Variable Selection Stepwise Procedure for Compositional Data

S. Donevska¹ P. Filzmoser² E. Fišerová¹ K. Hron¹

¹Palacký University in Olomouc, Czech Republic ²Vienna University of Technology, Austria

LinStat2014

Motivation

- Why do we usually omit variables?
 - \Rightarrow We want to simplify the multivariate statistical analysis and also because we want to simplify the interpretation of the results.
- How do we know which variables to exclude?
 - \Rightarrow We usually ask the experts...

POSSIBLE PROBLEMS: Major changes of the multivariate statistical analysis results.

⇒ SOLUTION: The proposed covariance-based stepwise procedure for variable selection guarantees that the loss of the information when moving from composition to subcomposition will be rather negligible.

(ロ) (同) (三) (三) (三) (○) (○)

Compositional data

Compositional data (CoDa) = quantitative descriptions of parts of some whole, thus as data carring only **relative information**.

 Simplex with the Aitchison geometry= the sample space of CoDa,

$$S^{D} = \{ \mathbf{x} = (x_{1}, \dots, x_{D})', x_{i} > 0, \sum_{i=1}^{D} x_{i} = \kappa \}.$$

- Aitchison geometry on the simplex is not completely suitable for performing standard statistical methods on the CoDa.
 - \Rightarrow This fact leads to necessity to find proper representations of the CoDa to the real space.
- For this purpose are proposed log-ratio transformations: additive log-ratio (alr) transformation, centered log-ratio (clr) transformation and isometric log-ratio (ilr) transformation.
- Representation of CoDa based on ratio of parts is convenient.

(ロ) (同) (三) (三) (三) (○) (○)

Clr transformation

The clr transformation is an isometric mapping between S^D and a hyperplane of \mathbb{R}^D ,

$$\mathbf{y} = clr(\mathbf{x}) = (y_1, y_2, ..., y_D)' = \left(\ln \frac{x_1}{\sqrt[D]{\prod_{i=1}^D x_i}}, ..., \ln \frac{x_D}{\sqrt[D]{\prod_{i=1}^D x_i}} \right)'.$$
(1)

Disadvantages of the clr variables:

- they are not coordinates with respect to a basis on the simplex,
- they lead to collinear data, because $y_1 + \cdots + y_D = 0$,
- they are not subcompositionaly coherent.
- Advantages of the clr variables:
 - they translate perturbation and powering of CoDa into ordinary sum and multiplication by a scalar of vectors of clr coefficients,
 - Euclidean distance between vectors of clr coefficients = Aitchison distance of their corresponding compositions. This also holds for the inner product and the norm.

Measures of variability of CoDa

The basic measure of variability of a random composition $\mathbf{x} = (x_1, \dots, x_D)'$ is the variation matrix defined as

$$\mathbf{T} = \left\{ \operatorname{var} \left(\ln \frac{x_i}{x_j} \right) \right\}_{i,j=1}^{D}$$

- T is symmetrical matrix with zeros on the main diagonal.
- The elements of T describe the variability of the log-ratio between x_i and x_j.

The (normed) sum of the elements of the variation matrix is called total variance,

$$\operatorname{totvar}(\mathbf{x}) = \frac{1}{2D} \sum_{i=1}^{D} \sum_{j=1}^{D} \operatorname{var}\left(\ln \frac{x_i}{x_j}\right),$$

expressing the total variability of the compositional data set.

Covariance structure

• Total variance of compositional data set **x** can be expressed as $totvar(\mathbf{x}) = \sum_{i=1}^{D} var(y_i)$, where

$$\operatorname{var}(y_i) = \frac{D-1}{D^2} \sum_{j=1}^{D} \operatorname{var}\left(\ln \frac{x_j}{x_i}\right) - \frac{1}{2D^2} \sum_{j=1 \atop \substack{j \neq i \\ l \neq i}}^{D} \sum_{l=1 \atop l \neq i}^{D} \operatorname{var}\left(\ln \frac{x_j}{x_l}\right)$$

⇒ Strong relation between $var(y_i)$ and the sum of the *i*-th row (column) of the corresponding variation matrix **T**.

Theorem

Consider the clr variables y_i and y_j , $i \neq j$, i, j = 1, ..., D. Then $var(y_i) \ge var(y_j)$, if and only if

$$\sum_{\rho=1}^{D} \operatorname{var}\left(\ln \frac{x_i}{x_{\rho}}\right) \geq \sum_{\rho=1}^{D} \operatorname{var}\left(\ln \frac{x_j}{x_{\rho}}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proposed stepwise procedure

Let us consider a composition $\mathbf{x} = (x_1, \dots, x_D)'$, such that

$$\operatorname{var}(y_1) \ge \cdots \ge \operatorname{var}(y_D) \tag{2}$$

$$\Leftrightarrow$$

$$\sum_{p=1}^{D} \operatorname{var}\left(\ln \frac{x_1}{x_p}\right) \ge \sum_{p=1}^{D} \operatorname{var}\left(\ln \frac{x_2}{x_p}\right) \ge \cdots \ge \sum_{p=1}^{D} \operatorname{var}\left(\ln \frac{x_D}{x_p}\right). \tag{3}$$

Algorithm:

Omit the part x_D whose variance of the corresponding clr variable is the smallest.

Consider a subcomposition $\mathbf{x}_1 = (x_1, \dots, x_{D-1})'$ and perform a clr transformation on \mathbf{x}_1 .

Calculate variances of the clr transformed variables of \mathbf{x}_1 .

- Repeat step 1.
- STOP maximally after D 2 steps.

Proposed stepwise procedure

- Will the order of the clr variances be maintained after omitting *x*_D?
- ⇒ The order of the clr variances when moving from a *D*-part to a (D-1)-part composition is maintained only under the assumption

$$\operatorname{var}\left(\operatorname{\mathsf{In}} \frac{x_1}{x_D}\right) \ge \operatorname{var}\left(\operatorname{\mathsf{In}} \frac{x_2}{x_D}\right) \ge \cdots \ge \operatorname{var}\left(\operatorname{\mathsf{In}} \frac{x_{D-1}}{x_D}\right).$$

- When the selection of parts should be stopped?
- ⇒ After using a stop criterion that will compare the total variance of the \mathbf{x}_i , obtained in the *i*-th step of the algorithm, i = 1, ..., D 2, with the total variance of \mathbf{x}_{i-1} .

Proposed stepwise procedure - STOP criterion

 H_0 : totvar(\mathbf{x}_i) = totvar(\mathbf{x}_{i-1}) v.s. H_A : totvar(\mathbf{x}_i) < totvar(\mathbf{x}_{i-1})

• For this purpose we use the following test statistic:

$$U_i^+ = \frac{\widehat{\operatorname{totvar}}(\mathbf{x}_i) - \operatorname{totvar}(\mathbf{x}_{i-1})}{\sqrt{\frac{2}{n-1}\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}}_i^2\right)}}.$$

where $\widehat{\Sigma}_i$ stands for the sample covariance matrix of the composition \mathbf{x}_i in (arbitrarily chosen) ilr coordinates.

- H₀ is rejected if u⁺_i ∈ W = (-∞, u_α), where u⁺_i is the realization of U⁺_i and u_α denotes the α-quantile (preferably α = 0.05) of the standard normal distribution.
- In each step we compute U_i^+ and the procedure is stopped when $u_i^+ \in W$ for the first time.

Kola data set is a result of a large geochemical mapping project, carried out from 1992 to 1998 by the Geological Surveys of Finland and Norway, and the Central Kola Expedition, Russia.

- An area covering 188 000 km² at the peninsula Kola in Northern Europe was sampled.
- In total, around 600 samples of soil were taken in 4 different layers (moss, humus, B-horizon, C-horizon).
- The samples were analyzed by a number of different techniques for more than 50 chemical elements.
- The primary idea of the project was to reveal the environmental conditions in the area.
- The data are available in the package StatDA of the software environment R (R Development Core Team, 2012).

Example - Kola Data - First experiment

- 15 variables are selected randomly from 31 elements of the moss layer.
- The stepwise procedure is applied until is reached a 2-part subcomposition.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- In each step is computed the total variance.
- Whole procedure is repeated for 1000 times.

Example - Kola Data - First experiment

- 15 variables are selected randomly from 31 elements of the moss layer.
- The stepwise procedure is applied until is reached a 2-part subcomposition.
- In each step is computed the total variance.
- Whole procedure is repeated for 1000 times.

Figure: Total variances of subcompositions obtained from the stepwise algorithm.

- Again 15 variables are selected randomly from 31 elements of the moss layer.
- The stepwise procedure is applied until the test statistic suggests to stop the process.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

• Whole procedure is repeated for 1000 times.

- Again 15 variables are selected randomly from 31 elements of the moss layer.
- The stepwise procedure is applied until the test statistic suggests to stop the process.
- Whole procedure is repeated for 1000 times.

Figure: Barplot of the number of parts of the subcomposition resulting from the stepwise procedure using the stop-criterion.

Consists the resulting target compositions of parts with large clr variances of the initial compositions, or not?

- The parts of all 1000 initial subcompositions are sorted according to decreasing values of their clr variances.
- We count how often the top k clr variables were included in the target compositions, where k = 1, ..., 15.

シック・ 川 ・ 川田・ 小田・ 小田・

Consists the resulting target compositions of parts with large clr variances of the initial compositions, or not?

- The parts of all 1000 initial subcompositions are sorted according to decreasing values of their clr variances.
- We count how often the top k clr variables were included in the target compositions, where k = 1, ..., 15.

Figure: Clr variables of the initial composition, sorted according to decreasing variance, versus number of times the corresponding compositional parts were included in the resulting subcomposition.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example - Kola Data - Third experiment

• We use the same simulation setting as before, but select as initial composition 5, 10, 20, and 25 parts of the Kola moss data, respectively.

・ロト・日本・モト・モー ショー ショー

• Repeat each case 1000 times.

Example - Kola Data - Third experiment

- We use the same simulation setting as before, but select as initial composition 5, 10, 20, and 25 parts of the Kola moss data, respectively.
- Repeat each case 1000 times.

Figure: Barplots of the number of parts of the subcomposition resulting from the stepwise procedure using the stop-criterion with D-part original compositions.

ъ

Example - Kola Data - Fourth experiment

• The stepwise procedure is applied to the whole moss layer data set (31 compositional parts).

Example - Kola Data - Fourth experiment

 The stepwise procedure is applied to the whole moss layer data set (31 compositional parts).

Figure: Total variances of subcompositions obtained from the stepwise algorithm for the whole moss layer data set (left), corresponding values of the test statistic U_i^+ together with the cut-off value (right).

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Conclusion

- The proposed stepwise procedure for variable selection guarantees the presence of compositional parts in the resulting subcomposition, conveying important information about multivariate data structure.
- The reduction of the compositional parts leads to consequent facilitation of the analysis and simultaneously to simplification of the interpretation of the results of the multivariate statistical analysis.

References

- Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London.
- Egozcue JJ (2009) Reply to "On the Harker Variation Diagrams;" by J. A. Cortés. Math Geosci 41:829–834.
- Filzmoser P, Hron K, Reimann C (2012) Interpretation of multivariate outliers for compositional data. Computers & Geosciences 39: 77–85.
- Hron K, Filzmoser P, Donevska S, Fišerová E (2013) Covariance-based variable selection for compositional data. Mathematical Geosciences 45: 487–498.
- Hron K, Kubáček L (2011) Statistical properties of the total variation estimator for compositional data. Metrika 74: 221–230.