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Influential observations
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Possible reasons for ‘influential observations’:

• (i) possible gross errors due to data processing or due to
measurement errors;

• (ii) responses that due to chance occur at the tail of the
distribution;

• (iii) inaccuracy of the model in describing small subpopulations
of the data;

• (vi) inadequacy of the model when modelling small
subpopulations of the data.
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In summary, assessing influence of cases could help researchers
• to measure the reliability of the scientific conclusions and

• to identify gross errors or important subpopulations.

In this sense, for every statistical conclusion, it needs such
explorative data analysis, which gives analysts an deeper insight
into the data.
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Aim

• In this work, we aim to propose tools for conducting influence
analysis in crossover models with random individual effects.

• Crossover designs: designs in which subjects receive different
treatments in certain orders.

• The term crossover model is a general name for models which
are developed to investigate data obtained from studies with
crossover designs.
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Crossover designs

• Example: AB–BA crossover designs

• Suppose that 2n subjects are in an experiment in order to compare the
effects of two treatments, TRT A and TRT B.

PERIOD I

WASHOUT

PERIOD

PERIOD II

SEQ AB

SEQ BA

TRT A

TRT BTRT B

TRT A
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• AB–BA crossover study with count data

Layard and Arvesen (1978) discussed a crossover clinical trial to
test a standard anti-nausea treatment (drug A) against a proposed
treatment (drug B). Twenty subjects were tested, ten for each
order of administration of drugs. The response variable is the
number of episodes of nausea during the first two hours after
cancer chemotherapy, and for a given patient this is approximately
Poisson distribute. Wash-out period existed between treatment
periods.
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Crossover modelling

• Let yijk represent a count response observed during the k-th period on
jth subject within the i-th sequence in a crossover study, with
i = 1, 2; j = 1, 2, . . . ,m; k = 1, 2. The Poisson crossover model is set up
as {

yijk | γj(i) ∼ Po (λijk), γj(i) ∼ N(0, σ2
γ), for all i , j , k,

lnλijk = µi + πk + τd(i,k) + γj(i),
(1)

I µi is the general mean of the ith sequence;

I φk is the effect of the kth period;

I The value of d(i , k) is the treatment assigned under sequence i in
the kth period; τd(i,k) is the treatment effect due to treatment
d(i , k);

I γj(i) represents random individual effect of the jth subject within

sequence i , which is assumed to be γj(i) i.i.d.∼ N(0, σ2
γ);

I The variances σ2
γ is supposed to be unknown.

Generalized mixed linear model (GMLM; Pierce et al. 1975).
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Influence analysis in GMLMs

• In the generalized mixed linear models, seldom studies discussed
influence analysis in generalized mixed linear models.

I The likelihood function includes high-dimensional integrals.

I Ouwen et al. (2001): numerical curvature of the likelihood displacement
as an influence measure.

I Using the Q-function of the EM-algorithm instead of likelihood funtion,
Zhu et al. (2003) and Xu et al. (2006) derived an analytic approximated
curvature and one-step estimate, respectively.

• Remarks on crossover modelling

I Most applications focus on comparisons of the treatments, while
controlling for the nuisance effects.

I Hao el al. (2014) showed influence analysis of crossover models for
continuous data can carry out in two independent fixed-effect
models.
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• Thus, the overall purpose is to propose a new method to carry
out influence analysis in crossover models for count data with
several novel features.

• to enable evaluations of influence for different estimates or tests
of the interest.

• to underline an important group of mixed models being
disregarded by the previous literature on influence analysis.

• to extend our understanding and interpretation of the proposed
influence measures.

• Tools:

I Perturbation scheme

I Objective function of influence
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Case-weighted perturbation

Perturbation: the possible deviations of the observed data, which are
defined by the perturbation scheme.
ω the perturbation weight.
K the subset of indices for perturbed observations.
[K ] the subset of indices for unperturbed observations.

A case-weighted perturbation scheme exists with respect to K if

(i) β̂ββ(0) is the same as the estimate under the unperturbed model
based on observations corresponding to [K ];

(ii) there is some null perturbation weight ω0 such that β̂ββ(ω0) is the
same as the estimate under the unperturbed model based on all
observations.

Example: If yyyK and yyy [K ] are independent, log-likelihood l(ω) = ωlK + l[K ].
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Perturbations for count data

• Scheme I: case-weighted perturbation.

yyy(ω) =
(
ωyyyT

K , yyy
T

[K ]

)T
, ηηη(ω) =

(
ηηηT

K + (lnω)1T

p , ηηη
T

[K ]

)T
, ω = 1, 2, . . . ,

(2)

where p is the size of set K .

For Poisson crossover model and ijk ∈ K ,

yijk(ω) = ωyijk ,

ηijk(ω) = lnω + ηijk = lnω + µi + xxxT

2,ijkβββ + γj(i),

Interpretation: the length of the period for each treatment for the jth

subject within sequence i increases by (ω − 1) times. For ω → 0, the

length of periods reduces to 0 and, therefore, both the expectation and

variance of the perturbed responses are 0.
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If a single subject is perturbed K = {ij1, ij2}, the contribution of
the perturbed subject to the likelihood is given by∫

g(γj(i))
∏
ijk∈K

exp [yijk(ω)ηijk(ω)− exp{ηijk(ω)} − ln yijk(ω)!] dγj(i),

where g(γj(i)) = (2πσ2
γ)−1/2 exp{−γ2

j(i)/(2σ2
γ)} is the density of

γj(i) ∼ N(0, σ2
γ).
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Other perturbation schemes

• Scheme II: perturbation of shifting response.

yyy(ω) =
(
yyyT

K + ω1T
p , yyy

T
[K ]

)T
, ω = 0, 1, 2, . . . ,

• Scheme III: perturbation of shifting response.

yyy(ω) =
(
ωyyyT

K , yyy
T
[K ]

)T
, ω = 0, 1, 2, . . . ,

where p is the size of K .
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Delta-beta influence

• An appropriate objective function of influence is supposed to be
proposed according to the inferential interest and the application.

• Delta-beta influence:

∆β̂ = β̂(ω)− β̂(ω0).
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Crossover modelling: AB–BA designs

• Reparametrization of the parameters:

π1 = −π2 = π/2, τA = −τB = τ/2.

• In the matrix notation, linear predictor can be rewritten as

lnλλλ = X1µµµ+ X2βββ + Zγγγ, (3)

µµµ = (µ1, µ2)T and βββ = (π, τ)T, γγγ : 2m × 1, Z = I2m ⊗ 12 and

X1 =



1 0
1 0
1 0
1 0
...

...
0 1
0 1
0 1
0 1


, X2 =



1/2 1/2
−1/2 −1/2

1/2 1/2
−1/2 −1/2

...
...

1/2 −1/2
−1/2 1/2

1/2 −1/2
−1/2 1/2


.
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Crossover modelling: AB–BA designs

Let Y1 and Y2 be independent discrete random variables, where

Y1 ∼ Po(λ1)

and
Y2 ∼ Po(λ2).

Then their sum N = Y1 + Y2 is distributed as

N ∼ Po(λ1 + λ2)

and the conditional distribution

Y1|N = n ∼ Bin(n,
λ1

λ1 + λ2
).
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Crossover modelling: AB–BA designs

Two separate models:

Let nij = yij1 + yij2, i = 1, 2, j = 1, . . . ,m.{
nij | γij ∼ Po (δij), γij ∼ N(0, σ2

γ), for all i , j ,

lnδδδ = X̃1µµµ
∗ + Z̃γγγ,

(3)

and {
yij1 ∼ Bin (nij , pij), for all i , j ,

logit(ppp) = X̃2βββ,
(4)

where

I X̃1 = T1X1, X̃2 = T2X2 and Z̃ = T1Z,

I T1 = ( 1
2

1
2
)⊗ I2m and T2 = (1 − 1)⊗ I2m,

I The parameters µµµ, βββ and σ2
γ are the same as the ordinal model.
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Proposed methodology

• Principal ideas:

I Split a crossover model with random subject effects into
several independent models, where at least the interested
parameters are included in fixed effects models.

I Check whether the perturbation scheme affect division after
perturbation.

I Utilising the explicit updating formula for the fixed effects
models.
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Results for case-weighted perturbation

Consider the case-weighted perturbation in (2) for the jth subject in
sequence i i.e. K = {ij1, ij2}.

The change in the estimates of period and treatment effect β̂ββ due to
perturbation is given by

∆β̂ββ = β̂ββ(ω)− β̂ββ(1) =
1

2
ln

{
1 + (ω − 1)yij1(mȳi·1)−1

1 + (ω − 1)yij2(mȳi·2)−1

}(
1 (−1)i+1

)T
,

for i = 1, 2; j = 1, . . . ,m, where m is the number of subjects within each
sequence and ȳi·k = 1

m

∑m
j=1 yijk .
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A useful measure for assessing influence of subjects on the estimates of
period and treatment effects is suggested from the above result. We can
do the following series expansion when (ω − 1)yij1(mȳi·1)−1 < 1 and
(ω − 1)yij2(mȳi·2)−1 < 1,

ln

{
1 + (ω − 1)yij1(mȳi·1)−1

1 + (ω − 1)yij2(mȳi·2)−1

}
=
∞∑
r=1

(−1)r−1

r

(
yij1
mȳi·1

)r

(ω − 1)r −
∞∑
r=1

(−1)r−1

r

(
yij2
mȳi·2

)r

(ω − 1)r

=
∞∑
r=1

(−1)r−1

r

{(
yij1
mȳi·1

)r

−
(

yij2
mȳi·2

)r}
(ω − 1)r (5)

=

(
yij1
ȳi·1
− yij2

ȳi·2

) ∞∑
r=1

r∑
s=1

(−1)r−1

mr r

(
yij1
ȳi·1

)r−s (
yij2
mȳi·2

)s−1

(ω − 1)r . (6)
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The influence on the estimate of βββ is largely dependent to

dij = yij1(ȳi·1)−1 − yij2(ȳi·2)−1

=
1

n̄i·

(
yij1

ȳi·1/n̄i·
− yij2

ȳi·2/n̄i·

)
=

1

n̄i·

(
yij1
p̂ij
− nij − yij1

1− p̂ij

)
=

yij1 − nij p̂ij
n̄i·p̂ij(1− p̂ij)

,

where n̄i· = 1
m

∑m
j=1 nij and p̂ij = logit−1(x̃xxT

2,ijβ̂ββ) = ȳi·1/n̄i·. Note that dij
is proportional to the Pearson residual of the unperturbed model for the
jth subject within sequence i given by

χ̃ij =
yij1 − nij p̂ij√
nij p̂ij(1− p̂ij)

.
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Conclusions

• This work is an example that influence measures are based on
residuals even in some generalized mixed linear models. This
simplifies the understanding and interpretation of the proposed
influence measures.

• A new feature of this method is that we first decompose the mixed
model into two independent models, where one is fixed effects
model, and then the explicit measures of influence for model
parameters are derived. For this reason, the proposed approach is
both statistically and computationally effective.

•

• Although not shown here, graphical tools according to the terms in
series expansion can be used to explore influential observations in
crossover model for count data.
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Further research problems

• Mixed linear model with explicit maximum likelihood estimates;

• Generalized linear mixed model with dispersion parameters;

• Influence on the predictions of random effects.
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Thanks for your attention!
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