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Objectives of the Contribution

Explain what are the compositional data

Show the methodology for regression with compositional
response

The application of the methodology on modeling real-world
geochemical data
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What is it Compositional Data (Compositions)?

Multivariate data where the variables represent parts of
some whole carrying only relative information

Examples: Religious or national composition of the population,
representation of political parties according to the election
results, household expenses on final consummation (food,
accommodation, clothes)

Usual units of measurement: proportions, percentages, mg/kg

Sample space of a D-part composition: simplex

SD =

{
y = (y1, . . . , yD), yi > 0,

D∑
i=1

yi = κ

}

only ratios of the parts are informative ⇒ κ arbitrary proper
representation of compositions

The data are in contrary to assumptions for almost statistical
methods (not follow the Euclidean geometry in real space)
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Log-ratio Transformations
Aitchison, 1986

Performing standard statistical methods on the simplex is impossible:

→ find new methods
→ find proper representations of the compositions in a real space

Additive log-ratio (alr) transformation

Centred log-ratio (clr) transformation

Isometric Log-ratio (Ilr) Transformation (Egozcue, et al., 2003)
I standard multivariate statistical methods can be applied
I preserve distance
I associated with an orthogonal coordinate system with respect to a

basis on simplex
I results are interpreted either in coordinates, or on simplex
I interpretation of ilr coordinates directly in the sense of original parts

is impossible
I canonical orthonormal basis in the simplex does not exist - chosen

according to particular situations
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Special Choice of Ilr Coordinates - SBP
Egozcue and Pawlowsky-Glahn, 2005

Sequential Binary Partition (SBP)
often used because they enable interpretation in terms of
grouped parts of the composition

Example of construction: Structure of Causes of Death

y1 lung cancer (LC) y2 colorectal cancer (CC)
y3 circulatory disease (CD) y4 heart disease (HD)
y5 respiratory disease (RD)

RD HD CD CC LC
z1 + + + - -
z2 + - - 0 0
z3 0 + - 0 0
z4 0 0 0 + -

zi =

√
rs

r + s
ln

r

√∏r
i=1,i∈+ yi

s

√∏s
j=1,j∈− yj

, r number of +, s number of −
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Other Special Choice of Ilr Coordinates
Fišerová and Hron, 2011

zk =

√
D − k

D − k + 1
ln

yk

D−k
√∏D

j=k+1 yj

, k = 1, . . . ,D − 1.

The 1st ilr coordinate z1 include all relative information about the
compositional part y1

The permutation of the parts y2, . . . , yn doesn’t change the
interpretation of z1 ⇒We construct D different ilr transformations

(yl , y1, . . . , yl−1, yl+1, . . . , yD) =: (y (l)
1 , y (l)

2 , . . . , y (l)
l−1, y

(l)
l , y (l)

l+1, . . . , y
(l)
D )

Formally

z(l)
1 =

√
D − 1

D
ln

y (l)
1

D−1
√∏D

j=2 y (l)
j

, l = 1,2, . . . ,D

z(l) = zVP(l)V′ P(l) permutation matrix,V orthonormal basis on simplex
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Regression with Compositional Response

Simplex sample space D-part compositions (y1, y2, . . . , yD)

⇓ isometric log-ratio transformation

Euclidean real space RD−1 (z1, z2, . . . , zD−1)

Multivariate regression model
Respect the association between outcomes, and thus, in
general, procedures are more efficient.

Can evaluate the joint influence of predictors on all outcomes.

Avoid the issue of multiple testing.

Egozcue et al. (2012) proposed univariate approach with series
of (D − 1) submodels
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Test of the Decomposition of Multivariate Model into
D − 1 Univariate Submodels
Normality assumption

Bartlett’s test of sphericity
Hypothesis

H0 : ρZi ,Zj = 0, i , j = 1,2, . . . ,D − 1, i 6= j

Test statistic

V = −
(

n − 2 (D − 1) + 1
6

)
ln
[
det
(
RZ
)] H0∼as χ

2
(D−1)(D−2)

2

RZ is the sample correlation matrix of Z

n ≥ 2(D − 1)− 2
suitable for n > 30

Independence allows to analyse each submodel via univariate
approach
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Multivariate Linear Model

(Z 1,Z 2, . . . ,Z D−1) = X (β1,β2, . . . ,βD−1) + (ε1, ε2, . . . , εD−1)

Equivalently, in the matrix form

Z (n×(D−1)) = X (n×k)B(k×(D−1)) + ε(n×(D−1))

Assumption: multivariate responses Z i· are independent with the
same variance-covariance matrix

cov(Z i·,Z j·) = 0((D−1)×(D−1)), i 6= j
var(Z i·) = Σ((D−1)×(D−1)), i = 1, . . .n
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Estimation in Multivariate Model

The BLUE of the parameter matrix B = (β1,β2, . . . ,βD−1)

B̂ =
(
X ′X

)−1 X ′(Z 1,Z 2, . . . ,Z D−1) invariant to Σ

β̂i =
(
X ′X

)−1 X ′Z i , i = 1,2, . . . ,D − 1 univariate approach

The variance-covariance matrix of the vector
vec(B̂) = (β̂

′
1, β̂
′
2, . . . , β̂

′
D−1)′

var
[
vec(B̂)

]
= Σ⊗

(
X ′X

)−1 ⊗ Kronecker product

var(β̂i ) = σii
(
X ′X

)−1
univariate approach

If Σ is known, the estimators of βi using multivariate and
univariate approaches are equivalent.

E. Fišerová (UP Olomouc) Regression with Compositional Response LinStat2014 10 / 27



Estimation of Covariance Matrix
Unbiased estimator of Σ

Σ̂ =
1

n − k
Z ′
[
I − X (X ′X )−1X ′

]
Z

Under normality, B̂ and Σ̂ are statistically independent. If moreover
n − k > (D − 1), then

(n − k)Σ̂ ∼WD−1[n − k ,Σ] Wishart distribution

σ̂ii =
1

n − k
Z i
′ [I − X (X ′X )−1X ′

]
Z i

=
1

n − k
(Z i − X β̂i )

′(Z i − X β̂i ), i = 1,2, . . . ,D − 1

univariate approach

Also for unknown Σ the estimators of βi using multivariate and
univariate approaches are equivalent.
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Hypothesis Testing in Multivariate CoDa Model

Test that regression functions for ilr coordinates zj are significant

Verify that the regressor xi contribute to explanation of the overall
variability in Z

General hypothesis on regression parameters
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Hypothesis Testing on Significance of the j th
Regression Function

Hypothesis
H0 : βj = 0

Test statistic

Filr =
(n − k)

[
β̂
′
j (X′X) β̂j

]
kσ̂jj

H0∼ Fk,n−k

Multivariate and univariate approaches are equivalent when each
regression function is tested individually

Test for several regression functions simultaneously - in general,
multivariate approach is necessary

In case of special choice of ilr transformation, it is sufficient to
test only z(l)

1 , l = 1,2, . . . ,D,
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Tests for D − 1 Regression Functions Simultaneously
Hypothesis

H0j : βj = 0, j = 1,2, . . . ,D − 1, simultaneously

The most popular test procedures
Wilks’s Lambda (Wilks, 1932)
Hotelling-Lawley trace
Pillai-Bartlett trace - the most powerful and robust test
Roy’s largest root

Properties of tests
Each of test statistics is associated with its own F -statistic
In some cases, the F statistic is exact and in other cases it is
approximate
In some cases, the test statistics generate identical F statistic
and identical probabilities. In other cases they differ.
As the sample sizes increase the values produced by
Pillai-Bartlett trace, Hotelling-Lawley trace and Roy’s largest root
become similar
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Hypothesis Testing on Significance of the i th
Regressor

Hypothesis

H0 : Bi. =
(
βi1, βi2, . . . , βi(D−1)

)
= 0

Test statistic

Fpred =
(n − D − k + 2)

[
B̂i.
(
Z′MXZ

)−1 B̂
′
i.

]
(D − 1)

{
(X′X)−1

}
ii

H0∼ FD−1,n−D−k+2
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General Hypothesis on Regression Parameters

Hypothesis
H0 : NB + B0 = 0

Test statistic based on Wilks’s Lambda

X = −
[
n − k + rank(N)− D + rank(N)

2

]
ln Λ

H0∼ χ2
(D−1)rank(N)

Λ =
det
(
Z′MXZ

)
det
{

Z′MXZ +
(

NB̂ + B0

)′ [
N (XT X)

−1 N
]−1 (

NB̂ + B0

)} .
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Study of Sediments in Czech Republic

Experiment
Sediment cores were extracted from several reservoirs in CZ.
Samples from the cores were air dried, manually ground in agate
mortars and subjected to laboratory analyses without further
treatment.

Element analysis has been performed by the EDXRF Spectrometer
(Energy Dispersive X-ray Fluorescence)

Fifteen selected elements: Al, Si, P, Ti, K, Ca, Fe, Cr, Mn, Ni,Cu, Zn,
Zr, Rb, Pb

Units of measurement: c.p.s (counts per seconds)

Problem
Do counts per seconds of these 15 chemical elements depend on the
layer depth from which samples were taken?
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Brno Reservoir (South Moravia, CZ)

Capacity - 7.6 mil m3

Area - 259 ha
Max. depth - 23.5 m
Used for relaxation, hydropower
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Nové Mlýny Reservoirs (South Moravia, CZ)

Mušov Reservoir - the upper reservoir, 528 ha, 7.49 mil m3

(left panel)
I relaxation

Věstonice Reservoir - the middle reservoir, 1031 ha,
32.062 mil m3

I nature reserve with islands for nesting birds
Nové Mlýny Reservoir - the lower reservoir, 1668 ha,
23.8 mil m3 (right panel)

I irrigation,small hydropower, relaxation, fishing
Reservoirs are shallow - depth often does not exceed 2m
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Used Models for the Analysis

Standard approach: logarithm of the response variables, linear
trend

log(Yl ) = β l
0 + β l

1depth+ εl , l = 1,2, . . . ,15

I univariate approach to modeling each of the chemical element
I change the scale of the response variable
I each chemical element is modeled with its own absolute

information

Compositional approach: ilr transformation of the
compositional response, linear trend

Z (l)
1 = β l

0 + β l
1depth+ εl , l = 1,2, . . . ,15

I univariate approach to modeling each of the 1st ilr coordinate
I each chemical element is modeled relatively subject to the others

elements
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Results for Brno Reservoir

Compositional approach:
proportions of 4 elements significantly depend on depth

Pb (↑, R2 = 0.41)
Mn (↓, R2 = 0.47)
Si (↑, R2 = 0.43)
K (↑, R2 = 0.43)

Standard approach:
2 element significantly depends on depth

P (↓, R2 = 0.48)
Mn (↓, R2 = 0.43)
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Brno Reservoir - Plumbum
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Brno Reservoir - Manganum
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Brno Reservoir - Phosphorus
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P − standard approach

slightly significant (R2 = 0.30) significant (R2 = 0.48)
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Results for Nové Mlýny Reservoirs

Compositional approach:
proportion of 7 elements significantly depends on depth

Ni (↑, R2 = 0.48), P (↓, R2 = 0.61), Cr (↑, R2 = 0.68)
Fe (↑, R2 = 0.73), K (↑, R2 = 0.42), Ca (↓, R2 = 0.45)
Al (↑, R2 = 0.57)

Standard approach:
7 elements significantly depend on depth

Ni (↑, R2 = 0.63), Mn (↓, R2 = 0.66), Cr (↑, R2 = 0.76)
Fe (↑, R2 = 0.72), Ti (↑, R2 = 0.82), Si (↓, R2 = 0.63)
Al (↑, R2 = 0.66)
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Summary

Regression with compositional response can be analyzed in a
standard way after using isometric log-ratio tranformation.

Althought regression with coda response leads naturally to
multivariate modeling, univariate approach to estimation give the
same results.

When performing inference, in some cases multivariate and
univariate approaches equaivalent, in others multivariate
approach is necessary.
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