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1. INTRODUCTION 

 

 

  Regression analysis is a statistical process for estimating the 

relationships among variables. 

 

 The general objectives of regression analysis are that 

 

    Description of  the change in the dependent variable 

    Finding the corresponding average value of any observation 

    Fitting the best curve to points. 



4 

 

 

 

 

 The concept of the regression was first used in 1897 by Galton to 

display some of the relationships and correlations in studies in relation to 

the theory of genetics [1,2]. Today, regression theory is used widely and 

computational difficulties have been eliminated with pre-prepared 

programs ( SAS, Minitab, STATGRAPHICS, S-PLUS…). 
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  Let us consider the linear regression model which is described as 

follows 

                                                                                            (1.1) 

 

       where   is an 1n  vector of the observations,   is an n p  matrix of the    

levels of the regressor variables, 
0 1 1
, ,...,

p
  


 
 
 


β  is a 1p  vector of the unknown 

coefficients, and ε  is an 1n  vector of the random errors satisfying  E ε 0 and 

  2V ε І . 
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 In  regression analysis, the most important aim is the estimation of  

unknown parameters. The most popular method is the Least Squares (LS) 

method. The LS estimator is a solution to the problem 
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  According to the Gauss-Markov theorem, the LS estimator is the 

best linear unbiased estimators of β  when the errors i  are normally 

distributed. On the other hand, when the distribution of the errors is 

nonnormal and the data has outliers or multicollinearity the LS estimator 

is known to be very sensitive (Montgomery et al., 2001).  
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 One of the important problems of regression analysis is 

multicollinearity. When there are near-linear dependencies among the 

regressors, the problem of multicollinearity occurs. For multicollinearity, 

several alternative estimation techniques are proposed, but Ridge 

regression estimator, proposed by Hoerl and Kennard (1970), is one of 

the most widely used estimators.  
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 Ridge regression estimator ˆ R  is a solution to the problem 
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 The ridge regression solutions are easily seen to be  

 

                                          
1

ˆ 0
R

k k 
 
 


    β XX І Xy                             (1.4) 

 

      where I  is the p p  identity matrix. Note that when 0k  , the ridge 

      estimator is the LS estimator (Montgomery et al., 2001). 
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 When there are outliers, robust regression methods are more 

powerful than the LS method. (Huber, 1981). One of these robust 

estimation methods is the Least Absolute Deviation (LAD) method. The 

LAD estimator is a solution to the problem  
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 In applications, one can frequently face with x-space and/or y-space 

outliers in the data sets. It is known that the LS estimator is unsuccessful 

in producing a reliable result under these circumstances, and the LAD 

estimator is better in the case of y-space outliers (Arslan, 2011). 

However, there are some computational difficulties as the number of 

regressor increases.  
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   Variable selection is another important subject in regression 

analysis. A large number of regressors decrease possible modelling 

biases. However, including unnecessary regressors yields less accurate 

predictions. On the other hand, omitting important regressors may 

produce biased parameter estimates and prediction results. Therefore, 

selecting the significant regressors is an important task of regression 

analysis.  
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 The problem of selecting a model under suitable conditions for the 

remainder is studied extensively in the literature. Some of the 

recommended and best applied methods are the Akaike Information 

Criterion (AIC) (Akaike 1973), the Bayes Information Criterion (BIC) 

(Schwarz 1978), and the Mollows-Cp statistic. Theoretically speaking 

there is no confirmed knowledge as to which criterion will be better (Shi 

and Tsai, 2002).  
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 In order to eliminate this insufficiency, Tibshirani (1996) proposed 

the following the Least Absolute Shrinkage and Selection Operator 

(LASSO) which is minimized the penalized LS regression as follows 
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         where 0    is tuning parameter. 
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 Minimizing criterion in (1.6) is equal to 
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               where 0s  is tuning parameter selected by the analyst. 
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 The  finite-dimensional performance of the LASSO estimator under 

standard errors was shown by Tibshirani (1996) and its statistical 

properties were studied by Knight and Fu (2000), Fan and Li (2001), 

Rosset and Zhu (2004) and Zhau and Yu (2006) . 
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 However, when errors in (1.1) are distributed in a heavy-tailed 

manner, the performance of the LASSO becomes weaker due to LS 

estimator’s  sensitivity to the heavy-tailed error distributions and outliers. 

Due to this sensitivity, the LAD regression which is resistant to outliers 

and heavy-tailed errors is combined with the LASSO . 
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 The  obtained LAD-LASSO is successful in simultaneously 

estimating robust regression and selecting variables. When the LAD and 

the LAD-LASSO are compared, the LAD-LASSO is seen to be able to 

perform parameter estimation while at the same time for selecting the 

model. Also the LAD-LASSO is resistant to heavy-tailed distributions 

and outliers than the LASSO. The aim of this presentation is to 

reformulate LAD-LASSO and solve the reformulated LAD-LASSO with 

the Simplex algorithm . 
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2.LAD-LASSO 

 

  The LAD-LASSO is obtained by minimizing the penalized LAD 

regression criterion as follows 
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       where 0   is tuning parameter. 
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 In studies of Wang, Li and Jiang (2007), the parametres are 

estimated by minimizing the following objective function 
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by using the different tuning parameters for different regression 

coefficients.  
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 They considered an augmented dataset   * *,i iy x  with 1,2,..., 1i n p   , 

where    * *, ,i i i iy yx x  for 1 i n  ,    * *, 0,n j n j j jy n  x e  for 1 1j p   , and je  is a 

 1p dimensional vector with the jth component equal to 1 and all others 

equal to 0. They obtained 

                                                                                    

1
* *

1

LAD-LASSO .
n p

i i
i

y
 



  x β                                 (2.3) 

 

              This is just a traditional LAD criterion. Consequently, any standard    

      unpenalized LAD program (rq in the QUANTREG package of R) can be 

      used to find the LAD-LASSO estimator. 
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 In our study, we find that the LAD-LASSO estimator of β  is 

obtained by 
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       where 0t   is tuning parameter and 
i

d  is defined as 
0

1p

i i ij j
j

d y x 




  . 
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 Minimizing (2.4) is equal to  
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 For estimation of j  parameter in problem (2.5), LAD-LASSO is 

        reformulated as follows   
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  Also minimizing (2.6) is equal to minimizing 
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  Note that 
1 2i i id d d   and 

1 2i i id d d   where 
1id  and 

2id  are nonnegative and 

1 2j jj     and 1 2j jj     where 1 j  and 2 j  are nonnegative. We can 

reformulate the problem as 
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 Any 
1 2

( , , )
1 2
β β ,d d  satisfying    

1 2 1 2
Xβ Xβ d d y is called a solution to 

(2.4).Let 
1 p 1 p 1 1

n p n p n n n n

n n

 
 
 
 
 

 

   

 

 

 

X X I I

1 1 0 0
 be denoted by the matrix A  of order 

1 2 2n p n   , ( , , )
1 2 1 2
β β ,d d  be denoted by the vector W  of order 1 2 2p n   and 

1

1 1

n

t




 
 
 
 

y
 be denoted by the vector P  of order 1 1n  . Any W  satisfying 

  
 
  




AW P  

is a solution to (2.4).  
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  Let C  be the vector 
1 1 1 1

, ,
p p n n   

 
 
 

 0 0 ,1 1  where  0,0,...00  and (1,1,...1)1 . 

Then C W  is called the objective function of problem (2.4). Any solution 

W  to (2.4), if it further satisfies 0jW  , . 1,2,...,2 2j p n  , we call it a feasible 

solution to problem. Thus LAD-LASSO is translated into a mathematical 

programming problem and can be solved with Simplex Algorithm. 
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    3.EXAMPLE 

 

  To  illustrate parameter estimation by using LAD-LASSO, we 

consider Hald data, which is used widely in literature. Hald (1952) 

present data concerning the heat evolved in calories in calories per gram 

of cement  y  as a function of the amount of each of four ingredient in the 

mix: tricalcium aluminate  1
x , tricalcium silicate  2

x , tetracalcium 

alumino ferrite  3
x , and dicalcium silicate  4

x . The data is shown in Table 

3.1.  
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Table 3.1 Hald Cement Data 

Observation i  iy  1ix  2ix  3ix  4ix  

1 78.5 7 26 6 60 

2 74.3 1 29 15 52 

3 104.3 11 56 8 20 

4 87.6 11 31 8 47 

5 95.9 7 52 6 33 

 6 109.2 11 55 9 22 

7 102.7 3 71 17 6 

8 72.5 1 31 22 44 

9 93.1 2 54 18 22 

10 115.9 21 47 4 26 

11 83.8 1 40 23 34 

12 113.3 11 66 9 12 

13 109.4 10 68 8 12 
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 Simple correlations are shown in Table 3.2. Note that the pairs of 

regressor variables  1 3
,x x  and  2 4

,x x  are higly correlated since 
13

0.824r   and 

24
0.973r  . 

Table 3.2 Simple Correlations 

 1x  2x  3x  4x  y  

1x                        1     

2x  0.229 1    

3x  -0.824 -0.139 1   

4x  -0.245 -0.973 0.030 1  

y  0.731 0.816 -0.535 -0.821 1 
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  On the other hand, statistics for detecting outliers for the Hald 

cement data set is given in Table 3.3. Based on the result of Table 3.3, 
6

e , 

8
e  and 

13
e  residual seem suspiciously different . Therefore, we can say that 

Hald data has y-direction outliers. On the other hand, according to the 

leverage  iih , Cook’s distance and DFITS values, it seems that there is no 

x-direction outliers in Table 3.3. In this situation, LAD regression is much 

more powerful estimation method than LS regression. 
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Table 3.3 Statistics for detecting outliers for Hald Cement Data 

ID y  ŷ  ie  iih  
Cook’s 

Distance 
DFITS 

1 78.5 78.495 0.005 0.473 0 0.006 

2 74.3 72.789 1.511 0.256 0.057 0.755 

3 104.3 105.971 -1.671 0.500 0.301 -2.279 

4 87.6 89.327 -1.727 0.218 0.059 -0.724 

5 95.9 95.649 0.251 0.281 0.002 0.140 

6 109.2 105.275 3.925 0.047 0.083 0.556 

7 102.7 104.149 -1.449 0.290 0.064 -0.840 

8 72.5 75.675 -3.175 0.332 0.394 -2.193 

9 93.1 91.722 1.378 0.217 0.038 0.575 

10 115.9 115.619 0.282 0.623 0.021 0.658 

11 83.8 81.809 1.991 0.349 0.171 1.475 

12 113.3 112.327 0.973 0.186 0.015 0.347 

13 109.4 111.694 -2.294 0.227 0.110 -1 
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 Because of this results, we can say that this data has outliers and 

serious multicollinearity. If we want to estimate parameters and select 

significant regressors simultaneously under these circumstances. We will 

use LAD-LASSO estimator. Finally in Table 3.4, the parameter estimates 

based on reformulated LAD-LASSO are given with various t values. 
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                                              Table 3.4 Estimates of  Reformulated LAD-LASSO 

t  0 0.001 1.61 2.16 3.058 4.690 4.691 10 18.579 64.424 

0  0 0 0 0 0 0 -0.0003 -5.098 -13.337 -13.337 

1  0 0 0 0.008 1.008 2.213 2.213 2.267 2.354 2.354 

2  0 0.001 1.609 1.491 1.437 1.145 1.145 1.196 1.280 1.280 

3  0 0 0 0 0.0003 0.865 0.865 0.920 1.007 1.007 

4  0 0 0.001 0.661 0.612 0.468 0.468 0.518 0.601 0.601 

ResMS  9314. 10080. 638.75 126.54 33.63 6.68 7.51 7.51 7.64 7.64 
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 According to the result which are obtained in Table 3.4, variable 

selection is done between 0 and 4.691. In this range, a model which has 

less parameter, is obtained for a suitable t value. Therefore the obtained 

model is less affected from multicollinearity and outliers.  

       

 

 



37 

 

 

 

  After this point which variables selection stops. Notice that if t is 

chosen larger than 
1

0

ˆ
p

LAD
j

j





 , the LAD-LASSO estimates are equal to ˆ LAD . 

On the other hand, until 4.691, while t increases, 
Res

MS  decreases. 

Therefore the best point t is previous point from 4.691. 
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4.DISCUSSION 

 

 

  In this study, the tuning parameter is in augmented observations 

vector in our approach but in study of  Wang, Li and Jiang (2007) the 

different tuning parameters are in augmented regressor variables matrix 

for different regressor coefficients. Therefore the dimension of matrix is 

larger and using Simplex Algoritm is more difficult than ours. The other 

difference is the range of tunig parameter is known in our approach.   
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  Finally based on the analysis result of Hald Data, by using the 

reformulated LAD LASSO, it is shown that a regression model, which is 

less affected from multicollinearity and outliers, can be obtained for 

suitable t value.  
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