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1. Motivation

3

 Linear Regression Model – Ordinary Least Squares (OLS)

 Inequality Constrained Least Squares (Liew, 1976)

 Nonlinear Inequality Constraints

– Almost Ideal Demand System – AIDS. Deaton and Muellbauer, 1980

– Translog Demand System – TL. Jorgenson, Lau and Stoker, 1982

 Convexity – Concavity, Monotonicty, Nonnegativeness…
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 Bayesian Inference Methods (Geweke, 1986)

– Markov Chain Monte Carlo (MCMC)

 Metropolis-Hastings algorithm (Metropolis et al, 1953; Hasting, 1970)

 Chua et al (2001) estimates nonlinear inequality constrained AIDS and
LogTL models for the US with Bayesian Model Averaging (BMA).

 O’Donnell et al (2001) estimates equality and nonlinear inequality
constrained TL demand system for Oklahoma and Teksas with MCMC. 
They also assume that the model parameters are variable across
individuals and time.

 Koop and Potter (2011) estimates a time-varying VAR model for the
US between 1953:1-2006:2 with MCMC. They have a restriction that
the roots of the VAR polynomial are outside the unit circle.
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 Multicollinearity

 Ridge Regression Estimator (RR, Hoerl and Kennard, 1970)

 Inequliaty Constrained Ridge Regression Estimator (Toker vd., 2013)

 As far as we know, multicollinearity problem in a nonlinear inequality
constrained regression model is not studied in the literature.

 In this study, we define a Nonlinear Inequality Constrained Ridge
Regression Estimator (NICRR).

 Posterior distributions of the parameters are obtained.

 MCMC is suggested to estimate the moments of posterior
distributions.

 OLS, RR, Nonlinear Inequality Constrained Least Squares (NICLS) and
NICRR are compared with a Monte Carlo study.
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2. Model

𝒚 = 𝑿𝜷 + 𝜺 (1)

ℎ𝑟 𝜷 ≥ 0 , 𝑟 = 1,2,… , 𝑅 (2)

 𝒚 = 𝑦1 𝑦2 ⋯ 𝑦𝑛 ′

 𝑿 = 𝒙1 𝒙2 ⋯ 𝒙𝑝 , 𝒙𝑗 = 𝑥1𝑗 𝑥2𝑗 ⋯ 𝑥𝑛𝑗 ′

 𝜷 = 𝛽1 𝛽2 ⋯ 𝛽𝑝 ′

 𝜺 = 𝜀1 𝜀2 ⋯ 𝜀𝑛 ′

 𝑛: #(observations), 𝑝: #(independent variables including a constant), 𝑅: #(restrictions). 
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Assumptions:

 𝐸 𝜺 /𝑿 = 𝟎,

 𝑣𝑎𝑟 𝜺 /𝑿 = 𝜎2𝑰𝑛,

 𝑿 is fixed,

 𝑟𝑎𝑛𝑘 𝑿 = 𝑝.
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3. Multicollinearity and the Ridge Regression
Estimator

 The exact/strong linear relationship between independent
variables.

 Exact multicollinearity:

 𝑎0 + 𝑎1𝒙1 + 𝑎2𝒙2 +⋯+ 𝑎𝑝𝒙𝑝 = 𝟎

– 𝑿′𝑿 = 0,

–  𝜷 = 𝑿′𝑿 −1𝑿′𝒚 = 𝑺−1𝑿′𝒚,

– It is impossible to compute OLS.
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 Strong (severe) multicollinearity: 

 𝑎0 + 𝑎1𝒙1 + 𝑎2𝒙2 +⋯+ 𝑎𝑝𝒙𝑝 ≅ 𝟎

– 𝑿′𝑿 ≅ 0,

–OLS can be computed but

–Magnitudes and signs of the estimates may be different from the
expectations,

– Estimates are highly sensitive to the small changes in the sample,

– Standard errors become bigger,

– 𝑡 statistics become smaller and the null hypotheses are more
oftenly accepted,

– 𝑡 tests suffer from size distortions,

– The power of the 𝑡 tests will drop.
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 Ridge regression estimator (Hoerl and Kennard, 1970)

 𝜷 𝑘 = 𝑿′𝑿 + 𝑘𝑰𝑝
−1
𝑿′𝒚 = 𝑺𝑘

−𝟏𝑿′𝒚, 𝑘 > 0

 Adds a positive constant 𝑘 to the diagonal of 𝑿′𝑿.

(+): Smaller standard errors.

(+): Stabilized estimates.

(−): A biased estimator.

 For a suitably chosen 𝑘, RR is better than OLS in the Mean Square
Error (MSE) sense.
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 MSE of RR:

𝑀𝑆𝐸  𝜷 𝑘 = 𝑐𝑜𝑣  𝜷 𝑘 + 𝑏𝑖𝑎𝑠  𝜷 𝑘 𝑏𝑖𝑎𝑠  𝜷 𝑘
′

= 𝜎2𝑺𝑘
−𝟏𝑺𝑺𝑘

−𝟏 + 𝑘2𝑺𝑘
−𝟏𝜷𝜷′𝑺𝑘

−𝟏

 Hoerl and Kennard (1970) show that RR is better than OLS in the MSE 
sense for

𝑘 =
𝑝𝜎2

𝜷′𝜷

 𝑘 is estimated by

 𝑘𝐻𝐾 =
𝑝  𝜎2

 𝜷′ 𝜷
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 It is possible to obtain RR in a Bayesian framework. Lindley and Smith 
(1972) show that if the prior information is

𝒚~𝑁𝑛 𝑿𝜷, 𝜎2𝑰𝑛 (3)

𝜷~𝑁𝑝 𝟎, 𝜏2𝑰𝑝 (4)

then the Bayesian estimate of 𝜷 is

 𝜷∗ = 𝑿′𝑿 +
𝜎2

𝜏2
𝑰𝑝

−1

𝑿′𝒚 (5)

If 𝑘 is replaced with  𝜎2 𝜏2 in (6) then the resulting estimator is RR.

 RR can be also obtained by solving the following minimisation
problem:

ℒ 𝜷; 𝑘 = 𝒚 − 𝑿𝜷 ′ 𝒚 − 𝑿𝜷 + 𝑘𝜷′𝜷 (6)
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4. Nonlinear Inequality Constrained Ridge Regression
Estimator

Model: 𝒚 = 𝑿𝜷 + 𝜺 (1)

Restrictions: ℎ𝑟 𝜷 ≥ 0 , 𝑟 = 1,2,… , 𝑅 (2)

Prior Information: 𝒚 ~𝑁𝑛 𝑿𝜷, 𝜎2𝑰𝑛 (3)

𝜷 ~𝑁𝑝 𝟎, 𝜏2𝑰𝑝 (4)

𝜏2 =
𝜎2

𝑘
(5)
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𝑓  𝒚 𝜷 , 𝜎2, 𝜏2 = 2𝜋𝜎2  −𝑛 2𝑒𝑥𝑝 −
1

2𝜎2 𝒚 − 𝑿𝜷 ′ 𝒚 − 𝑿𝜷 (7)

𝑓  𝜷 𝜎2, 𝜏2 = 2𝜋𝜏2  −𝑝 2𝑒𝑥𝑝 −
1

2𝜏2
𝜷′𝜷 (8)

𝑓  𝜷, 𝜎2 , 𝜏2 𝒚 =
𝑓 𝜷,𝜎2,𝜏2,𝒚

𝑓 𝒚
=

𝑓  𝒚 𝜷,𝜎2,𝜏2 𝑓 𝜷,𝜎2,𝜏2

𝑓 𝒚

= 𝑐𝑓  𝒚 𝜷 , 𝜎2, 𝜏2 𝑓 𝜷, 𝜎2, 𝜏2 (9)

𝑓 𝜷, 𝜎2, 𝜏2 = 𝑓  𝜷 𝜎2, 𝜏2 𝑓 𝜎2, 𝜏2 𝐼 ℎ (10)

𝐼 ℎ =  
1 , ℎ𝑟 𝜷 ≥ 0 if (∀ 𝑟 = 1,2,… , 𝑅)

0 , ℎ𝑟 𝜷 < 0 if (At least for an 𝑟)
(11)
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 When 𝜏2 > 0 and 𝜎2 > 0, the prior distribution of 𝜏2 and 𝜎2 is

𝑓 𝜎2, 𝜏2 =
1

𝜎2

1

𝜏2
(12)

 If (8) and (12) are replaced in (10)

𝑓 𝜷, 𝜎2, 𝜏2 = 2𝜋𝜏2  −𝑝 2𝑒𝑥𝑝 −
1

2𝜏2
𝜷′𝜷

1

𝜎2

1

𝜏2
𝐼 ℎ (13)
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 If (7) and (13) are replaced in (9)

𝑓  𝜷, 𝜎2, 𝜏2 𝒚 = 𝑐𝑓  𝒚 𝜷 , 𝜎2, 𝜏2 𝑓  𝜷 𝜎2, 𝜏2 𝐼 ℎ

= 𝑐 𝜎2 −
𝑛+2

2 𝜏2 −
𝑝+2

2 (14)

× 𝑒𝑥𝑝 −
1

2𝜎2 𝒚 − 𝑿𝜷 ′ 𝒚 − 𝑿𝜷 −
1

2𝜏2
𝜷′𝜷 𝐼 ℎ
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 If (5) is replaced in (14)

𝑓  𝜷, 𝜎2 𝒚, 𝑘 = 𝑐 𝜎2 −
𝑛+2

2
𝜎2

𝑘

−
𝑝+2

2

× 𝑒𝑥𝑝 −
1

2𝜎2 𝒚 − 𝑿𝜷 ′ 𝒚 − 𝑿𝜷 −
𝑘

2𝜎2𝜷′𝜷 𝐼 ℎ

= 𝑐 𝜎2 −
𝑛+𝑝+4

2 𝑘
𝑝+2

2 (15)

× 𝑒𝑥𝑝 −
1

2𝜎2 𝒚 − 𝑿𝜷 ′ 𝒚 − 𝑿𝜷 + 𝑘𝜷′𝜷 𝐼 ℎ
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 The parameter of interest in (15) is 𝜷.

 When 𝜎2 is integrated out in 𝑓  𝜷, 𝜎2 𝒚, 𝑘 (O’Donnell et al 2001):

𝑓  𝜷 𝒚, 𝑘 = 𝑐𝑘
𝑝+2

2 𝒚 − 𝑿𝜷 ′ 𝒚 − 𝑿𝜷 + 𝑘𝜷′𝜷 −
𝑛+𝑝+2

2 𝐼 ℎ (16)

 (15) and (16) assign positive probabilities on the parameter space only
if the constraints are satisfied.

 Compare (6) and (16):

ℒ 𝜷; 𝑘 = 𝒚 − 𝑿𝜷 ′ 𝒚 − 𝑿𝜷 + 𝑘𝜷′𝜷 (6)
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 The conditional expected value of 𝛽𝑗 from (16) is

𝐸  𝛽𝑗 𝒚, 𝑘 =   ⋯ 𝛽𝑗𝑓  𝜷 𝒚, 𝑘 𝑑𝛽1𝑑𝛽2…𝑑𝛽𝑝 (17)

The estimate of this expected value is called the nonlinear inequality 
constrained ridge regression estimate of 𝛽𝑗.

 It is hard to evaluate (17) analytically.

 However, they can be numerically evaluated with MCMC.
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MCMC estimate of 𝐸  𝛽𝑗 𝒚, 𝑘 :

 𝜷1, 𝜷2, … , 𝜷𝑀 sequence is produced from 𝑓  𝜷 𝒚, 𝑘 .

 The definite integral in (17) is estimated with

 𝛽𝑗 𝑘 =
1

𝑀
 𝑡=1
𝑀 𝜷𝑡 (18)

 𝛽𝑗 𝑘 in (18) is the NICRR estimator of 𝛽𝑗.

 Algorithms such as Metropolis-Hastings, Gibbs sampling and adaptive
harmonic mean can be used to produce the 𝜷1, 𝜷2, … , 𝜷𝑀 sequence
(Casella and George, 1992; Chua et al, 2001).
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The Metropolis-Hasting Algorithm:

1. Let 𝜷0 be an arbitrary starting point which satisfies ℎ𝑟 𝜷0 ≥ 0 (𝑟 =
1,2,… , 𝑅). Set 𝑖 = 0. 

2. For the 𝑖_th 𝜷𝑖, use the symmetrical transition density, 𝑞 𝜷𝑖 , 𝜷𝑐 , to
compute the candidate parameter vector 𝜷𝑐

3. If ℎ𝑟 𝜷𝑐 < 0 for a restriction then set 𝜷𝑖+1 = 𝜷𝑖 and go to Step 7.
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The Metropolis-Hasting Algorithm (Continue):

4. Compute

𝛼 𝜷𝑖 , 𝜷𝑐 = 𝑚𝑖𝑛
𝑓  𝜷𝑐 𝒚,𝑘

𝑓  𝜷𝑖 𝒚,𝑘
, 1

with the marginal density function 𝑓  𝜷 𝒚, 𝑘 .

5. Generate a random number 𝑈 from the continous uniform
distribution between [0,1]. 

6. Set 𝜷𝑖+1 = 𝜷𝑐 if 𝑈 ≤ 𝛼 𝜷𝑖 , 𝜷𝑐 , otherwise 𝜷𝑖+1 = 𝜷𝑖.

7. Set 𝑖 = 𝑖 + 1 and go to Step 2.
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The Metropolis-Hasting Algorithm (Continue):

 𝑁𝑝 𝜷𝑖 , 0,2  𝜎2 can be used for 𝑞 𝜷𝑖 , 𝜷𝑐 .

 𝑘 in (16) can be replaced with  𝑘𝐻𝐾 =  𝑝  𝜎2  𝜷′ 𝜷.

 𝜷1, … , 𝜷𝑠, 𝜷𝑠+1, … , 𝜷𝑠+𝑀

Used
in the

estimation

will be generated.

 𝑠: Burn-in period

 NICRR estimate of 𝛽𝑗:

 𝛽𝑗 𝑘 =
1

𝑀
 𝑡=𝑠+1
𝑠+𝑀 𝜷𝑡
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5. Monte Carlo Experiment

 OLS, RR, NICLS, and NICRR are compared.

 Scalar mean square error (mse) is used for the comparison.

 Independent variables are generated so that they are extent to
multicollinearity.

 Different values for the parameters of the data generating process are
used.
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Model parameters:

 𝑛 = 20, 40

 𝑝 = 5, 9

 𝜎2 = 0,1; 1; 10

 𝑅 = 1, 2, 3 (𝑝 = 5) and 1, 2, 3, 6 (𝑝 = 9) 

 For 𝑝 = 5, 𝛽 = 2 3 5 7 10 ′

 For 𝑝 = 9, 𝛽 = 2 3 5 7 10 −2 6 −4 8 ′
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Restrictions:

 𝑅 = 1

– 𝛽2𝛽3 − 14 ≥ 0

 𝑅 = 2

– 𝛽2𝛽3 − 14 ≥ 0

–  𝛽4 𝛽5 − 0,2 ≥ 0

 𝑅 = 3

– 𝛽2𝛽3 − 14 ≥ 0

–  𝛽4 𝛽5 − 0,2 ≥ 0

–  𝛽4 𝛽2 − 1,5 ≥ 0

 𝑅 = 6

– 𝛽2𝛽3 − 14 ≥ 0

–  𝛽4 𝛽5 − 0,2 ≥ 0

–  𝛽4 𝛽2 − 1,5 ≥ 0

– 𝛽6
2𝛽1 − 7 ≥ 0

– 𝛽8𝛽6 − 6 ≥ 0

–  𝛽9 + 𝛽7 𝛽5 − 0,5 ≥ 0
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Independent variables:

 𝒙1 = 𝟏

 𝑧𝑖𝑗~𝑁 0,1 , 𝑖 = 1,2,… , 𝑛, 𝑗 = 2,3,… , 𝑝 + 1

 𝑥𝑖𝑗 = 1 − 𝜌2𝑧𝑖𝑗 + 𝜌𝑧𝑖,𝑝+1, 𝑖 = 1,2,… , 𝑛, 𝑗 = 2,3,… , 𝑝 (Kibria, 2003)

 𝑐𝑜𝑟𝑟 𝑥𝑗 , 𝑥𝑘 = 𝜌2, 𝑗 ≠ 𝑘

 𝜌 = 0,8; 0,9; 0,99; 0,999; 0,9999

 𝜅 =  𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛
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 𝑠 = 300, 𝑀 = 1000

 𝜷0 = 𝜷

 ℎ𝑘𝑜 𝜷∗ =
1

𝑀𝐶𝑁
 𝑚𝑐𝑖=1
𝑀𝐶𝑁 𝜷𝑚𝑐𝑖

∗ − 𝜷 ′ 𝜷𝑚𝑐𝑖
∗ − 𝜷 (19)

 𝑀𝐶𝑁 = 1000

 Simulations are done with MATLAB (The seed is = 2352367901235).
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6. Findings

 There are 210 different possible combinations for different values of 
𝑛, 𝑝, 𝜎2, 𝑅, 𝜌.

 The effect of each parameter is evaluated seperatly.
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Tablo 1. The effect of 𝜌 (𝑛 = 40, 𝑝 = 9, 𝜎2 = 10, 𝑅 = 3)

𝝆 𝜿 OLS RR NICLS NICRR

0,8 5,93 6,472 6,356 5,685 5,523

0,9 8,96 11,697 11,551 10,268 9,500

0,99 30,03 109,779 79,167 103,466 65,835

0,999 95,58 1108,173 374,716 316,630 158,884

0,9999 302,51 10568,763 2614,598 369,737 183,406
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Tablo 2. The effect of 𝑅 (𝑛 = 20, 𝑝 = 9, 𝜎2 = 1, 𝜌 = 0,999)

𝒓 𝜿 OLS RR NICLS NICRR

1 139,08 390,185 174,783 57,598 53,6142

2 139,08 400,063 178,602 53,398 54,2152

3 139,08 387,322 173,752 50,713 45,8364

4 139,08 386,773 177,756 46,754 28,4079
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Tablo 3. The effect of 𝜎2 (𝑛 = 20, 𝑝 = 5, 𝑅 = 3, 𝜌 = 0,99)

𝝈𝟐 𝜿 OLS RR NICLS NICRR

0,1 21,92 1,347 1,319 1,142 1,194

1 21,92 13,629 11,399 9,655 8,526

10 21,92 134,730 60,071 56,148 32,355
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Tablo 4. The effect of 𝑛 and 𝑝 (𝜎2 = 1, 𝑅 = 3, 𝜌 = 0,99)

𝒏 𝒑 𝜿 OLS RR NICLS NICRR

20 5 21,92 13,629 11,399 9,655 8,526

20 9 44,34 38,986 34,323 24,595 28,429

40 5 17,64 4,639 4,337 3,402 3,255

40 9 30,03 11,100 10,876 10,236 9,634
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7. Results and Discussion

 mse of estimators are increasing with the degree of multicollinearity. 
NICRR is the least effected estimator from this situation.

 mse of estimators decrase as 𝑛 increased, while increased as 𝑝
increases.

 mse of estimators are increased with the error variance. NICRR is the
least effected estimator from this situation.

 The performance of estimators are better as the number of 
constraints increase.

 Results show that NICRR generally outperms the remaining estimators
and it has lower mse values.
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Future research:

 The simulations will be supported with a real life application.

 The case where the constraints are not satisfied will be investigated.

 A likelihood-ratio test will be defined for the test of restrictions.

 An informative prior distribution (such as inverse chi-square, inverse
gamma) for 𝜎2 and 𝜏2 will be used.

 Different starting points will be used instead of real 𝜷.

 𝑠, 𝑀 and 𝑀𝐶𝑁 will be increased.
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