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Introduction

X1, . . . ,Xn be a sample from Np(µ,Σ)

We want to test

H0 : µ = µ0 against H1 : µ 6= µ0

Hotelling’s T2 statistic is the conventional method:

T 2 = n(X̄ − µ0)
′S−1(X̄ − µ0) ∼ T 2

p,n−1

where X̄ =
1

n

n∑

i=1

Xi is a sample mean and

S =
1

n− 1

n∑

i=1

(Xi − X̄)(Xi − X̄)′ is a sample covariance

matrix.
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Introduction

T2 statistic is based on the unbiased estimate S of the
unstructured variance-covariance matrix.

Problem of many time points:

Number of elements of Σ grows quickly.
Estimability and stability of the estimators requires a lot of
observations.
Solution: a simpler variance structure keeps the number of
unknown parameters reasonable.

In practical applications patterned covariance matrices are of
great significance. Several authors have assumed that

Σ = σ2R(ρ)

where σ2 is the scale parameter and the patterned correlation
matrix R(ρ) is a function of the correlation scalar/vector
parameter.
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Patterned covariance matrix

Wilks (1946): considered the compound symmetry (also
known as intraclass or uniform) covariance structure when
dealing with measurements on k equivalent psychological tests

R(ρ) = (1− ρ)I + ρ11′ ,

where −(p− 1)−1 < ρ < 1.
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Patterned covariance matrix

Wilks (1946): considered the compound symmetry (also
known as intraclass or uniform) covariance structure when
dealing with measurements on k equivalent psychological tests

R(ρ) = (1− ρ)I + ρ11′ ,

where −(p− 1)−1 < ρ < 1.

For testing the hypothesis we cannot employ usual Hotelling
T2 test, because it uses only unstructured covariance matrix,
and not the special one.
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Historical remarks
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Historical remarks

The problem of mean test with CS covariance structure was
first considered by Geisser (1963), who arrived to the test
statistic composed of a linear combination of two independent
F-distributions.

Press (1967) considered Behrens-Fisher problem with CS
covariance structures. His solution uses product of
independent beta-distributions.

Arnold (1973) considered testing problems in block compound
symmetry covariance setting. He proposed the
orthogonalization of the problem, and suggested testing by a
product of independent beta-variates.
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Two-level multivariate data

It is common in clinical trial study to collect measurements on
more response variables (q) at several sites/positions (p) on
one experimental unit (person, animal, plant. . . ) to test the
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Two-level multivariate data

It is common in clinical trial study to collect measurements on
more response variables (q) at several sites/positions (p) on
one experimental unit (person, animal, plant. . . ) to test the
effectiveness of a medicine, diet or treatment.

These are called doubly multivariate or two-level multivariate
data.

Example: an investigator measured the mineral content of
bones (radius, humerus and ulna) by photon absorptiometry to
examine whether dietary supplements would slow bone loss in
25 older women. Measurements were recorded for three bones
(q = 3) on the dominant and non-dominant sides (p = 2).
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Block compound symmetry stucture

Let X∗
j ∈ R

q be a response vector at j-th position,
j = 1, . . . , p.

This design causes that vector of observations
X =

(
X∗

1
′, . . . ,X∗

p
′
)′
has a special covariance structure.

One of the possible models is the block compound
symmetry covariance structure:

let VarX∗

j = Σ0 ∀ j
let Cov

(
X∗

j , X
∗

k

)
= Σ1 ∀ j 6= k,

then X ∼ Npq(µ,Γ), where

Γ =




Σ0 Σ1 . . . Σ1

Σ1 Σ0 . . . Σ1

...
...
. . .

...
Σ1 Σ1 . . . Σ0


 = Ip ⊗ (Σ0 − Σ1) + Jp ⊗ Σ1

(we need Σ0 − Σ1 > 0,Σ0 + (p− 1)Σ1 > 0 for Γ > 0).
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Block compound symmetry stucture

q × q block diagonals Σ0 in Γ represent the
variance-covariance matrix of the q response variables at any
given site.

q × q block off diagonals Σ1 in Γ represent the covariance
matrix of the q response variables between any two sites.

We developed test procedure for testing the mean using
appropriate special covariance structure. Usual demand is for:

one-sample test
paired samples test
unpaired two-sample test

Daniel Klein Linköping, August 2014 9 / 37
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X1, . . . ,Xn be random sample from Npq (µ,Γ);

Xi =
(
X∗

i,1
′, . . . ,X∗

i,p
′
)′

∀ i = 1, . . . , n;
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One-sample test

Let PA = A(A′A)+A′ be projector matrix on R(A), and
QA = I − PA projector on its orthogonal complement.

We use Pn and Qn instead of P1n and Q1n , respectively.

X1, . . . ,Xn be random sample from Npq (µ,Γ);

Xi =
(
X∗

i,1
′, . . . ,X∗

i,p
′
)′

∀ i = 1, . . . , n;

X
˜

= (X1, . . . ,Xn) =

(
X∗

•1
˜

′, . . . ,X∗
•p

˜
′

)′

;

S = 1
n−1X˜

QnX˜
′ =




S11 S12 . . . S1p

S21 S22 . . . S2p
...

...
. . .

...
Sp1 Sp2 . . . Spp


,

where Sij =
1

n−1X
∗
•i

˜
QnX

∗
•j

˜
′;
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One-sample test

We want to test H0 : µ = µ0 against H1 : µ 6= µ0.

It is natural to use the following estimators of variances and
covariances:

Σ̂0 =
1

p

p∑

i=1

Sii, Σ̂1 =
1

p(p− 1)

p∑

i=1

p∑

j=1
i 6=j

Sij .

Since S ∼ Wpq

(
n− 1, 1

n−1Γ
)
, it is E [Sij] = Σ1−δij .

The unbiased estimator of Γ is then

Γ̂ = Ip ⊗
(
Σ̂0 − Σ̂1

)
+ Jp ⊗ Σ̂1.
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One-sample test

Γ̂ = Ip ⊗
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Σ̂0 − Σ̂1

)
+ Jp ⊗ Σ̂1 does not follow Wishart

distribution → we cannot use standard T 2 test.
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One-sample test

Γ̂ = Ip ⊗
(
Σ̂0 − Σ̂1

)
+ Jp ⊗ Σ̂1 does not follow Wishart

distribution → we cannot use standard T 2 test.

Since H0 is equivalent to H0 : Zµ = Zµ0 for any
non-singular matrix Z, we propose to use Z = Hp ⊗ Iq, where
Hp is a p× p orthogonal matrix with the first row proportional
to vector of 1’s.
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One-sample test

Then, we have

Y = ZX ∼ Npq (Zµ,Ω) ,

where

Ω = ZΓZ ′ =

(
Σ0 + (p − 1)Σ1 0

0 Ip−1 ⊗ (Σ0 − Σ1)

)
.
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One-sample test
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One-sample test

Neither the estimator Ω̂ =

(
Σ̂0+(p−1)Σ̂1 0

0 Ip−1⊗(Σ̂0−Σ̂1)

)
does

not have a Wishart distribution.

It holds:

Theorem

Distributions of

(n− 1)(p− 1)
(
Σ̂0 − Σ̂1

)
,

(n− 1)
(
Σ̂0 + (p− 1)Σ̂1

)

are independent, and

(n− 1)(p− 1)
(
Σ̂0 − Σ̂1

)
∼ Wq ((n− 1)(p− 1),Σ0 − Σ1) ,

(n− 1)
(
Σ̂0 + (p− 1)Σ̂1

)
∼ Wq (n− 1,Σ0 + (p− 1)Σ1) ,
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One-sample test

Now, we have

Y1, . . . , Yn ∼ Npq (Zµ,Ω) ,

and

Y =
1

n

n∑

i=1

Yi ∼ Npq

(
Zµ,

1

n
Ω

)
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One-sample test

Now, we have

Y1, . . . , Yn ∼ Npq (Zµ,Ω) ,

and

Y =
1

n

n∑

i=1

Yi ∼ Npq

(
Zµ,

1

n
Ω

)
.

Denoting Zµ = δ we consider the vectors Y and δ be
partitioned in p q-dimensional subvectors as

Y =



Y

∗
•1
...

Y
∗
•p


 , and δ =



δ1
...
δp


 .
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One-sample test

Since Ω is block-diagonal with q × q blocks, the corresponding
q-dimensional parts of the sample mean Y

∗
•j are independent

and it holds

Y
∗
•1 ∼ Nq

(
δ1,

1

n
(Σ0 + (p − 1)Σ1)

)

Y
∗
•j ∼ Nq

(
δj ,

1

n
(Σ0 − Σ1)

)
, j = 2, . . . , p.
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Since Ω is block-diagonal with q × q blocks, the corresponding
q-dimensional parts of the sample mean Y

∗
•j are independent

and it holds

Y
∗
•1 ∼ Nq

(
δ1,

1

n
(Σ0 + (p − 1)Σ1)

)

Y
∗
•j ∼ Nq

(
δj ,

1

n
(Σ0 − Σ1)

)
, j = 2, . . . , p.

Then

Y
∗

2 =
1

p− 1

p∑

j=2

Y
∗
•j ∼ Nq

(
δ2,

1

n(p− 1)
(Σ0 − Σ1)

)
,

where δ2 = (δ2 + · · ·+ δp) /(p − 1).
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One-sample test

The means are independent of the variance matrices
estimators, under H0 we have two independent T

2 statistics

n
(
Y

∗
•1 − δ01

)′ (
Σ̂0 + (p − 1)Σ̂1

)−1 (
Y

∗
•1 − δ01

)
∼ T 2

q,n−1 ,

n(p− 1)
(
Y

∗

2 − δ02

)′ (
Σ̂0 − Σ̂1

)−1 (
Y

∗

2 − δ02

)
∼ T 2

q,(n−1)(p−1) .
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One-sample test

The means are independent of the variance matrices
estimators, under H0 we have two independent T

2 statistics

n
(
Y

∗
•1 − δ01

)′ (
Σ̂0 + (p − 1)Σ̂1

)−1 (
Y

∗
•1 − δ01

)
∼ T 2

q,n−1 ,

n(p− 1)
(
Y

∗

2 − δ02

)′ (
Σ̂0 − Σ̂1

)−1 (
Y

∗

2 − δ02

)
∼ T 2

q,(n−1)(p−1) .

A natural test statistics is the convolution of these two. We
call it block T 2.
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One-sample test

It is of the form:

BT
2 = n

(
X − µ0

)′
Z

′

(
(Σ̂0+(p−1)Σ̂1)

−1
0

0 Pp−1⊗(Σ̂0−Σ̂1)
−1

)
Z
(
X − µ0

)

∼ T
2
q,n−1 ⊕ T

2
q,(n−1)(p−1).
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One-sample test

It is of the form:

BT
2 = n

(
X − µ0

)′
Z

′

(
(Σ̂0+(p−1)Σ̂1)

−1
0

0 Pp−1⊗(Σ̂0−Σ̂1)
−1

)
Z
(
X − µ0

)

∼ T
2
q,n−1 ⊕ T

2
q,(n−1)(p−1).

The critical values or p-values of the test can be obtained
using the method of Dyer (1982).
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Paired samples test

Let us have random samples y1, . . . , yn and x1, . . . , xn of
doubly multivariate data measured before and after a
treatment on the same individual i. So,

yi ∼ Npq(µy, Ip ⊗ (Σy0 −Σy1) + Jp ⊗Σy1),

xi ∼ Npq(µx, Ip ⊗ (Σx0 − Σx1) + Jp ⊗ Σx1).
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Paired samples test

Let us have random samples y1, . . . , yn and x1, . . . , xn of
doubly multivariate data measured before and after a
treatment on the same individual i. So,

yi ∼ Npq(µy, Ip ⊗ (Σy0 −Σy1) + Jp ⊗Σy1),

xi ∼ Npq(µx, Ip ⊗ (Σx0 − Σx1) + Jp ⊗ Σx1).

yi and xi are correlated and have a multivariate normal
distribution:

(
y

x

)
∼ N2uq

[(
µy

µx

)
,

(
Σyy Σyx

Σxy Σxx

)]
,

where
(
Σyy Σyx

Σxy Σxx

)
=

[
Ip ⊗ (Σy0 − Σy1) + Jp ⊗ Σy1 Jp ⊗W

Jp ⊗W Ip ⊗ (Σx0 − Σx1) + Jp ⊗ Σx1

]
,

where where W is a q × q symmetric matrix.
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Paired samples test

We want to test the effect of the treatment, which can be
reformulated as testing equality of means, or equivalently, as
zero difference of the corresponding means, i.e.

H0 : µy − µx = 0 against H1 : µy − µx 6= 0
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Paired samples test

We want to test the effect of the treatment, which can be
reformulated as testing equality of means, or equivalently, as
zero difference of the corresponding means, i.e.

H0 : µy − µx = 0 against H1 : µy − µx 6= 0

Denoting µd = E(y − x) = µy − µx we have the hypothesis

H0 : µd = 0 against H1 : µd 6= 0

To estimate Cov(y − x) = Σyy − Σyx − Σxy +Σxx, we need
the estimates of q × q matrices Σy1, Σy0, Σx1, Σx0 and W .
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Paired samples test

The hypothesis testing problem can be formulated in an
alternative way by reparametrizing the variance-covariance
matrix Cov(y − x).
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Paired samples test

The hypothesis testing problem can be formulated in an
alternative way by reparametrizing the variance-covariance
matrix Cov(y − x).

Denote di = yi − xi then d1, . . . , dn are independent and
identically distributed (i.i.d) Nuq (µd; Γ), where

Γ = Cov(d) = Cov(y − x)

= Σyy − Σyx − Σxy +Σxx

= Ip ⊗ (Γ0 − Γ1) + Jp ⊗ Γ1,

where
Γ0 = Σy0 +Σx0 − 2W,

Γ1 = Σy1 +Σx1 − 2W.
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Paired samples test

Applying the results for one-sample test to d1, . . . , dn with
µ0 = 0, we obtain the test statistic of H0 : µd = 0 against
H1 : µd 6= 0 to be

BT 2
d = nd

′
Z ′

(
(Γ̂0+(p−1)Γ̂1)

−1
0

0 Pp−1⊗(Γ̂0−Γ̂1)
−1

)
Zd

∼ T 2
q,n−1 ⊕ T 2

q,(n−1)(p−1).
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Two-sample test

Let us have two independent random samples
U1, . . . , Un ∼ Npq (µU ,Γ) and V1, . . . , Vm ∼ Npq (µV ,Γ). We
want to test

H0 : µU = µV against H1 : µU 6= µV .
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Let us have two independent random samples
U1, . . . , Un ∼ Npq (µU ,Γ) and V1, . . . , Vm ∼ Npq (µV ,Γ). We
want to test

H0 : µU = µV against H1 : µU 6= µV .

Sample means U and V are independent of variance matrices
estimators S1 =

1
n−1U˜

QnU˜
′ and S2 =

1
m−1V˜

QnV˜
′, and thus

also independent of the pooled estimator

Sp =
1

n+m− 2
((n− 1)S1 + (m− 1)S2) .
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Two-sample test

We have two independent statistics

U − V ∼ Npq

(
µU − µV ,

n+m

nm
Γ

)
,

Sp ∼ Wpq

(
n+m− 2,

1

n+m− 2
Γ

)
.
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Two-sample test

We have two independent statistics

U − V ∼ Npq

(
µU − µV ,

n+m

nm
Γ

)
,

Sp ∼ Wpq

(
n+m− 2,

1

n+m− 2
Γ

)
.

We can use the estimators

Γ̂0 =
1

p

p∑

i=1

Sp
ii, Γ̂1 =

1

p(p− 1)

p∑

i=1

p∑

j=1

i 6=j

Sp
ij .
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Two-sample test

We have two independent statistics

U − V ∼ Npq

(
µU − µV ,

n+m

nm
Γ

)
,

Sp ∼ Wpq

(
n+m− 2,

1

n+m− 2
Γ

)
.

We can use the estimators

Γ̂0 =
1

p

p∑

i=1

Sp
ii, Γ̂1 =

1

p(p− 1)

p∑

i=1

p∑

j=1

i 6=j

Sp
ij .

Applying the Theorem, we get

(n+m− 2)(p − 1)
(
Γ̂0 − Γ̂1

)
∼ Wq ((n+m− 2)(p − 1),Γ0 − Γ1)

(n+m− 2)
(
Γ̂0 + (p− 1)Γ̂1

)
∼ Wq (n+m− 2,Γ0 + (p− 1)Γ1) .
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Two-sample test

Since estimators Γ̂0 − Γ̂1 and Γ̂0 + (p− 1)Γ̂1 are based on S
p,

they are independent of U − V .
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Two-sample test

Since estimators Γ̂0 − Γ̂1 and Γ̂0 + (p− 1)Γ̂1 are based on S
p,

they are independent of U − V .

Using analogous procedure as in the one-sample case, we
arrive to block T 2 test statistic

BT 2 =

nm

n+m

(
U − V

)′
Z ′

(
(Γ̂0+(p−1)Γ̂1)

−1
0

0 Pp−1⊗(Γ̂0−Γ̂1)
−1

)
Z
(
U − V

)

∼ T 2
q,n+m−2 ⊕ T 2

q,(n+m−2)(p−1).
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Three-level multivariate data

The procedure could be used also for the-level multivariate
data with doubly exchangeable covariance structure.
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Three-level multivariate data

The procedure could be used also for the-level multivariate
data with doubly exchangeable covariance structure.
X1, . . . ,Xn be a sample from Nspq(µ,Γ), where

Γ = Isp ⊗ (U0 − U1) + Is ⊗ Jp ⊗ (U1 −W ) + Jsp ⊗W =

=




U0 U1 · · · U1 W W · · · W · · · W W · · · W

U1 U0 · · · U1 W W · · · W · · · W W · · · W

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
U1 U1 · · · U0 W W · · · W · · · W W · · · W

W W · · · W U0 U1 · · · U1 · · · W W · · · W

W W · · · W U1 U0 · · · U1 · · · W W · · · W

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
W W · · · W U1 U1 · · · U0 · · · W W · · · W

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
W W · · · W W W · · · W · · · U0 U1 · · · U1

W W · · · W W W · · · W · · · U1 U0 · · · U1

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
W W · · · W W W · · · W · · · U1 U1 · · · U0




,
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Three-level multivariate data

Lemma

Let Z = C
s×s

⊗ C∗

p×p
⊗ Iq where C and C

∗ are orthogonal matrices

whose first rows are proportional to 1’s. Let Γ be a doubly
exchangeable covariance matrix, then ZΓZ ′ is a diagonal matrix
with blocks on diagonal as follows:

ZΓZ′ = Diag (∆3;∆1; . . . ;∆1;∆2;∆1; . . . ;∆1; . . . ;∆2;∆1; . . . ;∆1) ,

where

∆1 = U0 − U1,

∆2 = U0 + (p− 1)U1 − pW = (U0 − U1) + p (U1 −W ) ,

∆3 = U0 + (p− 1)U1 + p (s− 1)W = (U0 − U1) + p (U1 −W ) + spW.
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Unbiased Estimators of ∆1, ∆2 and ∆3

Let X = (X1,X2, . . . ,Xn) be the data matrix from
Nspq(µ,Γ) with doubly exchangeable covariance matrix Γ.
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Let X = (X1,X2, . . . ,Xn) be the data matrix from
Nspq(µ,Γ) with doubly exchangeable covariance matrix Γ.

S =
1

n− 1
XQnX

′ ∼ Wspq

(
n− 1,

1

n− 1
Γ

)
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Unbiased Estimators of ∆1, ∆2 and ∆3

Let X = (X1,X2, . . . ,Xn) be the data matrix from
Nspq(µ,Γ) with doubly exchangeable covariance matrix Γ.

S =
1

n− 1
XQnX

′ ∼ Wspq

(
n− 1,

1

n− 1
Γ

)

Since E(S) = Γ, the unbiased estimators of ∆1, ∆2 and ∆3
are

∆̂1 =
1

s(p− 1)
BTrq[(Is ⊗Qp ⊗ Iq)S],

∆̂2 =
1

s− 1
BTrq [(Qs ⊗ Pp ⊗ Iq)S] ,

∆̂3 = BTrq [(Ps ⊗ Pp ⊗ Iq)S].
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Distributions of ∆̂1, ∆̂2 and ∆̂3

Theorem

The estimators ∆̂1, ∆̂2 and ∆̂3 are mutually independent and

(n− 1)s(p − 1)∆̂1 ∼ Wq ((n − 1)s(p − 1),∆1) ,

(n− 1)(s − 1)∆̂2 ∼ Wq ((n − 1)(s − 1),∆2) ,

(n− 1)∆̂3 ∼ Wq ((n − 1),∆3) .
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Test statistic

The hypothesis:

H0 : µ = µ0 vs H1 : µ 6= µ0
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Test statistic

The hypothesis:

H0 : µ = µ0 vs H1 : µ 6= µ0

The test statistic

BT
2 = n(X − µ0)

′
Z

′
GZ(X − µ0) ∼ T

2
q,n−1 + T

2
q,(n−1)(s−1) + T

2
q,(n−1)s(p−1),

where

G = e1,se
′

1,s ⊗ e1,pe
′

1,p ⊗ ∆̂−1
3 + P

0
s ⊗ e1,pe

′

1,p ⊗ ∆̂−1
2 + Ps ⊗ P

0
p ⊗ ∆̂−1

1 ,

and
P

0
p =

1

p− 1
J
0
p ,

where J0
p is matrix Jp where the elements of first row and first column

are zero.
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Another approach

Under H0 the statistics

√
n
(
1
′
sp ⊗ Iq

)
Z
(
X − µ0

)
∼ Nq (0; spU0) ,

S∗ =
(
1
′
sp ⊗ Iq

)
ZSZ ′ (1sp ⊗ Iq) ∼ Wq

(
n− 1;

sp

n− 1
U0

)

are independent.
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Another approach

Under H0 the statistics

√
n
(
1
′
sp ⊗ Iq

)
Z
(
X − µ0

)
∼ Nq (0; spU0) ,

S∗ =
(
1
′
sp ⊗ Iq

)
ZSZ ′ (1sp ⊗ Iq) ∼ Wq

(
n− 1;

sp

n− 1
U0

)

are independent.

Then

nsp
(
X − µ0

)′
Z ′

(
Psp ⊗ S∗−1

)
Z
(
X − µ0

)
∼ T 2

q,n−1.
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Power simulation

The hypothesis tested is H0 : µ = 0.
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Power simulation

The hypothesis tested is H0 : µ = 0.

The number of sites p is chosen as 2, 3, 5 and 7 and the
number of characteristics q is taken as 3.
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Power simulation

The hypothesis tested is H0 : µ = 0.

The number of sites p is chosen as 2, 3, 5 and 7 and the
number of characteristics q is taken as 3.

Samples of various sizes are drawn from Npq(µ; Γ), with
Γ = Ip ⊗ (Σ0 − Σ1) + Jp ⊗ Σ1.
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Power simulation

The hypothesis tested is H0 : µ = 0.

The number of sites p is chosen as 2, 3, 5 and 7 and the
number of characteristics q is taken as 3.

Samples of various sizes are drawn from Npq(µ; Γ), with
Γ = Ip ⊗ (Σ0 − Σ1) + Jp ⊗ Σ1.

The (3× 3)-dimensional variance-covariance matrices Σ0 and
Σ1 are taken as

Σ0 =




1.54 0.63 0.26
0.63 7.26 −0.31
0.26 −0.31 1.57



 , Σ1 =




0.29 1.03 −0.11
1.03 3.65 −0.17
−0.11 −0.17 0.31



 .

Daniel Klein Linköping, August 2014 32 / 37



Power simulation

The hypothesis tested is H0 : µ = 0.

The number of sites p is chosen as 2, 3, 5 and 7 and the
number of characteristics q is taken as 3.

Samples of various sizes are drawn from Npq(µ; Γ), with
Γ = Ip ⊗ (Σ0 − Σ1) + Jp ⊗ Σ1.

The (3× 3)-dimensional variance-covariance matrices Σ0 and
Σ1 are taken as

Σ0 =




1.54 0.63 0.26
0.63 7.26 −0.31
0.26 −0.31 1.57



 , Σ1 =




0.29 1.03 −0.11
1.03 3.65 −0.17
−0.11 −0.17 0.31



 .

Different real mean values µ are taken as 1pq, e1,p ⊗ 1q and
e1,p ⊗ w, where w = (1, 2, . . . , q)′.
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Power simulation

µ = 1pq

p = 2 p = 3

p = 5 p = 7
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Power simulation

µ = e1,p ⊗ 1q

p = 2 p = 3

p = 5 p = 7
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Power simulation

µ = e1,p ⊗ w
p = 2 p = 3

p = 5 p = 7

Daniel Klein Linköping, August 2014 35 / 37



References

Žežula, I., Klein, D. (2010). Orthogonal decompositions in growth curve models.
Acta et Commentationes Universitatis Tartuensis de Mathematica 14, 35–44.

Leiva, R. (2007). Linear discrimination with equicorrelated training vectors.
Journal of Multivariate Analysis 98, 384–409.

Roy, A., Leiva, R. (2008). Likelihood Ratio Tests for Triply Multivariate Data
with Structured Correlation on Spatial Repeated Measurements. Statistics &
Probability Letters 78(13), 1971–1980.

Roy, A., Leiva, R. (2011). Estimating and Testing a Structured Covariance
Matrix for Three-level Multivariate Data. Communications in Statistics – Theory
and Methods 40(10), 1945–1963.

Roy, A., Fonseca, M. (2012). Linear Models with Doubly Exchangeable
Distributed Errors. Communications in Statistics – Theory and Methods 41(13),
2545–2569.

Roy, A., Leiva, R., Žežula, I., Klein, D. (2013). Testing the Equality of Mean
Vectors for Paired Doubly Multivariate Observations in Blocked Compound
Symmetric Covariance Matrix Setup. To appear.

Dyer, D. (1982). The Convolution of Generalized F Distributions. Journal of the
American Statistical Association 77(377), 184–189.

Daniel Klein Linköping, August 2014 36 / 37



Thank you for your attention
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