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@ Why do we usually omit variables?
= We want to simplify the multivariate statistical analysis and also
because we want to simplify the interpretation of the results.

@ How do we know which variables to exclude?
= We usually ask the experts. ..

POSSIBLE PROBLEMS: Major changes of the multivariate
statistical analysis results.

= SOLUTION: The proposed covariance-based stepwise
procedure for variable selection guarantees that the loss of
the information when moving from composition to
subcomposition will be rather negligible.



Compositional data

Compositional data (CoDa) = quantitative descriptions of parts of
some whole, thus as data carring only relative information.

@ Simplex with the Aitchison geometry= the sample space of
CoDa,
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@ Aitchison geometry on the simplex is not completely suitable for
performing standard statistical methods on the CoDa.
= This fact leads to necessity to find proper representations of the
CoDa to the real space.

@ For this purpose are proposed log-ratio transformations:
additive log-ratio (alr) transformation, centered log-ratio (clr)
transformation and isometric log-ratio (ilr) transformation.

@ Representation of CoDa based on ratio of parts is convenient.



Clr transformation

The clr transformation is an isometric mapping between SP and a
hyperplane of R,

/

X1 XD
y=clr(x) = (y1,¥2,..,yp) = | In ,..nin ()
\D/ HP:1 Xi \D/ Hi.;1 Xi

@ Disadvantages of the clr variables:

e they are not coordinates with respect to a basis on the simplex,
o they lead to collinear data, because yy + ---+ yp =0,
e they are not subcompositionaly coherent.

@ Advantages of the clr variables:

o they translate perturbation and powering of CoDa into ordinary
sum and multiplication by a scalar of vectors of clr coefficients,

e Euclidean distance between vectors of clr coefficients = Aitchison
distance of their corresponding compositions. This also holds for
the inner product and the norm.



Measures of variability of CoDa

The basic measure of variability of a random composition
X = (x1,...,Xp)’ is the variation matrix defined as
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@ T is symmetrical matrix with zeros on the main diagonal.

@ The elements of T describe the variability of the log-ratio
between x; and x;.

The (normed) sum of the elements of the variation matrix is called
total variance,
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expressing the total variability of the compositional data set.



Covariance structure

@ Total variance of compositional data set x can be expressed as
totvar(x) = Z,’; var(y;), where

var(y;) = D_ Zvar(ln ’) ZZvar(ln ’)
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= Strong relation between var(y;) and the sum of the i-th row
(column) of the corresponding variation matrix T.

Consider the clr variables y; and yj, i # j, i,j =1,...,D. Then
var(y;)>var(y;), if and only if

Zvar (i _) Zvar (i _)




Proposed stepwise procedure

Let us consider a composition x = (x1, ..., xp)’, such that
var(yr) > -+ > var(yp) (2)
&
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Algorithm:

@ Omit the part xp whose variance of the corresponding clr
variable is the smallest.
Consider a subcomposition X1 = (x1,...,Xp_1)" and perform a
clr transformation on x;.
Calculate variances of the clr transformed variables of x;.

© Repeat step 1.
© STOP maximally after D — 2 steps.



Proposed stepwise procedure

@ Will the order of the clr variances be maintained after
omitting xp?
= The order of the clr variances when moving from a D-part to a
(D — 1)-part composition is maintained only under the
assumption

X X; Xp—
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@ When the selection of parts should be stopped?
= After using a stop criterion that will compare the total variance of
the x;, obtained in the j-th step of the algorithm, i=1,..., D — 2,
with the total variance of x;_;.




Proposed stepwise procedure - STOP criterion

Ho : totvar(x;) = totvar(x;_1) v.s. Ha : totvar(x;) < totvar(x;_1)
@ For this purpose we use the following test statistic:
o _ fotvar(x;) — totvar(x;_1)

U;
%tr (i,z)

I
where ¥; stands for the sample covariance matrix of the
composition x; in (arbitrarily chosen) ilr coordinates.

@ Hy is rejected if uf € W = (—ooc, u,), where u is the realization
of U and u, denotes the a-quantile (preferably o = 0.05) of the
standard normal distribution.

@ In each step we compute U;" and the procedure is stopped when
u € W for the first time.



Example - Kola Data

Kola data set is a result of a large geochemical mapping project,
carried out from 1992 to 1998 by the Geological Surveys of Finland
and Norway, and the Central Kola Expedition, Russia.

@ An area covering 188000 km? at the peninsula Kola in Northern
Europe was sampled.

@ In total, around 600 samples of soil were taken in 4 different
layers (moss, humus, B-horizon, C-horizon).

@ The samples were analyzed by a number of different techniques
for more than 50 chemical elements.

@ The primary idea of the project was to reveal the environmental
conditions in the area.

@ The data are available in the package StatDA of the software
environment R (R Development Core Team, 2012).



Example - Kola Data - First experiment

@ 15 variables are selected randomly from 31 elements of the
moss layer.

@ The stepwise procedure is applied until is reached a 2-part
subcompostiion.

@ In each step is computed the total variance.

@ Whole procedure is repeated for 1000 times.
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Figure: Total variances of subcompositions obtained from the stepwise algorithm.



Example - Kola Data - Second experiment

@ Again 15 variables are selected randomly from 31 elements of
the moss layer.

@ The stepwise procedure is applied until the test statistic suggests
to stop the process.

@ Whole procedure is repeated for 1000 times.
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Figure: Barplot of the number of parts of the subcomposition resulting from the
stepwise procedure using the stop-criterion.



Example - Kola Data - Second experiment

Consists the resulting target compositions of parts with large clr
variances of the initial compositions, or not?
@ The parts of all 1000 initial subcompositions are sorted
according to decreasing values of their clr variances.
@ We count how often the top k clr variables were included in the
target compositions, where k =1,... 15.
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Figure: Clr variables of the initial composition, sorted according to decreasing
variance, versus number of times the corresponding compositional parts were included
in the resulting subcomposition.



Example - Kola Data - Third experiment

@ We use the same simulation setting as before, but select as
initial composition 5, 10, 20, and 25 parts of the Kola moss data,
respectively.

@ Repeat each case 1000 times.
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Figure: Barplots of the number of parts of the subcomposition resulting from the stepwise
procedure using the stop-criterion with D-part original compositions.



Example - Kola Data - Fourth experiment

@ The stepwise procedure is applied to the whole moss layer data
set (31 compositional parts).
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Figure: Total variances of subcompositions obtained from the stepwise algorithm for the whole
moss layer data set (left), corresponding values of the test statistic U;" together with the cut-off
value (right).



Conclusion

@ The proposed stepwise procedure for variable selection
guarantees the presence of compositional parts in the
resulting subcomposition, conveying important information
about multivariate data structure.

@ The reduction of the compositional parts leads to
consequent facilitation of the analysis and simultaneously
to simplification of the interpretation of the results of the
multivariate statistical analysis.



References

@ Aitchison J (1986) The statistical analysis of compositional data.
Chapman and Hall, London.

ﬁ Egozcue JJ (2009) Reply to "On the Harker Variation Diagrams;
...”7 by J. A. Cortés. Math Geosci 41:829—-834.

ﬁ Filzmoser P, Hron K, Reimann C (2012) Interpretation of
multivariate outliers for compositional data. Computers &
Geosciences 39: 77-85.

[@ Hron K, Filzmoser P, Donevska S, Figerova E (2013)
Covariance-based variable selection for compositional data.
Mathematical Geosciences 45: 487—498.

[@ Hron K, Kubacek L (2011) Statistical properties of the total
variation estimator for compositional data. Metrika 74: 221-230.



