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Compositional data

• strictly positive real numbers carrying only relative
information, x = (x1, . . . , xD)′;

• sample space is simplex, SD ;

• Aitchison geometry with Euclidean vector space structure
(perturbation, power transformation, distance, norm and inner
product).
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Motivation-example

• GVA: difference between gross output and intermediate
consumption

• GVA can be decomposed by these activities:

1. Agriculture;
2. Manufacturing: the physical or chemical transformation of

materials of components into new products;
3. Other industry;
4. Services;

→ GVA can be expressed as the sum of these four activities

• Ymanufacturing ∼ Xagriculture + Xother industry + Xservices;

• dataset comes from the World Bank database
(http://data.worldbank.org), includes the data from 131
countries of the world from the year 2010 in constant 2005
USD.
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Isometric logratio transformation
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• zl = (z
(l)
1 , . . . , z

(l)
D−1)′, l = 1, . . . ,D is a real vector;

• (x
(l)
1 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )′ stands for a permutation of the

parts of x where always the l-th compositional part occupies
the first position;

• the first ilr variable z
(l)
1 explains all the relative information

about the original part xl ;

• the coordinates z
(l)
2 , . . . , z

(l)
D−1 explain the remaining logratios

in the composition.
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Analysis of the relation between parts of a composition

• Ymanufacturing ∼ Xagriculture + Xother industry + Xservices;

• x = (x1, x2, x3, x4)′ → x1 ∼ x2 + x3 + x4

→ at least two compositional parts are of simultaneous interest,
although their positions in the regression model are different

• the response variable: z
(l)
1 from (1);

• the explanatory variables: z
(k)
2 , . . . , z

(k)
D−1 corresponding to

reordered subcomposition
(xk , x1, . . . , xi , . . . , xD)′, i 6= {k , l}, k = 1, . . . ,D, k 6= l ;

→ we obtain D − 1 regression models assigned to single
explanatory compositional parts
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Orthogonal regression

• both the response and explanatory variables come from one
composition → all the variables are burdened by errors;

• belongs to so called errors-in-variable models (EIV), forms a
special case of total least squares regression;

• notation: X ∈ Rn×D−2 is the matrix of n replicates of the

vector (z
(k)
2 , . . . , z

(k)
D−1), for a chosen k = 1, . . . ,D, k 6= l ,,

y ∈ Rn the observation vector of the response coordinate z
(l)
1
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Total least-squares method

• originally introduced to solve overdetermined systems of equations
Xb ≈ y;

• in the case of n > D − 2, there is no exact solution → we are
seeking for an approximation;

• classical TLS problem is looking for the minimal errors εX , εy on
the given data X, y that make the system of equations
X̂b = ŷ, X̂ = X + εX , ŷ = y + εy solvable;

• singular value decomposition is applied to Z = [X, y] = UΣV′,
where Σ = Diag(σ1, . . . , σD−1) and σ1 ≥ · · · ≥ σD−1 ≥ 0 are the
singular values of Z;

• partitionings:

V =

[
V11 V12

V21 v22

]
, Σ =

[
Σ1 0
0 σD

]
,

• TLS solution exists iff v22 is non-singular; moreover, it is unique iff
σD−2 6= σD−1, then

b̂ = −V12/v22. (2)
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Use of principal component analysis

• matrices Σ and V from SVD of the centered explanatory and
response variables correspond to outputs of eigenvalue
decomposition of the covariance matrix, performed within
principal component analysis (PCA);

• except of the intercept term in the orthogonal regression
model, the same results as above in (2) can be obtained also
using the smallest eigenvalue and the corresponding
eigenvector (loading vector);

• z = (z1, z2, z3)′

• estimated parameters β are obtained using the values of the
normal vector, n = (n1, n2, n3), (i.e. the loading vector
corresponding to the smallest eigenvalue), namely

β̂0 =
t′n

n3
, β̂1 = −n1

n3
, β̂2 = −n2

n3
.
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Bootstrap sampling

• statistical inferences are not defined for orthogonal regression
→ use of resampling methods;

• we draw a sample S = (X1, . . . ,Xn)′ from a population
P = (x1, . . . , xN)′, where N >> n and we are interested in
some statistic T = t(S) which is estimate of the
corresponding population parameter θ = t(P);

• nonparametric bootstrap allows us to estimate the sampling
distribution of a statistic T empirically without making
assumptions about the form of the population P;
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Nonparametric bootstrap

• we draw a sample of size n from S with replacement;

• the sample S is treated as an estimate of the population P
which means that each element of Xi of S is selected with
probability 1/n to mimick the original selection of the sample
S from the population P;

• procedure is repeated R-times to obtain many bootstrap
samples;

• next step is to compute the statistic T for each bootstrap
sample.
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Notation - ilr transformation in the example

• dependent variable: z
(1)
1 =

√
3
4 ln x1

3
√
x2x3x4

;

• the other two coordinates are formed by permutation of the
remaining three parts,

z
(2)
2 =

√
2
3 ln x2√

x3x4
; z

(2)
3 =

√
1
2 ln x3

x4
,

z
(3)
2 =

√
2
3 ln x3√

x2x4
; z

(3)
3 =

√
1
2 ln x2

x4
,

z
(4)
2 =

√
2
3 ln x4√

x2x3
; z

(4)
3 =

√
1
2 ln x2

x3

→ three regression models are formed;

• z2 = (z
(2)
2 , z

(2)
3 , z

(1)
1 )′, z3 = (z

(3)
2 , z

(3)
3 , z

(1)
1 )′ and

z4 = (z
(4)
2 , z

(4)
3 , z

(1)
1 )′.
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Results

Table: Estimated parameters for the classical orthogonal regression.

parameter z2 std. error z3 std. error z4 std. error

β̂0 -2.151 1.018 -2.151 0.859 -2.151 0.853

β̂1 -0.394 0.147 -0.878 0.720 1.272 0.653

β̂2 -1.242 0.940 -0.962 0.370 0.280 0.475
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Bootstrap confidence intervals

Table: Normal bootstrap confidence intervals for the model z2.

parameter z2 confidence interval

β̂0 -2.151 (-3.938, 0.078)

β̂1 -0.394 (-0.6919, -0.1204)

β̂2 -1.242 (-2.893, 0.833)
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Conclusions

• when we are dealing with compositional data, it is necessary
to firstly transform the data in to the Euclidean space

• the choice of coordinates depends on the methodology used
and on the interpretability of the results

• when both response and explanatory variables contain errors,
it is necessary to use error-in-variable models

• orthogonal regression which is generally solved by SVD of
[X, y], our approach is based on PCA (eigenvalue
decomposition) for interpretation purposes

• it is not possible to obtain statistical inference in the standard
way because of the different estimation of parameters
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