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Introduction

@ Xi,..., X, be asample from N,(u,X)

@ We want to test

Ho: p=po against Hi:p# o
@ Hotelling’s T? statistic is the conventional method:

T? =n(X — po)'S™(X — po) ~ Ty

1 &
where X = — ZXZ- is a sample mean and
n

=1
n

1 _ . .
S = p—] E 1(XZ» — X)(X; — X)" is a sample covariance
1=

matrix.
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Introduction

@ T2 statistic is based on the unbiased estimate S of the
unstructured variance-covariance matrix.
@ Problem of many time points:
o Number of elements of 3 grows quickly.
o Estimability and stability of the estimators requires a lot of
observations.
o Solution: a simpler variance structure keeps the number of
unknown parameters reasonable.
@ In practical applications patterned covariance matrices are of
great significance. Several authors have assumed that

¥ = 0’R(p)

where o2 is the scale parameter and the patterned correlation
matrix R(p) is a function of the correlation scalar/vector
parameter.
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Patterned covariance matrix

@ Wilks (1946): considered the compound symmetry (also
known as intraclass or uniform) covariance structure when
dealing with measurements on k equivalent psychological tests

R(p) = (1 - p)I +p1l’,
where —(p— 1)t < p< 1.
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Patterned covariance matrix

@ Wilks (1946): considered the compound symmetry (also
known as intraclass or uniform) covariance structure when
dealing with measurements on k equivalent psychological tests

R(p) = (1 - p)I +p1l’,
where —(p— 1)t < p< 1.
@ For testing the hypothesis we cannot employ usual Hotelling

T2 test, because it uses only unstructured covariance matrix,
and not the special one.
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Historical remarks

@ The problem of mean test with CS covariance structure was
first considered by Geisser (1963), who arrived to the test
statistic composed of a linear combination of two independent
F-distributions.
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Historical remarks

@ The problem of mean test with CS covariance structure was
first considered by Geisser (1963), who arrived to the test
statistic composed of a linear combination of two independent
F-distributions.

@ Press (1967) considered Behrens-Fisher problem with CS
covariance structures. His solution uses product of
independent beta-distributions.

@ Arnold (1973) considered testing problems in block compound
symmetry covariance setting. He proposed the

orthogonalization of the problem, and suggested testing by a
product of independent beta-variates.
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Two-level multivariate data

@ It is common in clinical trial study to collect measurements on
more response variables (¢) at several sites/positions (p) on
one experimental unit (person, animal, plant...) to test the
effectiveness of a medicine, diet or treatment.
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Two-level multivariate data

@ It is common in clinical trial study to collect measurements on
more response variables (¢) at several sites/positions (p) on
one experimental unit (person, animal, plant...) to test the
effectiveness of a medicine, diet or treatment.

@ These are called doubly multivariate or two-level multivariate
data.

@ Example: an investigator measured the mineral content of
bones (radius, humerus and ulna) by photon absorptiometry to
examine whether dietary supplements would slow bone loss in
25 older women. Measurements were recorded for three bones
(¢ = 3) on the dominant and non-dominant sides (p = 2).
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Block compound symmetry stucture

@ Let X7 € R? be a response vector at j-th position,
7=1,....p.
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Block compound symmetry stucture

@ Let X7 € R? be a response vector at j-th position,

7=1,....p.
@ This design causes that vector of observations
X =(Xy,... ,X;’)/ has a special covariance structure.

@ One of the possible models is the block compound
symmetry covariance structure:
o let Var X! =¥ Vj
o let Cov (X7, X}) =51 Vj £k,
@ then X ~ Ny, (p,T), where

Yo X1 ... X
1 Yo ... X1

I = : _— : =L, E —X1)+J, 0%
1 X ... X

(we need Xo — X1 > 0,20 + (p— 1)21 >0 forI" > 0).
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Block compound symmetry stucture

@ ¢ X q block diagonals ¥ in I represent the
variance-covariance matrix of the ¢ response variables at any
given site.

@ ¢ X q block off diagonals X7 in I represent the covariance
matrix of the ¢ response variables between any two sites.

@ We developed test procedure for testing the mean using

appropriate special covariance structure. Usual demand is for:

@ one-sample test
@ paired samples test
@ unpaired two-sample test
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One-sample test

@ Let Py = A(A’A)T A’ be projector matrix on R(A), and
Qa4 =1 — P4 projector on its orthogonal complement.
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Qa4 =1 — P4 projector on its orthogonal complement.

@ We use P, and @, instead of P;,, and ()1, , respectively.

® Xi,..., X, berandom sample from Ny, (1, T');
/
° X, — (X;jl’,...,X;ip’) Vi=1,...,n;

/
o X: (Xla-"an) = <X:1/,...,X;kp/> ’
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One-sample test

@ Let Py = A(A’A)T A’ be projector matrix on R(A), and
Qa4 =1 — P4 projector on its orthogonal complement.

@ We use P, and @, instead of P;,, and ()1, , respectively.

® Xi,..., X, berandom sample from Ny, (1, T');
/
X, = (X;jl’,...,X;ip’) Vi=1,...,n;

(]

/
X:(Xl,...,Xn): <)/(;.1/,...,X;kp/> ;

[+
S11 S ... Slp
So1 SS9 ... S
_ 1 r_ P
0 5= 5XQX = : : . -
Spt Spr ... Sy
where S;; = —nilinQanj’;
Daniel Klein Linkoping, August 2014
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One-sample test

o We want to test Hy : = po against Hy : u # uyo.

@ It is natural to use the following estimators of variances and
covariances:

=R 1 p R 1 p p
So=-> S Si=—" Sij.
p; ! p(p—l);Z; N

= =1 j=

i

o Since § ~ Wy (n—1,555T), it is BISy] = T14,.
@ The unbiased estimator of I' is then

~

F:Ip®(§o—§1>+Jp®§1.
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One-sample test

o T = I, ® (f)o - f)l) +J,p® f)l does not follow Wishart

distribution — we cannot use standard 72 test.
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One-sample test

o T = I, ® (f)o - f)l) +J,p® f)l does not follow Wishart
distribution — we cannot use standard 72 test.

@ Since Hy is equivalent to Hy : Zp = Zug for any
non-singular matrix Z, we propose to use Z = H, ® I, where
Hp, is a p x p orthogonal matrix with the first row proportional
to vector of 1's.
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One-sample test

@ Then, we have
Y =7ZX ~ Ny (Zp,Q),

where

Yo+ (p— 1) 0 >
Q=217 =79 .
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One-sample test

. ) ~ by - 0
@ Neither the estimator 2 = o+ (p-1)Z1 s o« does
0 Ip_1®(20—21)

not have a Wishart distribution.
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One-sample test

. . ~ by - 0
@ Neither the estimator 2 = o+ (p-1)Z1 s o« does
0 I, 1®(Z0—%1)
not have a Wishart distribution.
@ It holds:
Theorem

Distributions of

(n=1)p—-1) (S0-%),

(n—1) (io +(p— 1)§1)

are independent, and

(n=1)(p—1) (S0 = 1) ~ Wy (0 = D)(p — 1), 50 - ),

(n=1) (So+ (= 1DS1) ~ Wy (n=1,%0 + (p— )%0),
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One-sample test

@ Now, we have

and
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One-sample test

@ Now, we have

and

@ Denoting Zu = § we consider the vectors Y and § be
partitioned in p g-dimensional subvectors as

7K

Yol 51
Y = ], and 6= :
7%
Yep Op
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One-sample test

@ Since () is block-diagonal with g x ¢ blocks, the corresponding
g-dimensional parts of the sample mean ij are independent
and it holds

—x 1
Yo ~ Ng(61,— X0+ (p—1)%1)
n

1

ijNNq <5J75(20_21)>7 ]:277]9
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One-sample test

@ Since () is block-diagonal with g x ¢ blocks, the corresponding
g-dimensional parts of the sample mean ij are independent

and it holds

— 1
Yo ~Ng (517 - (Zo+(p— 1)21)>

1

ijNNq <5J75(20_21)>7 ]:277]9

@ Then

YYo= —— Y, ~Ny(b0y, ——— (39— X2
; p_ljz—; K q<2’n(p—1)(0 1)>’

where §3 = (82 + -+ +6,) /(p — 1).
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One-sample test

@ The means are independent of the variance matrices
estimators, under Hy we have two independent T? statistics

— IAVN ~ N1/,
n (Y.1 - 501) (Zo +(p— 1)21> (Y.l - 501) ~TE

n(p—1) <?; - 502)/ (ﬁo - i\31)_1 (?Z - 502) ~ TqQ,(n—l)(p—l) ’
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One-sample test

@ The means are independent of the variance matrices
estimators, under Hy we have two independent T? statistics

n (?il — (501)/ (io + (p - 1)§1>_1 <?i1 - 501) ~ Tq2,n—1 ’
n(p—1) <?; - 502)/ (ﬁo - i\31)_1 (?Z - 502) ~ TqQ,(n—l)(p—l) )

@ A natural test statistics is the convolution of these two. We
call it block T?2.
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One-sample test

@ It is of the form:
BT? = n (7_ )/Z/ (f30+(P*1)f31)71 0 A (7 _ )
Ho 0 Ppo1®(S0-51)" Ho

2 2
~ T O T (n-1)(p-1)-
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One-sample test

@ It is of the form:
BT? = n (7_ )/Z/ (f30+(P*1)f31)71 0 A (7 _ )
Ho 0 Ppo1®(S0-51)" Ho

2 2
~Tgn_1® Tq,(n—l)(p—l)'

@ The critical values or p-values of the test can be obtained
using the method of Dyer (1982).
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Paired samples test

@ Let us have random samples y1,...,¥y, and z1,...,z, of
doubly multivariate data measured before and after a
treatment on the same individual 7. So,

Yi ~ Npg(y, Ip @ (Eyo — X)) + Jp @ Xpp),

Ti NNPQ(:“:C; ]p®(EIO_EIl)+Jp®le).
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Paired samples test

@ Let us have random samples y1,...,¥y, and z1,...,z, of
doubly multivariate data measured before and after a
treatment on the same individual 7. So,

Yi ~ Npg(y, Ip @ (Eyo — X)) + Jp @ Xpp),

Ti NNPQ(:“:C; ]p®(EIO_EI1)+Jp®le).

@ y; and x; are correlated and have a multivariate normal

distribution:
Yy o Hy Yyy  Dyo
(2) e [G2)- (2 52
where
Yyy  Yye _ Ip ® (3yo — Zy1) + Jp ® Xy Jp @ W
Ezy Ezz Jp®W Ip®(210 _Zzl)+Jp®Ezl ’

where where W is a ¢ X ¢ symmetric matrix.
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Paired samples test

@ We want to test the effect of the treatment, which can be
reformulated as testing equality of means, or equivalently, as
zero difference of the corresponding means, i.e.

Ho: py—pz =0 against Hy @y — g # 0
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Paired samples test

@ We want to test the effect of the treatment, which can be
reformulated as testing equality of means, or equivalently, as
zero difference of the corresponding means, i.e.

Ho: py—pz =0 against Hy @y — g # 0
@ Denoting g = E(y — ) = py — . we have the hypothesis
Ho: pg=0 against Hj:pug#0

@ To estimate Cov(y — x) = Xyy — Xyp — Xpy + Xz, We need
the estimates of ¢ X g matrices X1, Y0, 241, Xz0 and W.
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Paired samples test

@ The hypothesis testing problem can be formulated in an
alternative way by reparametrizing the variance-covariance
matrix Cov(y — z).
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Paired samples test

@ The hypothesis testing problem can be formulated in an
alternative way by reparametrizing the variance-covariance
matrix Cov(y — z).

@ Denote d; = y; — x; then d1,...,d, are independent and
identically distributed (i.i.d) Nyq (1q; ), where

I'=Cov(d) = Cov(y—x)
— Eyy - Zyx - Zzy + Zzz
= L,oTy—T1)+J,0TIy,
where
Lo = Xyo + Xz0 — 2W,
I =Xy + X1 — 2W.

Daniel Klein Linkoping, August 2014
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Paired samples test

@ Applying the results for one-sample test to d, ..., d, with
o = 0, we obtain the test statistic of Hy : pug = 0 against
Hyi: pg #0to be

= ~ -1
BT? = nd 7' <(F“+(p_1)“) o 1> 7d
0 Pp—1®(FO_F1)

2 2
~ Tyn-1 9 Ty (n1)p-1)-
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Two-sample test

@ Let us have two independent random samples
Ul,.. U ~ pq(uU, ) and Vl,...,Vm ~ Npq(,uv,r). We
want to test

Ho: py =py against Hi: py # py.

Daniel Klein Linkoping, August 2014 23 /37



Two-sample test

@ Let us have two independent random samples
Uiy ..., Uy ~ Npg (p,T') and Vi, ..., Vi ~ Npg (e, I'). We
want to test

Ho: py =py against Hi: py # py.

@ Sample means U and V are independent of variance matrices
estimators S1 = —=UQ,U’ and S» = =V Q,V’, and thus
also independent of the pooled estimator

SP = ﬁ (n—1)S1+ (m—1)S).
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Two-sample test

@ We have two independent statistics

- — n+m
U_VNNpq<:U‘U_,U‘V7 P>7
nm

1
SpNqu <n+m—2,mf>
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Two-sample test

@ We have two independent statistics

- — n+m
U_VNNpq<:U‘U_,U‘V7 P>7
nm
1
SP Wi <n+m—2,71“>.

n+m-—2
@ We can use the estimators

=R 1 p =R 1 p P
Fo=-%"s", Tp=—— s
i#]
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Two-sample test

@ We have two independent statistics

- — n+m
U_VNNpq<:U‘U_,U‘V7 P>7
nm
SP~ Wy | n+m —2 ;F
Pa ‘n+m-—-2 )
@ We can use the estimators
N 12 N 1 P P
To=-38% Tj=— s
i#]
@ Applying the Theorem, we get
(n+m—2)(p—1) (fo—fl) ~ W, ((n+m—2)(p—1),Ty —Ty)

(n+m—2) (To+ (p = DTy ) ~ Wy (n+m —2,To+ (p— 1)),
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Two-sample test

@ Since estimators fo — fl_and_fo +(p— 1)?1 are based on SP?,
they are independent of U — V.
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Two-sample test

@ Since estimators fo — fl_and_fo +(p— 1)?1 are based on SP?,
they are independent of U — V.

@ Using analogous procedure as in the one-sample case, we
arrive to block 72 test statistic

BT? =
=~ =~ \—1
n?:_mm (U B V)/Z/ <(F0+(P—01)F1) b ®(f0 s )_1> A (U - V)
p—1 0 1

2 2
~ Tynam—2 O Tg (nim—2)(p—-1)-
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Three-level multivariate data

@ The procedure could be used also for the-level multivariate
data with doubly exchangeable covariance structure.
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Three-level multivariate data

@ The procedure could be used also for the-level multivariate
data with doubly exchangeable covariance structure.
® Xi,..., X, beasample from Ny, (1, "), where

I' = Ip,@U—U)+ Lo, @ (Ui — W)+ Jp, @W =

Ug U - U |W W - W/ | W W w ]
Uy - U |W W Wil |w w W
vy Uy - U |W W . W W W 4%
W W - W | U U1 --- Ui W W W
w w . Wl Uy - Uy W W w
w o w .. wlu vt o U |- |W W o W
W W W W W 1% Uo U1 --- U1
W W wlw w 1% Uy Uy - Uy
v w . W|Ww W ... W |- |UhW Ui - Uy |
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Three-level multivariate data

Lemma

Let Z = C ® C* ® I, where C" and C* are orthogonal matrices

SXS  pXp
whose first rows are proportional to 1's. Let I' be a doubly
exchangeable covariance matrix, then ZT'Z' is a diagonal matrix
with blocks on diagonal as follows:

ZU7Z" = Diag (As; At;. . 5813 82; Avs .5 Axs .5 A2 Ar 5 A,

where

Al = UO_UL

Ay = U+ (p—1)Ur—pW = (Uo —U1) +p (UL — W),

Az = Uo+(p—1)U1+p(8—1)W:(U0—U1)+p(U1—W)+SpW.
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Unbiased Estimators of A, Ay and Az

o Let X = (X3, Xo,...,X,,) be the data matrix from
Npg(p, I') with doubly exchangeable covariance matrix T'.
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Unbiased Estimators of A, Ay and Az

o Let X = (X3, Xo,...,X,,) be the data matrix from
Npg(p, I') with doubly exchangeable covariance matrix T'.

-]
1 1
§= = XQuX' ~ W <n —1, —1r>

Daniel Klein Linkoping, August 2014

28 / 37



Unbiased Estimators of A, Ay and Az

o Let X = (X3, Xo,...,X,,) be the data matrix from

Nipq(p, I') with
°

doubly exchangeable covariance matrix IT'.

1 1
S = mXQnX/ ~ Wqu <7’L — 1, mf)

@ Since E(S) =T,

are
A
Ay

~

As

Daniel Klein

the unbiased estimators of A1, Ay and Aj

1
W BTrq[(Is ® QP ® IQ)S]7
_ ﬁBTrq (Qs® P, ®1,) S,

= BTr[(Ps ®@ P, ® I,)S].
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Distributions of 31, 32 and 33

Theorem

The estimators 31, 32 and 33 are mutually independent and

(n=Ds(p = DAL ~ Wy((n=1)s(p—1),A1),
(n—=1)(s—1)Ay ~ Wy((n—1)(s—1),As),
(n=1DAs ~ Wy((n—1),As).
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Test statistic

@ The hypothesis:

Ho: p=ypo vs Hi: p# g
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Test statistic

@ The hypothesis:

Ho: p=po vs Hi: p# po
@ The test statistic

BT? =n(X — 0)' Z2'GZ(X — o) ~ Tt + T2,(n—l)(s—1) + T2,(n—l)s(p—1)7

where
G=ee Qe e, @A0; + P’ ®eipel, @A +P.®@ P @AY,

and
po= L o
P = p—1 P
where Jp is matrix .J, where the elements of first row and first column

are zero.
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Another approach

o Under Hj the statistics

N (1;p ® Iq) Z (Y — ,uo) ~ N, (0; spUy) ,

S*=(1,,®1,) ZSZ' (14 @ I,) ~ W, (n — 1 nSf1U0>

are independent.
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Another approach

o Under Hj the statistics

N (1;p ® Iq) Z (Y — ,uo) ~ N, (0; spUy) ,

S*=(1,,®1,) ZSZ' (14 @ I,) ~ W, (n — 1 nSf1U0>

are independent.
@ Then

nsp (Y — /J,Q)/Z/ (Psp ® S*_l) Z (Y — HO) ~ Tq%n_l.
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Power simulation

@ The hypothesis tested is Hy : = 0.
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Power simulation

@ The hypothesis tested is Hy : = 0.

@ The number of sites p is chosen as 2, 3, 5 and 7 and the
number of characteristics ¢ is taken as 3.
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Power simulation

@ The hypothesis tested is Hy : = 0.

@ The number of sites p is chosen as 2, 3, 5 and 7 and the
number of characteristics ¢ is taken as 3.

@ Samples of various sizes are drawn from Ny, (p; I'), with
F:IP(X)(ZO—Zl)—I-Jp@Zl.
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Power simulation

@ The hypothesis tested is Hy : = 0.

@ The number of sites p is chosen as 2, 3, 5 and 7 and the
number of characteristics ¢ is taken as 3.

@ Samples of various sizes are drawn from Ny, (p; I'), with
F:IP(X)(ZO—Zl)—I-Jp@Zl.

@ The (3 x 3)-dimensional variance-covariance matrices > and
Y1 are taken as

1.54 0.63 0.26 0.29 1.03 -0.11
Yo=1063 726 031, X¥;=1 103 3.656 —0.17|.

0.26 —-0.31 1.57 -0.11 -0.17 0.31
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Power simulation

@ The hypothesis tested is Hy : = 0.

@ The number of sites p is chosen as 2, 3, 5 and 7 and the
number of characteristics ¢ is taken as 3.

@ Samples of various sizes are drawn from Ny, (p; I'), with
F:IP(X)(ZO—Zl)—I-Jp@Zl.

@ The (3 x 3)-dimensional variance-covariance matrices > and
Y1 are taken as

1.54 0.63 0.26 0.29 1.03 -0.11
Yo=1063 726 031, X¥;=1 103 3.656 —0.17|.
0.26 —-0.31 1.57 -0.11 -0.17 0.31

@ Different real mean values y are taken as 1,4, 1, ® 1, and
e1p ®w, where w = (1,2,...,q)".
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Power simulation

g
0.5 0.5
0.6 0.6
0.4 0.4
0.2 024
o
10 20 30 10 20 30
Block > 72 Hotelling BlockT> —— 72 Hotelling
19 19 —
0.8 0.8
0.6 0.6
& £
0.4 0.4
0.2 024
o
0 1o 20 30 10 20 30
[ Block T2 72 Horelling Block T2 72 Hotelling |
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Power simulation

p=eip®ly
p=2 p=3

19 19 -
0.5 0.5
0.6 0.6
0.4 0.4
0.2 024

o
10 20 30 10 20 30
Block > 72 Hotelling BlockT> —— 72 Hotelling

pP=5 p="7

19 19

0.5 0.5

0.6 0.6
& g

0.4 0.4+

02+ 02+

o
o To 20 30 10 20 30
[ Block T2 72 Horelling Block T2 72 Hotelling |
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Power simulation

H:€17p®w

05 0.8
0.6
0.4
024 024
o
o 20 30 10 20 30
Block T2 72 Horelling BlockT> —— 72 Horelling
19 19
05 0.8
0.6 0.64
& :
0.4 0.4
024 024
o
o To B 0 10 2o 30
[ Block ° I Horelling Block T° 72 Hotelling
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Thank you for your attention
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