors.
~ ~T ~ o~ ~T  ~
m Q=T SY\Xr/ QO = I"O Syro.
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Asymptotic variance of the MLE

Vrlvec(B) — vec(B)] —2 Nypy(0, V)

V = avar{vnvecp]}
= avar{ vnvec[Br} + avar{ vnvec[ Qan}}

< Var(vec[EoLs])

The efficiency gains can be massive, particularly when
Q] < |Qo]|- || - || = spectral norm

r=raor’+ FOQOFg = material var. + immaterial var.
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Illustrations

Illustrations
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Illustrations

Air pollution data in Los Angeles

42 measurements at noon

Y: measurements for CO, NO, NO2, O3 and HC.
X: wind speed and solar radiation

i=1,[|Q| =0.21 and ||Qy| = 36.3.

SE ratios for sm/em: 1.7 ~ 163.
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Illustrations

Individual SE ratios

43 57 CO
36 47 NO
51 68 NO2
123 163 O3
1.7 2.0 HC
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Egyptian Skulls

B 4 measurements Y in cm on 30 male skulls in each of 5
epochs, 4000, 3300, 1850, 200 BC & 150 AD, included as
indicators X.

B Y = o+ B3300X1 + B1ssoX2 + Booo X3 + B15pXs + €
B Y = o+ IMazpe X1 + Migso Xz + MMogo X3 + Misp Xy + &,

m Since u =1, T is 4 x 1 and we can plot TYvs epoch.
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Illustrations

Skull Boxplots vs Epoch
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Reducing X and Partial least squares
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PLS formulation

With X random we consider the same model
Yi=a+BX;+¢, i=1,...,n,
but now the goal is to reduce X. PLS operates by
Reducing X — &)TX by using an iterative algorithm

~T
Fitting Y = a« +n'{¢p X} + ¢ using OLS
. . =T ~ .
Estimating Bpis = dn = PE(SX)BT
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PLS

SIMPLS algorithm for @ (de Jong, 1993)

Set wy = 0 and let &\)k = (Wo, ..., Wi) € RP*k Then given (T)k,
the next vector wy 1 is constructed as

S = span(Sx(f)k)

Wir1 = Imax(Qs,SxySxyQs,)
q)k+1 = (WO, vy Wi, Wk+1)
fork=1,. — 1. m, the number of components, is chosen by

cross-vahdatlon or a hold-out sample. Then D=0,

Envelope connection: With known m, span(d)m) isa
v/n-consistent estimator of the Zx-envelope of span( BT,
&z, (B’), where B’ = span(BT) and m = dim(Ex, (B')).
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Alternatively, we can use an envelope estimator for the same

tasks:
Y = a+n'{p'X}+e
Ix = GAD" + dpAod)
y =z
B = BPL
b = BP(D(Sx)

where

b = arg msin{log IPsSxjyPslo + log|QsSxQslo}

and § is an m-dim subspace of R”.

Dennis Cook | Envelopes: Methods for Efficient Estimation in Multivariate Statistics



Beef protein

Predict protein content (Y, r = 1) of beef based on spectral
measurements at p = 50 wave lengths, n = 103.
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NIR analysis of biscuit dough

Predict fat, sucrose, flower and water content (Y, » = 4) of
biscuit dough based on spectral measurements at p = 20 wave
lengths, 39 training samples & 31 testing samples, created on
different occasions. Comparison criterion is the SS prediction
error on the testing samples.

Dennis Cook | Envelopes: Methods for Efficient Estimation in Multivariate Statistics



165 T T T T

Prediction SSE

——O0Ls

115 . . . H . . .
2

4 6 8 10 12 14 16
Dimension in X

18 20

Dennis Cook | Envelopes: Methods for Efficient Estimation in Multivariate Statistics




Simulations
Top: r=1,p =10, u = 8. Zx = 200 T + 50y
Bottom: r=1,p =7, u =2. Zx = GAD’ + poAed].
eigenvalues: 0.07 and 1.6 for A; between 3 and 584 for A,.

Iogz(Prediction error)
/

0.34F R - R

032 <~ 4

o3t N
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Other LM

Other envelope application in
multivariate linear regression
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Other LM

m Partial response envelopes for part of B = (31, ;). (Su
and Cook, Biometrika, 2011)

Y = OC+[31X1+BQXZ+E
= a+IMX;+B.Xo+¢
r = rarf +ryQ,rf

m Simultaneous envelopes for reducing X and Y (Cook and
Zhang, Technometrics, to appear)

Y = ax+pX+¢
x+Tn® X+ ¢

T ror’ +roQerd
Ix = OADT + @A D]
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Other LM

m Scaled predictor envelopes, when predictors are in
different scales. (Su and Cook, submitted)

Y = a+n @A X +¢,
Ix = AGADIA + ADAD]A,
A = diag(1,Az,...,Ay)

m Scaled response envelopes, when responses are in different
scales. (Su and Cook, Biometrika, 2013)

m [nner envelopes, when envelopes don’t offer improvement.
(Su and Cook, Biometrika, 2012) — based on the largest
reducing subspace of X that is contained within span(f3).

m Heteroscedastic envelopes for comparing multivariate

means in populations with different covariance matrices.
(Su and Cook, Statistica Sinica, 2013).
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Beyond linear models
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Suppose we have an an asymptotically normal estimator 0 of
0 € RP, /n(60—0) — N(0,V(0)).

The estimator can often be improved by projecting it onto a
root-n consistent estimator of the V(6)-envelope of span(0).

m Reproduces all of the known envelope methods, and
applicable to GLMs.

m Links envelopes to a pre-specified estimator, MLE, robust
estimator, OLS, ....

m V(0) can now depend on the parameter being estimated,
plus perhaps nuisance parameters

m Don’t need a likelihood to drive the process
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Finis

Computing for linear model applications:

MatLab toolbox:
http://code.google.com/p/envlp/.

Thank you!
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Finis

Table : Estimated coefficients from cattle data.

Week B B/se(B) B B/se(B) || se(B)/se(B)
2 2.43 0.83 217 | -1.67 2.25
4 3.33 1.05 -0.48 | -0.65 4.27
6 3.13 0.89 0.88 1.23 4.89
8 4.73 1.22 2.38 2.82 4.56
10 4.73 1.14 2.89 4.14 5.94
12 5.50 1.30 5.40 5.30 415
14 -4.80 -1.11 -5.09 -5.55 4.69
16 -453 | -0.97 -4.62 | -5.36 5.40
18 -2.87 | -0.54 -3.67 | -4.06 5.86
19 5.00 0.86 4.21 4.92 6.78

We would need n ~ 1500 for OLS to match the envelope results.
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Heights of Boys and Girls
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Heights of Boys and Girls Ages 13 and 14

190
185
180
175
170

165

Age 14

160
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145

140

130 140 150 160 170 180
Age 13

B [|Q| =1.57 and ||Qp]| = 79.5.
m SE ratios for sm/em: 8.49 and 8.61.
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Finis

Heights of Boys and Girls Ages 17 and 18

200 -
190 -

180 F

Age 18

170 -

160 -

150

150 160 170 180 190 200
Age 17

m [|Q| =118.7 and || Q]| = 0.16.
m SE ratios for sm/em: 1.01 and 0.99
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Heights of Boys and Girls: Bootstrap SEs

Table : Bootstrap and estimated asymptotic standard errors of the
two elements in $ under the standard model (SM) and envelope

model (EM).

Response | SM BSM | EM BEM | SM/EM BSM/BEM
Agel13 | 1.60 1.80 | 0.188 0.191 8.49 9.44
Agel14 |1.61 1.81 | 0.187 0.190 8.61 9.64
Agel7 | 132 136 | 1.31 130 1.01 1.04
Agel18 | 133 137 | 1.34 137 0.99 1.01
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