
Variable Selection Stepwise Procedure for
Compositional Data

S. Donevska 1 P. Filzmoser 2 E. Fišerová 1 K. Hron 1
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Motivation

Why do we usually omit variables?
⇒ We want to simplify the multivariate statistical analysis and also

because we want to simplify the interpretation of the results.

How do we know which variables to exclude?
⇒ We usually ask the experts. . .

POSSIBLE PROBLEMS: Major changes of the multivariate
statistical analysis results.

⇒ SOLUTION: The proposed covariance-based stepwise
procedure for variable selection guarantees that the loss of
the information when moving from composition to
subcomposition will be rather negligible.



Compositional data

Compositional data (CoDa) = quantitative descriptions of parts of
some whole, thus as data carring only relative information.

Simplex with the Aitchison geometry= the sample space of
CoDa,

SD = {x = (x1, . . . , xD)
′, xi > 0,

D∑
i=1

xi = κ}.

Aitchison geometry on the simplex is not completely suitable for
performing standard statistical methods on the CoDa.
⇒ This fact leads to necessity to find proper representations of the

CoDa to the real space.

For this purpose are proposed log-ratio transformations:
additive log-ratio (alr) transformation, centered log-ratio (clr)
transformation and isometric log-ratio (ilr) transformation.

Representation of CoDa based on ratio of parts is convenient.



Clr transformation

The clr transformation is an isometric mapping between SD and a
hyperplane of RD,

y = clr(x) = (y1, y2, ..., yD)
′ =

ln
x1

D
√∏D

i=1 xi

, ..., ln
xD

D
√∏D

i=1 xi

′ . (1)

Disadvantages of the clr variables:

they are not coordinates with respect to a basis on the simplex,
they lead to collinear data, because y1 + · · ·+ yD = 0,
they are not subcompositionaly coherent.

Advantages of the clr variables:

they translate perturbation and powering of CoDa into ordinary
sum and multiplication by a scalar of vectors of clr coefficients,
Euclidean distance between vectors of clr coefficients = Aitchison
distance of their corresponding compositions. This also holds for
the inner product and the norm.



Measures of variability of CoDa

The basic measure of variability of a random composition
x = (x1, . . . , xD)

′ is the variation matrix defined as

T =

{
var

(
ln

xi

xj

)}D

i,j=1
.

T is symmetrical matrix with zeros on the main diagonal.
The elements of T describe the variability of the log-ratio
between xi and xj .

The (normed) sum of the elements of the variation matrix is called
total variance,

totvar(x) =
1

2D

D∑
i=1

D∑
j=1

var

(
ln

xi

xj

)
,

expressing the total variability of the compositional data set.



Covariance structure

Total variance of compositional data set x can be expressed as
totvar(x) =

∑D
i=1 var(yi), where

var(yi) =
D − 1

D2

D∑
j=1

var

(
ln

xj

xi

)
− 1

2D2

D∑
j=1
j 6=i

D∑
l=1
l 6=i

var

(
ln

xj

xl

)
.

⇒ Strong relation between var(yi) and the sum of the i-th row
(column) of the corresponding variation matrix T.

Theorem
Consider the clr variables yi and yj , i 6= j , i , j = 1, . . . ,D. Then
var(yi)≥var(yj), if and only if

D∑
p=1

var

(
ln

xi

xp

)
≥

D∑
p=1

var

(
ln

xj

xp

)
.



Proposed stepwise procedure

Let us consider a composition x = (x1, . . . , xD)
′, such that

var(y1) ≥ · · · ≥ var(yD) (2)

⇔
D∑

p=1

var

(
ln

x1

xp

)
≥

D∑
p=1

var

(
ln

x2

xp

)
≥ · · · ≥

D∑
p=1

var

(
ln

xD

xp

)
. (3)

Algorithm:
1 Omit the part xD whose variance of the corresponding clr

variable is the smallest.
Consider a subcomposition x1 = (x1, . . . , xD−1)

′ and perform a
clr transformation on x1.
Calculate variances of the clr transformed variables of x1.

2 Repeat step 1.
3 STOP maximally after D − 2 steps.



Proposed stepwise procedure

Will the order of the clr variances be maintained after
omitting xD?

⇒ The order of the clr variances when moving from a D-part to a
(D − 1)-part composition is maintained only under the
assumption

var

(
ln

x1

xD

)
≥ var

(
ln

x2

xD

)
≥ · · · ≥ var

(
ln

xD−1

xD

)
.

When the selection of parts should be stopped?
⇒ After using a stop criterion that will compare the total variance of

the xi , obtained in the i-th step of the algorithm, i = 1, . . . ,D − 2,
with the total variance of xi−1.



Proposed stepwise procedure - STOP criterion

H0 : totvar(xi) = totvar(xi−1) v.s. HA : totvar(xi) < totvar(xi−1)

For this purpose we use the following test statistic:

U+
i =

t̂otvar(xi)− totvar(xi−1)√
2

n−1 tr
(
Σ̂

2
i

) ,

where Σ̂i stands for the sample covariance matrix of the
composition xi in (arbitrarily chosen) ilr coordinates.

H0 is rejected if u+
i ∈W = (−∞,uα〉, where u+

i is the realization
of U+

i and uα denotes the α-quantile (preferably α = 0.05) of the
standard normal distribution.

In each step we compute U+
i and the procedure is stopped when

u+
i ∈W for the first time.



Example - Kola Data

Kola data set is a result of a large geochemical mapping project,
carried out from 1992 to 1998 by the Geological Surveys of Finland
and Norway, and the Central Kola Expedition, Russia.

An area covering 188 000 km2 at the peninsula Kola in Northern
Europe was sampled.

In total, around 600 samples of soil were taken in 4 different
layers (moss, humus, B-horizon, C-horizon).

The samples were analyzed by a number of different techniques
for more than 50 chemical elements.

The primary idea of the project was to reveal the environmental
conditions in the area.

The data are available in the package StatDA of the software
environment R (R Development Core Team, 2012).



Example - Kola Data - First experiment

15 variables are selected randomly from 31 elements of the
moss layer.
The stepwise procedure is applied until is reached a 2-part
subcompostiion.
In each step is computed the total variance.
Whole procedure is repeated for 1000 times.

0
1

2
3

4
5

6

Number of parts in the subcomposition

To
ta

l v
ar

ia
nc

e

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Figure: Total variances of subcompositions obtained from the stepwise algorithm.
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Example - Kola Data - Second experiment

Again 15 variables are selected randomly from 31 elements of
the moss layer.
The stepwise procedure is applied until the test statistic suggests
to stop the process.
Whole procedure is repeated for 1000 times.

Figure: Barplot of the number of parts of the subcomposition resulting from the
stepwise procedure using the stop-criterion.
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Example - Kola Data - Second experiment

Consists the resulting target compositions of parts with large clr
variances of the initial compositions, or not?

The parts of all 1000 initial subcompositions are sorted
according to decreasing values of their clr variances.
We count how often the top k clr variables were included in the
target compositions, where k = 1, . . . ,15.

Figure: Clr variables of the initial composition, sorted according to decreasing
variance, versus number of times the corresponding compositional parts were included
in the resulting subcomposition.
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Example - Kola Data - Third experiment

We use the same simulation setting as before, but select as
initial composition 5, 10, 20, and 25 parts of the Kola moss data,
respectively.
Repeat each case 1000 times.
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Figure: Barplots of the number of parts of the subcomposition resulting from the stepwise
procedure using the stop-criterion with D-part original compositions.
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Example - Kola Data - Fourth experiment

The stepwise procedure is applied to the whole moss layer data
set (31 compositional parts).
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Figure: Total variances of subcompositions obtained from the stepwise algorithm for the whole
moss layer data set (left), corresponding values of the test statistic U+

i together with the cut-off
value (right).
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Figure: Total variances of subcompositions obtained from the stepwise algorithm for the whole
moss layer data set (left), corresponding values of the test statistic U+
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Conclusion

The proposed stepwise procedure for variable selection
guarantees the presence of compositional parts in the
resulting subcomposition, conveying important information
about multivariate data structure.

The reduction of the compositional parts leads to
consequent facilitation of the analysis and simultaneously
to simplification of the interpretation of the results of the
multivariate statistical analysis.
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