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«SURVIVAL ANALYSIS» 

»FAILURE TIME ANALYSIS» 

«EVENT TIME ANALYSIS» 

 In many applications the primary endpoint of interest is survival 

time. 

 

 Medicine, Biology, Public health, Epidemiology, Engineering… 

 

 We may be interested in characterizing the distribution of  survival 

time (such as death, going out remission…etc)  for a given 

population; 

 

 Comparing survival times among different groups 

 Modelling relationship between survival time and observable covariates 



PARAMETRIC SURVIVAL 

 In parametric survival model is one in which survival time (the 

outcome) follow a known distribution; 

 Weibull 

 Exponential 

 Log-logistic 

 Lognormal 

 Generalized gamma 

 … 

 homogeneous population 





In recent years, new classes of distributions have been proposed to deal 
with hardness of modelling heterogeneous data. 

 
Some Examples 

 Decreasing Failure Rate 
 exponential-geometric  (Adamidis and Loukas, 1998) 

 exponential-Poisson (E-P)(Kus, 2007) 

 exponential-logarithmic (Tahmasbi and Rezaei, 2008)  

 

 Failure Rate with decreasing, increasing and monotone decreasing 
 extended exponential-geometric (Adamidis et al. 2005) 

 weibull-geometric (Barreto-Souza et al., 2010) 

 weibull-logarithmic (Ciumara and Preda, 2009) 

 weibull-Poisson (W-P)(Lu and Shi, 2012) 

 

 

SIMILAR MIXING PROCEDURE INTRODUCED BY ADAMIDIS AND 

LOUKAS 



OUTLINE OF PRESENTATION 

 Compound Poisson Class of Distributions  

o Exponential-zero truncated Poisson (E-P)  

o Weibull-zero truncated Poisson (W-P) 

o Rayleigh-zero truncated Poisson (RAY-P) 

 Methodology 

o EM Algorithm 

 Application 

 Results 

 Discussion 

 



COMPOUND POISSON CLASS 

  Think about a situation where failure (of a device for example) occurs due to the 
precence of an unkown number , Z, of same kind initial defects. Let us define Z as 
a zero truncated Poisson distributed.  

 

 Then let W’s represent the failure times of a unit caused by initial defects and 
each defect can be detected only after causing failure, in which case it is repaired 
perfectly (Adamidis and Loukas, 1998). 

 

 According to W’s distributional assumptions (W1, W2,…,Wz), we can model time 
to first failure X =Min(W1, W2,…,Wz). 

 

 In this study, we will take W’s as exponential, weibull and rayleigh distributed 
randoms 

 

 



E-P (KUS,2007) 
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TO SUMMARIZE…. 

EP 
exponential + zero truncated Poisson 

 

WP 
weibull +zero truncated Poisson distributions, 

 

RayP 
Rayleigh + zero truncated Poisson 

 

with the same mixing procedure 



METHODOLOGY 

 To find MLE’s of distribution parameters, Newton Raphson algorithm is 
one of the standard methods which is widely used. To employ the 
algorithm, second derivates of the log-likelihood are required. 

 

 However EM algorithm is useful when maximizing observed log 
likelihood can be difficult then maximizing the complete data log 
likelihood.  

 

 Recently, EM algorithm has been used by several authors such to find 
the ML estimations of compound distributions’ parameters. 

 

 We will show the steps of EM algorithm for only WP distribution because 
of the limited time… 

 



 To find hypothetical complete data distribution, it is well known 

that the conditional density function can be defined as in equation 

(6). (Alkarni, and Oraby, 2012). Here,    is the parameter vector of 

the weibull distribution. 

 

 

 

 Using (6), the hypothetical complete data distribution is given by 

(7). Here,    is the parameter vector of weibull and zero truncated 

Poisson distributions; 
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 E-step of EM cycle requires the computation of the conditional 

expectation of  Z, which is given below; 

 

 

 Here,                                  is the current estimate of    . Conditional 

probabilty of Z can be given as in equation (8). 

 

 

 

 Using equation (8), we can find the conditional expectation of Z for 

WP distribution as in equation (9). 
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 The EM cycle is completed with M-step. In this step, missing Z’s in 

complete data likelihood (given in equation (10)) are replaced by their 

conditional expectations .  

 

 

 

 Thus, an EM iteration, taking         into           is given by; 
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THE FIRST DATA SET 

 The data concerns 46 observations 

reported on active repair times 

(hours) for an airborne 

communication transceiver.  

 Data set is used as a lifetime 

distribution by many authors. 

 

 

 

airborne communication transceiver 

BWP (Burbank Water and Power) model 

 



DATA CHARACTERISTICS 

Minimum 

 

Maximum 

 

Mean 

 

Median 

 

1st 

quartile 

 

3rd 

quartile 

 

Skewness Kurtosis 

 

0.2 

 

24.5 

 

3.607 

 

1.75 

 

0.800  

 

4.375 

 

2.794666 

 

8.294985 

 



Distribution Parameters KS Test p-value 

EP  0.1051 

WP  0.1111  0.6210 

RP  0.3498  2.5×10-5 

3.41; 0.108( ):   

3.52; 0.09; 1.10): (     

The first data set 

5.92; 0.1: ( 1)   



GRAPHS OF PROBABILITY DENSITY FUNCTIONS 

  

  

t 

f(t) 

WP 

EP 

RayP 



E(t) 

 

1st 

quartile 

 

3rd 

quartile 

 

Skewness Kurtosis 

 

3.558 

 

0.780  

 

4.388 

 

2.893 

 

9.297 

 

Characteristics of EP distribution 

Characteristics of WP distribution 

E(t) 

 

1st 

quartile 

 

3rd 

quartile 

 

Skewness Kurtosis 

 

3.384 

 

0.898 

 

4.304 

 

3.320 

 

17.342 

 

Mean 

 

1st 

quartile 

 

3rd 

quartile 

 

Skewness Kurtosis 

 

3.607 

 

0.800  

 

4.375 

 

2.794666 

 

8.294985 

 

Characteristics of data1 



BOOTSTRAP CONFIDENCE INTERVALS 

Parameters Mean Std.Err. Bootstrap CI 

(95%) 

EP Distribution 

2.7569 

0.1589 

1.8192 

0.09487 

(0.0024, 6.949) 

(0.054, 0.405) 

WP Distribution 

3.1947 

0.1069 

1.1303 

0.9761 

0.0367 

0.1124 

(0.9114, 4.9331) 

(0.0532, 0.2033)  

(0.9444, 1.3835) 

:  

: :   



Distribution boot. lambda boot.beta boot.alpha 

 

 

 

EP 

 

 

 

 

WP 

 



DıSCUSSıON 

 

EP or WP ?         
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