Multivariate data with block compound symmetry covariance structure

Daniel Klein
Faculty of Science
P. J. Šafárik University, Košice, Slovakia

Linköping, August 2014
joint work with A. Roy, R. Leiva, I. Žežula

Contents

(1) Introduction
(2) Two-level multivariate data

- One-sample test
- Paired samples test
- Two-sample test
(3) Three-level multivariate data

4 Another approach
(5) References

Introduction

- X_{1}, \ldots, X_{n} be a sample from $N_{p}(\mu, \Sigma)$

Introduction

- X_{1}, \ldots, X_{n} be a sample from $N_{p}(\mu, \Sigma)$
- We want to test

$$
H_{0}: \mu=\mu_{0} \quad \text { against } \quad H_{1}: \mu \neq \mu_{0}
$$

Introduction

- X_{1}, \ldots, X_{n} be a sample from $N_{p}(\mu, \Sigma)$
- We want to test

$$
H_{0}: \mu=\mu_{0} \quad \text { against } \quad H_{1}: \mu \neq \mu_{0}
$$

- Hotelling's T^{2} statistic is the conventional method:

$$
T^{2}=n\left(\bar{X}-\mu_{0}\right)^{\prime} S^{-1}\left(\bar{X}-\mu_{0}\right) \sim T_{p, n-1}^{2}
$$

where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is a sample mean and
$S=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\prime}$ is a sample covariance
matrix.

Introduction

- T^{2} statistic is based on the unbiased estimate S of the unstructured variance-covariance matrix.

Introduction

- T^{2} statistic is based on the unbiased estimate S of the unstructured variance-covariance matrix.
- Problem of many time points:

Introduction

- T^{2} statistic is based on the unbiased estimate S of the unstructured variance-covariance matrix.
- Problem of many time points:
- Number of elements of Σ grows quickly.

Introduction

- T^{2} statistic is based on the unbiased estimate S of the unstructured variance-covariance matrix.
- Problem of many time points:
- Number of elements of Σ grows quickly.
- Estimability and stability of the estimators requires a lot of observations.

Introduction

- T^{2} statistic is based on the unbiased estimate S of the unstructured variance-covariance matrix.
- Problem of many time points:
- Number of elements of Σ grows quickly.
- Estimability and stability of the estimators requires a lot of observations.
- Solution: a simpler variance structure keeps the number of unknown parameters reasonable.

Introduction

- T^{2} statistic is based on the unbiased estimate S of the unstructured variance-covariance matrix.
- Problem of many time points:
- Number of elements of Σ grows quickly.
- Estimability and stability of the estimators requires a lot of observations.
- Solution: a simpler variance structure keeps the number of unknown parameters reasonable.
- In practical applications patterned covariance matrices are of great significance. Several authors have assumed that

$$
\Sigma=\sigma^{2} R(\rho)
$$

where σ^{2} is the scale parameter and the patterned correlation matrix $R(\rho)$ is a function of the correlation scalar/vector parameter.

Patterned covariance matrix

- Wilks (1946): considered the compound symmetry (also known as intraclass or uniform) covariance structure when dealing with measurements on k equivalent psychological tests

$$
R(\rho)=(1-\rho) I+\rho \mathbf{1 1}^{\prime}
$$

where $-(p-1)^{-1}<\rho<1$.

Patterned covariance matrix

- Wilks (1946): considered the compound symmetry (also known as intraclass or uniform) covariance structure when dealing with measurements on k equivalent psychological tests

$$
R(\rho)=(1-\rho) I+\rho \mathbf{1 1}^{\prime}
$$

where $-(p-1)^{-1}<\rho<1$.

- For testing the hypothesis we cannot employ usual Hotelling T^{2} test, because it uses only unstructured covariance matrix, and not the special one.

Historical remarks

- The problem of mean test with CS covariance structure was first considered by Geisser (1963), who arrived to the test statistic composed of a linear combination of two independent F-distributions.

Historical remarks

- The problem of mean test with CS covariance structure was first considered by Geisser (1963), who arrived to the test statistic composed of a linear combination of two independent F-distributions.
- Press (1967) considered Behrens-Fisher problem with CS covariance structures. His solution uses product of independent beta-distributions.

Historical remarks

- The problem of mean test with CS covariance structure was first considered by Geisser (1963), who arrived to the test statistic composed of a linear combination of two independent F-distributions.
- Press (1967) considered Behrens-Fisher problem with CS covariance structures. His solution uses product of independent beta-distributions.
- Arnold (1973) considered testing problems in block compound symmetry covariance setting. He proposed the orthogonalization of the problem, and suggested testing by a product of independent beta-variates.

Two-level multivariate data

- It is common in clinical trial study to collect measurements on more response variables (q) at several sites/positions (p) on one experimental unit (person, animal, plant...) to test the effectiveness of a medicine, diet or treatment.

Two-level multivariate data

- It is common in clinical trial study to collect measurements on more response variables (q) at several sites/positions (p) on one experimental unit (person, animal, plant...) to test the effectiveness of a medicine, diet or treatment.
- These are called doubly multivariate or two-level multivariate data.

Two-level multivariate data

- It is common in clinical trial study to collect measurements on more response variables (q) at several sites/positions (p) on one experimental unit (person, animal, plant...) to test the effectiveness of a medicine, diet or treatment.
- These are called doubly multivariate or two-level multivariate data.
- Example: an investigator measured the mineral content of bones (radius, humerus and ulna) by photon absorptiometry to examine whether dietary supplements would slow bone loss in 25 older women. Measurements were recorded for three bones ($q=3$) on the dominant and non-dominant sides $(p=2)$.

Block compound symmetry stucture

- Let $X_{j}^{*} \in \mathbb{R}^{q}$ be a response vector at j-th position, $j=1, \ldots, p$.

Block compound symmetry stucture

- Let $X_{j}^{*} \in \mathbb{R}^{q}$ be a response vector at j-th position, $j=1, \ldots, p$.
- This design causes that vector of observations $X=\left(X_{1}^{* \prime}, \ldots, X_{p}^{* \prime}\right)^{\prime}$ has a special covariance structure.

Block compound symmetry stucture

- Let $X_{j}^{*} \in \mathbb{R}^{q}$ be a response vector at j-th position, $j=1, \ldots, p$.
- This design causes that vector of observations $X=\left(X_{1}^{* \prime}, \ldots, X_{p}^{* \prime}\right)^{\prime}$ has a special covariance structure.
- One of the possible models is the block compound symmetry covariance structure:

Block compound symmetry stucture

- Let $X_{j}^{*} \in \mathbb{R}^{q}$ be a response vector at j-th position, $j=1, \ldots, p$.
- This design causes that vector of observations $X=\left(X_{1}^{* \prime}, \ldots, X_{p}^{* \prime}\right)^{\prime}$ has a special covariance structure.
- One of the possible models is the block compound symmetry covariance structure:
- let $\operatorname{Var} X_{j}^{*}=\Sigma_{0} \forall j$

Block compound symmetry stucture

- Let $X_{j}^{*} \in \mathbb{R}^{q}$ be a response vector at j-th position, $j=1, \ldots, p$.
- This design causes that vector of observations $X=\left(X_{1}^{* \prime}, \ldots, X_{p}^{* \prime}\right)^{\prime}$ has a special covariance structure.
- One of the possible models is the block compound symmetry covariance structure:
- let $\operatorname{Var} X_{j}^{*}=\Sigma_{0} \forall j$
- let $\operatorname{Cov}\left(X_{j}^{*}, X_{k}^{*}\right)=\Sigma_{1} \forall j \neq k$,

Block compound symmetry stucture

- Let $X_{j}^{*} \in \mathbb{R}^{q}$ be a response vector at j-th position, $j=1, \ldots, p$.
- This design causes that vector of observations $X=\left(X_{1}^{* \prime}, \ldots, X_{p}^{* \prime}\right)^{\prime}$ has a special covariance structure.
- One of the possible models is the block compound symmetry covariance structure:
- let $\operatorname{Var} X_{j}^{*}=\Sigma_{0} \forall j$
- let $\operatorname{Cov}\left(X_{j}^{*}, X_{k}^{*}\right)=\Sigma_{1} \forall j \neq k$,
- then $X \sim N_{p q}(\mu, \Gamma)$, where

$$
\begin{aligned}
& \Gamma=\left(\begin{array}{cccc}
\Sigma_{0} & \Sigma_{1} & \ldots & \Sigma_{1} \\
\Sigma_{1} & \Sigma_{0} & \ldots & \Sigma_{1} \\
\vdots & \vdots & \ddots & \vdots \\
\Sigma_{1} & \Sigma_{1} & \ldots & \Sigma_{0}
\end{array}\right)=I_{p} \otimes\left(\Sigma_{0}-\Sigma_{1}\right)+J_{p} \otimes \Sigma_{1} \\
& \text { (we need } \Sigma_{0}-\Sigma_{1}>0, \Sigma_{0}+(p-1) \Sigma_{1}>0 \text { for } \Gamma>0 \text {). }
\end{aligned}
$$

Block compound symmetry stucture

- $q \times q$ block diagonals Σ_{0} in Γ represent the variance-covariance matrix of the q response variables at any given site.

Block compound symmetry stucture

- $q \times q$ block diagonals Σ_{0} in Γ represent the variance-covariance matrix of the q response variables at any given site.
- $q \times q$ block off diagonals Σ_{1} in Γ represent the covariance matrix of the q response variables between any two sites.

Block compound symmetry stucture

- $q \times q$ block diagonals Σ_{0} in Γ represent the variance-covariance matrix of the q response variables at any given site.
- $q \times q$ block off diagonals Σ_{1} in Γ represent the covariance matrix of the q response variables between any two sites.
- We developed test procedure for testing the mean using appropriate special covariance structure. Usual demand is for:

Block compound symmetry stucture

- $q \times q$ block diagonals Σ_{0} in Γ represent the variance-covariance matrix of the q response variables at any given site.
- $q \times q$ block off diagonals Σ_{1} in Γ represent the covariance matrix of the q response variables between any two sites.
- We developed test procedure for testing the mean using appropriate special covariance structure. Usual demand is for:
- one-sample test

Block compound symmetry stucture

- $q \times q$ block diagonals Σ_{0} in Γ represent the variance-covariance matrix of the q response variables at any given site.
- $q \times q$ block off diagonals Σ_{1} in Γ represent the covariance matrix of the q response variables between any two sites.
- We developed test procedure for testing the mean using appropriate special covariance structure. Usual demand is for:
- one-sample test
- paired samples test

Block compound symmetry stucture

- $q \times q$ block diagonals Σ_{0} in Γ represent the variance-covariance matrix of the q response variables at any given site.
- $q \times q$ block off diagonals Σ_{1} in Γ represent the covariance matrix of the q response variables between any two sites.
- We developed test procedure for testing the mean using appropriate special covariance structure. Usual demand is for:
- one-sample test
- paired samples test
- unpaired two-sample test

One-sample test

- Let $P_{A}=A\left(A^{\prime} A\right)^{+} A^{\prime}$ be projector matrix on $\mathcal{R}(A)$, and $Q_{A}=I-P_{A}$ projector on its orthogonal complement.

One-sample test

- Let $P_{A}=A\left(A^{\prime} A\right)^{+} A^{\prime}$ be projector matrix on $\mathcal{R}(A)$, and $Q_{A}=I-P_{A}$ projector on its orthogonal complement.
- We use P_{n} and Q_{n} instead of $P_{1_{n}}$ and $Q_{1_{n}}$, respectively.

One-sample test

- Let $P_{A}=A\left(A^{\prime} A\right)^{+} A^{\prime}$ be projector matrix on $\mathcal{R}(A)$, and $Q_{A}=I-P_{A}$ projector on its orthogonal complement.
- We use P_{n} and Q_{n} instead of $P_{1_{n}}$ and $Q_{1_{n}}$, respectively.
- X_{1}, \ldots, X_{n} be random sample from $N_{p q}(\mu, \Gamma)$;

One-sample test

- Let $P_{A}=A\left(A^{\prime} A\right)^{+} A^{\prime}$ be projector matrix on $\mathcal{R}(A)$, and $Q_{A}=I-P_{A}$ projector on its orthogonal complement.
- We use P_{n} and Q_{n} instead of $P_{1_{n}}$ and $Q_{1_{n}}$, respectively.
- X_{1}, \ldots, X_{n} be random sample from $N_{p q}(\mu, \Gamma)$;
- $X_{i}=\left(X_{i, 1}^{*}{ }^{\prime}, \ldots, X_{i, p}^{*}\right)^{\prime} \forall i=1, \ldots, n$;

One-sample test

- Let $P_{A}=A\left(A^{\prime} A\right)^{+} A^{\prime}$ be projector matrix on $\mathcal{R}(A)$, and $Q_{A}=I-P_{A}$ projector on its orthogonal complement.
- We use P_{n} and Q_{n} instead of $P_{1_{n}}$ and $Q_{1_{n}}$, respectively.
- X_{1}, \ldots, X_{n} be random sample from $N_{p q}(\mu, \Gamma)$;
- $X_{i}=\left(X_{i, 1}^{*}{ }^{\prime}, \ldots, X_{i, p}^{*}\right)^{\prime} \forall i=1, \ldots, n$;

One-sample test

- Let $P_{A}=A\left(A^{\prime} A\right)^{+} A^{\prime}$ be projector matrix on $\mathcal{R}(A)$, and $Q_{A}=I-P_{A}$ projector on its orthogonal complement.
- We use P_{n} and Q_{n} instead of $P_{1_{n}}$ and $Q_{1_{n}}$, respectively.
- X_{1}, \ldots, X_{n} be random sample from $N_{p q}(\mu, \Gamma)$;
- $X_{i}=\left(X_{i, 1}^{*}{ }^{\prime}, \ldots, X_{i, p}^{*}\right)^{\prime} \forall i=1, \ldots, n$;
- $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{n}\right)=\left({\underline{X_{\bullet 1}^{*}},}^{\prime}, \ldots, X_{\bullet p}^{*}{ }^{\prime}\right)^{\prime}$;
$-S=\frac{1}{n-1} \underset{\sim}{X} Q_{n} \underset{\sim}{X}=\left(\begin{array}{cccc}S_{11} & S_{12} & \ldots & S_{1 p} \\ S_{21} & S_{22} & \ldots & S_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ S_{p 1} & S_{p 2} & \ldots & S_{p p}\end{array}\right)$,
where $S_{i j}=\frac{1}{n-1} X_{\bullet i}^{*} Q_{n} X_{\bullet j}^{*}{ }^{\prime}$;

One-sample test

- We want to test $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$.

One-sample test

- We want to test $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$.
- It is natural to use the following estimators of variances and covariances:

$$
\widehat{\Sigma}_{0}=\frac{1}{p} \sum_{i=1}^{p} S_{i i}, \quad \widehat{\Sigma}_{1}=\frac{1}{p(p-1)} \sum_{\substack{i=1 \\ i \neq j}}^{p} \sum_{j=1}^{p} S_{i j}
$$

One-sample test

- We want to test $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$.
- It is natural to use the following estimators of variances and covariances:

$$
\widehat{\Sigma}_{0}=\frac{1}{p} \sum_{i=1}^{p} S_{i i}, \quad \widehat{\Sigma}_{1}=\frac{1}{p(p-1)} \sum_{i=1}^{p} \sum_{\substack{j=1 \\ i \neq j}}^{p} S_{i j}
$$

- Since $S \sim W_{p q}\left(n-1, \frac{1}{n-1} \Gamma\right)$, it is $\mathrm{E}\left[S_{i j}\right]=\Sigma_{1-\delta_{i j}}$.

One-sample test

- We want to test $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$.
- It is natural to use the following estimators of variances and covariances:

$$
\widehat{\Sigma}_{0}=\frac{1}{p} \sum_{i=1}^{p} S_{i i}, \quad \widehat{\Sigma}_{1}=\frac{1}{p(p-1)} \sum_{\substack{i=1 \\ i \neq j}}^{p} \sum_{j=1}^{p} S_{i j}
$$

- Since $S \sim W_{p q}\left(n-1, \frac{1}{n-1} \Gamma\right)$, it is $\mathrm{E}\left[S_{i j}\right]=\Sigma_{1-\delta_{i j}}$.
- The unbiased estimator of Γ is then

$$
\widehat{\Gamma}=I_{p} \otimes\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)+J_{p} \otimes \widehat{\Sigma}_{1}
$$

One-sample test

- $\widehat{\Gamma}=I_{p} \otimes\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)+J_{p} \otimes \widehat{\Sigma}_{1}$ does not follow Wishart distribution \rightarrow we cannot use standard T^{2} test.

One-sample test

- $\widehat{\Gamma}=I_{p} \otimes\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)+J_{p} \otimes \widehat{\Sigma}_{1}$ does not follow Wishart distribution \rightarrow we cannot use standard T^{2} test.
- Since H_{0} is equivalent to $H_{0}: Z \mu=Z \mu_{0}$ for any non-singular matrix Z, we propose to use $Z=H_{p} \otimes I_{q}$, where H_{p} is a $p \times p$ orthogonal matrix with the first row proportional to vector of 1 's.

One-sample test

- Then, we have

$$
Y=Z X \sim N_{p q}(Z \mu, \Omega)
$$

where

$$
\Omega=Z \Gamma Z^{\prime}=\left(\begin{array}{cc}
\Sigma_{0}+(p-1) \Sigma_{1} & 0 \\
0 & I_{p-1} \otimes\left(\Sigma_{0}-\Sigma_{1}\right)
\end{array}\right) .
$$

One-sample test

- Neither the estimator $\widehat{\Omega}=\left(\begin{array}{cc}\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1} & 0 \\ 0 & I_{p-1} \otimes\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)\end{array}\right)$ does not have a Wishart distribution.

One-sample test

- Neither the estimator $\widehat{\Omega}=\left(\begin{array}{cc}\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1} & 0 \\ 0 & I_{p-1} \otimes\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)\end{array}\right)$ does not have a Wishart distribution.
- It holds:

One-sample test

- Neither the estimator $\widehat{\Omega}=\left(\begin{array}{cc}\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1} & 0 \\ 0 & I_{p-1} \otimes\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)\end{array}\right)$ does not have a Wishart distribution.
- It holds:

Theorem
Distributions of

$$
\begin{aligned}
& (n-1)(p-1)\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right), \\
& (n-1)\left(\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1}\right)
\end{aligned}
$$

are independent, and

$$
\begin{aligned}
& (n-1)(p-1)\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right) \sim W_{q}\left((n-1)(p-1), \Sigma_{0}-\Sigma_{1}\right), \\
& (n-1)\left(\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1}\right) \sim W_{q}\left(n-1, \Sigma_{0}+(p-1) \Sigma_{1}\right),
\end{aligned}
$$

One-sample test

- Now, we have

$$
Y_{1}, \ldots, Y_{n} \sim N_{p q}(Z \mu, \Omega)
$$

and

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \sim N_{p q}\left(Z \mu, \frac{1}{n} \Omega\right)
$$

One-sample test

- Now, we have

$$
Y_{1}, \ldots, Y_{n} \sim N_{p q}(Z \mu, \Omega)
$$

and

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \sim N_{p q}\left(Z \mu, \frac{1}{n} \Omega\right)
$$

- Denoting $Z \mu=\delta$ we consider the vectors \bar{Y} and δ be partitioned in $p q$-dimensional subvectors as

$$
\bar{Y}=\left(\begin{array}{c}
\bar{Y}_{\bullet 1}^{*} \\
\vdots \\
\bar{Y}_{\bullet p}^{*}
\end{array}\right), \quad \text { and } \quad \delta=\left(\begin{array}{c}
\delta_{1} \\
\vdots \\
\delta_{p}
\end{array}\right) .
$$

One-sample test

- Since Ω is block-diagonal with $q \times q$ blocks, the corresponding q-dimensional parts of the sample mean $\bar{Y}_{\bullet j}^{*}$ are independent and it holds

$$
\begin{gathered}
\bar{Y}_{\bullet 1}^{*} \sim N_{q}\left(\delta_{1}, \frac{1}{n}\left(\Sigma_{0}+(p-1) \Sigma_{1}\right)\right) \\
\bar{Y}_{\bullet j}^{*} \sim N_{q}\left(\delta_{j}, \frac{1}{n}\left(\Sigma_{0}-\Sigma_{1}\right)\right), j=2, \ldots, p .
\end{gathered}
$$

One-sample test

- Since Ω is block-diagonal with $q \times q$ blocks, the corresponding q-dimensional parts of the sample mean $\bar{Y}_{\bullet j}^{*}$ are independent and it holds

$$
\begin{gathered}
\bar{Y}_{\bullet 1}^{*} \sim N_{q}\left(\delta_{1}, \frac{1}{n}\left(\Sigma_{0}+(p-1) \Sigma_{1}\right)\right) \\
\bar{Y}_{\bullet j}^{*} \sim N_{q}\left(\delta_{j}, \frac{1}{n}\left(\Sigma_{0}-\Sigma_{1}\right)\right), j=2, \ldots, p .
\end{gathered}
$$

- Then

$$
\begin{aligned}
& \qquad \overline{\bar{Y}}_{2}^{*}=\frac{1}{p-1} \sum_{j=2}^{p} \bar{Y}_{\bullet j}^{*} \sim N_{q}\left(\bar{\delta}_{2}, \frac{1}{n(p-1)}\left(\Sigma_{0}-\Sigma_{1}\right)\right), \\
& \text { where } \bar{\delta}_{2}=\left(\delta_{2}+\cdots+\delta_{p}\right) /(p-1) .
\end{aligned}
$$

One-sample test

- The means are independent of the variance matrices estimators, under H_{0} we have two independent T^{2} statistics

$$
\begin{aligned}
& n\left(\bar{Y}_{\bullet 1}^{*}-\delta_{01}\right)^{\prime}\left(\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1}\right)^{-1}\left(\bar{Y}_{\bullet 1}^{*}-\delta_{01}\right) \sim T_{q, n-1}^{2} \\
& n(p-1)\left(\overline{\bar{Y}}_{2}^{*}-\bar{\delta}_{02}\right)^{\prime}\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)^{-1}\left(\overline{\bar{Y}}_{2}^{*}-\bar{\delta}_{02}\right) \sim T_{q,(n-1)(p-1)}^{2}
\end{aligned}
$$

One-sample test

- The means are independent of the variance matrices estimators, under H_{0} we have two independent T^{2} statistics

$$
\begin{aligned}
& n\left(\bar{Y}_{\bullet 1}^{*}-\delta_{01}\right)^{\prime}\left(\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1}\right)^{-1}\left(\bar{Y}_{\bullet 1}^{*}-\delta_{01}\right) \sim T_{q, n-1}^{2} \\
& n(p-1)\left(\overline{\bar{Y}}_{2}^{*}-\bar{\delta}_{02}\right)^{\prime}\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)^{-1}\left(\overline{\bar{Y}}_{2}^{*}-\bar{\delta}_{02}\right) \sim T_{q,(n-1)(p-1)}^{2}
\end{aligned}
$$

- A natural test statistics is the convolution of these two. We call it block T^{2}.

One-sample test

- It is of the form:

$$
\begin{aligned}
& B T^{2}=n\left(\bar{X}-\mu_{0}\right)^{\prime} Z^{\prime}\left(\begin{array}{cc}
\left(\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1}\right)^{-1} & 0 \\
0 & P_{p-1} \otimes\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)^{-1}
\end{array}\right) Z\left(\bar{X}-\mu_{0}\right) \\
& \sim T_{q, n-1}^{2} \oplus T_{q,(n-1)(p-1)}^{2}
\end{aligned}
$$

One-sample test

- It is of the form:

$$
\begin{aligned}
& B T^{2}=n\left(\bar{X}-\mu_{0}\right)^{\prime} Z^{\prime}\left(\begin{array}{cc}
\left(\widehat{\Sigma}_{0}+(p-1) \widehat{\Sigma}_{1}\right)^{-1} & 0 \\
0 & P_{p-1} \otimes\left(\widehat{\Sigma}_{0}-\widehat{\Sigma}_{1}\right)^{-1}
\end{array}\right) Z\left(\bar{X}-\mu_{0}\right) \\
& \sim T_{q, n-1}^{2} \oplus T_{q,(n-1)(p-1)}^{2}
\end{aligned}
$$

- The critical values or p-values of the test can be obtained using the method of Dyer (1982).

Paired samples test

- Let us have random samples y_{1}, \ldots, y_{n} and x_{1}, \ldots, x_{n} of doubly multivariate data measured before and after a treatment on the same individual i. So,

$$
\begin{aligned}
& y_{i} \sim N_{p q}\left(\mu_{y}, I_{p} \otimes\left(\Sigma_{y 0}-\Sigma_{y 1}\right)+J_{p} \otimes \Sigma_{y 1}\right), \\
& x_{i} \sim N_{p q}\left(\mu_{x}, I_{p} \otimes\left(\Sigma_{x 0}-\Sigma_{x 1}\right)+J_{p} \otimes \Sigma_{x 1}\right) .
\end{aligned}
$$

Paired samples test

- Let us have random samples y_{1}, \ldots, y_{n} and x_{1}, \ldots, x_{n} of doubly multivariate data measured before and after a treatment on the same individual i. So,

$$
\begin{aligned}
& y_{i} \sim N_{p q}\left(\mu_{y}, I_{p} \otimes\left(\Sigma_{y 0}-\Sigma_{y 1}\right)+J_{p} \otimes \Sigma_{y 1}\right), \\
& x_{i} \sim N_{p q}\left(\mu_{x}, I_{p} \otimes\left(\Sigma_{x 0}-\Sigma_{x 1}\right)+J_{p} \otimes \Sigma_{x 1}\right) .
\end{aligned}
$$

- y_{i} and x_{i} are correlated and have a multivariate normal distribution:

$$
\binom{y}{x} \sim N_{2 u q}\left[\binom{\mu_{y}}{\mu_{x}},\left(\begin{array}{cc}
\Sigma_{y y} & \Sigma_{y x} \\
\Sigma_{x y} & \Sigma_{x x}
\end{array}\right)\right]
$$

where

$$
\left(\begin{array}{cc}
\Sigma_{y y} & \Sigma_{y x} \\
\Sigma_{x y} & \Sigma_{x x}
\end{array}\right)=\left[\begin{array}{cc}
I_{p} \otimes\left(\Sigma_{y 0}-\Sigma_{y 1}\right)+J_{p} \otimes \Sigma_{y 1} & J_{p} \otimes W \\
J_{p} \otimes W & I_{p} \otimes\left(\Sigma_{x 0}-\Sigma_{x 1}\right)+J_{p} \otimes \Sigma_{x 1}
\end{array}\right]
$$

where where W is a $q \times q$ symmetric matrix.

Paired samples test

- We want to test the effect of the treatment, which can be reformulated as testing equality of means, or equivalently, as zero difference of the corresponding means, i.e.

$$
H_{0}: \mu_{y}-\mu_{x}=0 \quad \text { against } \quad H_{1}: \mu_{y}-\mu_{x} \neq 0
$$

Paired samples test

- We want to test the effect of the treatment, which can be reformulated as testing equality of means, or equivalently, as zero difference of the corresponding means, i.e.

$$
H_{0}: \mu_{y}-\mu_{x}=0 \quad \text { against } \quad H_{1}: \mu_{y}-\mu_{x} \neq 0
$$

- Denoting $\mu_{d}=\mathrm{E}(y-x)=\mu_{y}-\mu_{x}$ we have the hypothesis

$$
H_{0}: \mu_{d}=0 \quad \text { against } \quad H_{1}: \mu_{d} \neq 0
$$

Paired samples test

- We want to test the effect of the treatment, which can be reformulated as testing equality of means, or equivalently, as zero difference of the corresponding means, i.e.

$$
H_{0}: \mu_{y}-\mu_{x}=0 \quad \text { against } \quad H_{1}: \mu_{y}-\mu_{x} \neq 0
$$

- Denoting $\mu_{d}=\mathrm{E}(y-x)=\mu_{y}-\mu_{x}$ we have the hypothesis

$$
H_{0}: \mu_{d}=0 \quad \text { against } \quad H_{1}: \mu_{d} \neq 0
$$

- To estimate $\operatorname{Cov}(y-x)=\Sigma_{y y}-\Sigma_{y x}-\Sigma_{x y}+\Sigma_{x x}$, we need the estimates of $q \times q$ matrices $\Sigma_{y 1}, \Sigma_{y 0}, \Sigma_{x 1}, \Sigma_{x 0}$ and W.

Paired samples test

- The hypothesis testing problem can be formulated in an alternative way by reparametrizing the variance-covariance matrix $\operatorname{Cov}(y-x)$.

Paired samples test

- The hypothesis testing problem can be formulated in an alternative way by reparametrizing the variance-covariance matrix $\operatorname{Cov}(y-x)$.
- Denote $d_{i}=y_{i}-x_{i}$ then d_{1}, \ldots, d_{n} are independent and identically distributed (i.i.d) $N_{u q}\left(\mu_{d} ; \Gamma\right)$, where

$$
\begin{aligned}
\Gamma=\operatorname{Cov}(d) & =\operatorname{Cov}(y-x) \\
& =\Sigma_{y y}-\Sigma_{y x}-\Sigma_{x y}+\Sigma_{x x} \\
& =I_{p} \otimes\left(\Gamma_{0}-\Gamma_{1}\right)+J_{p} \otimes \Gamma_{1}
\end{aligned}
$$

where

$$
\begin{aligned}
& \Gamma_{0}=\Sigma_{y 0}+\Sigma_{x 0}-2 W \\
& \Gamma_{1}=\Sigma_{y 1}+\Sigma_{x 1}-2 W
\end{aligned}
$$

Paired samples test

- Applying the results for one-sample test to d_{1}, \ldots, d_{n} with $\mu_{0}=0$, we obtain the test statistic of $H_{0}: \mu_{d}=0$ against $H_{1}: \mu_{d} \neq 0$ to be

$$
\begin{aligned}
& B T_{d}^{2}=n \bar{d}^{\prime} Z^{\prime}\left(\begin{array}{cc}
\left(\widehat{\Gamma}_{0}+(p-1) \widehat{\Gamma}_{1}\right)^{-1} & 0 \\
0 & P_{p-1} \otimes\left(\widehat{\Gamma}_{0}-\widehat{\Gamma}_{1}\right)^{-1}
\end{array}\right) Z \bar{d} \\
& \sim T_{q, n-1}^{2} \oplus T_{q,(n-1)(p-1)}^{2}
\end{aligned}
$$

Two-sample test

- Let us have two independent random samples $U_{1}, \ldots, U_{n} \sim N_{p q}\left(\mu_{U}, \Gamma\right)$ and $V_{1}, \ldots, V_{m} \sim N_{p q}\left(\mu_{V}, \Gamma\right)$. We want to test

$$
H_{0}: \mu_{U}=\mu_{V} \quad \text { against } \quad H_{1}: \mu_{U} \neq \mu_{V}
$$

Two-sample test

- Let us have two independent random samples $U_{1}, \ldots, U_{n} \sim N_{p q}\left(\mu_{U}, \Gamma\right)$ and $V_{1}, \ldots, V_{m} \sim N_{p q}\left(\mu_{V}, \Gamma\right)$. We want to test

$$
H_{0}: \mu_{U}=\mu_{V} \quad \text { against } \quad H_{1}: \mu_{U} \neq \mu_{V}
$$

- Sample means \bar{U} and \bar{V} are independent of variance matrices estimators $S_{1}=\frac{1}{n-1} \underset{\sim}{U} Q_{n} \underset{\sim}{U}$ and $S_{2}=\frac{1}{m-1} \underset{\sim}{V} Q_{n}{\underset{\sim}{V}}^{\prime}$, and thus also independent of the pooled estimator

$$
S^{p}=\frac{1}{n+m-2}\left((n-1) S_{1}+(m-1) S_{2}\right)
$$

Two-sample test

- We have two independent statistics

$$
\begin{gathered}
\bar{U}-\bar{V} \sim N_{p q}\left(\mu_{U}-\mu_{V}, \frac{n+m}{n m} \Gamma\right), \\
S^{p} \sim W_{p q}\left(n+m-2, \frac{1}{n+m-2} \Gamma\right) .
\end{gathered}
$$

Two-sample test

- We have two independent statistics

$$
\begin{gathered}
\bar{U}-\bar{V} \sim N_{p q}\left(\mu_{U}-\mu_{V}, \frac{n+m}{n m} \Gamma\right) \\
S^{p} \sim W_{p q}\left(n+m-2, \frac{1}{n+m-2} \Gamma\right) .
\end{gathered}
$$

- We can use the estimators

$$
\widehat{\Gamma}_{0}=\frac{1}{p} \sum_{i=1}^{p} S_{i i}^{p}, \quad \widehat{\Gamma}_{1}=\frac{1}{p(p-1)} \sum_{\substack{i=1 \\ i \neq j}}^{p} \sum_{j=1}^{p} S_{i j}^{p} .
$$

Two-sample test

- We have two independent statistics

$$
\begin{gathered}
\bar{U}-\bar{V} \sim N_{p q}\left(\mu_{U}-\mu_{V}, \frac{n+m}{n m} \Gamma\right) \\
S^{p} \sim W_{p q}\left(n+m-2, \frac{1}{n+m-2} \Gamma\right) .
\end{gathered}
$$

- We can use the estimators

$$
\widehat{\Gamma}_{0}=\frac{1}{p} \sum_{i=1}^{p} S_{i i}^{p}, \quad \widehat{\Gamma}_{1}=\frac{1}{p(p-1)} \sum_{\substack{i=1 \\ i \neq j}}^{p} \sum_{j=1}^{p} S_{i j}^{p}
$$

- Applying the Theorem, we get

$$
\begin{aligned}
& (n+m-2)(p-1)\left(\widehat{\Gamma}_{0}-\widehat{\Gamma}_{1}\right) \sim W_{q}\left((n+m-2)(p-1), \Gamma_{0}-\Gamma_{1}\right) \\
& (n+m-2)\left(\widehat{\Gamma}_{0}+(p-1) \widehat{\Gamma}_{1}\right) \sim W_{q}\left(n+m-2, \Gamma_{0}+(p-1) \Gamma_{1}\right)
\end{aligned}
$$

Two-sample test

- Since estimators $\widehat{\Gamma}_{0}-\widehat{\Gamma}_{1}$ and $\widehat{\Gamma}_{0}+(p-1) \widehat{\Gamma}_{1}$ are based on S^{p}, they are independent of $\bar{U}-\bar{V}$.

Two-sample test

- Since estimators $\widehat{\Gamma}_{0}-\widehat{\Gamma}_{1}$ and $\widehat{\Gamma}_{0}+(p-1) \widehat{\Gamma}_{1}$ are based on S^{p}, they are independent of $\bar{U}-\bar{V}$.
- Using analogous procedure as in the one-sample case, we arrive to block T^{2} test statistic

$$
\begin{aligned}
& B T^{2}= \\
& \frac{n m}{n+m}(\bar{U}-\bar{V})^{\prime} Z^{\prime}\left(\begin{array}{cc}
\left(\widehat{\Gamma}_{0}+(p-1) \widehat{\Gamma}_{1}\right)^{-1} & 0 \\
0 & P_{p-1} \otimes\left(\widehat{\Gamma}_{0}-\widehat{\Gamma}_{1}\right)^{-1}
\end{array}\right) Z(\bar{U}-\bar{V}) \\
& \sim T_{q, n+m-2}^{2} \oplus T_{q,(n+m-2)(p-1)}^{2}
\end{aligned}
$$

Three-level multivariate data

- The procedure could be used also for the-level multivariate data with doubly exchangeable covariance structure.

Three-level multivariate data

- The procedure could be used also for the-level multivariate data with doubly exchangeable covariance structure.
- X_{1}, \ldots, X_{n} be a sample from $N_{s p q}(\mu, \Gamma)$, where

$$
\begin{array}{rl}
\Gamma & =I_{s p} \otimes\left(U_{0}-U_{1}\right)+I_{s} \otimes J_{p} \otimes\left(U_{1}-W\right)+J_{s p} \otimes W= \\
& =\left[\begin{array}{llll|lll|l|llll}
U_{0} & U_{1} & \cdots & U_{1} & W & W & \cdots & W & \cdots & W & W & \cdots \\
U_{1} & U_{0} & \cdots & U_{1} & W & W & \cdots & W & \cdots & W & W & \cdots \\
W \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots \\
U_{1} & U_{1} & \cdots & U_{0} & W & W & \cdots & W & \cdots & W & W & \cdots \\
W \\
\hline W & W & \cdots & W & U_{0} & U_{1} & \cdots & U_{1} & \cdots & W & W & \cdots \\
W \\
W & W & \cdots & W & U_{1} & U_{0} & \cdots & U_{1} & \cdots & W & W & \cdots \\
W \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots \\
W & W & \cdots & W & U_{1} & U_{1} & \cdots & U_{0} & \cdots & W & W & \cdots \\
W \\
\hline \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots \\
\vdots \\
\hline W & W & \cdots & W & W & W & \cdots & W & \cdots & U_{0} & U_{1} & \cdots \\
U_{1} \\
W & W & \cdots & W & W & W & \cdots & W & \cdots & U_{1} & U_{0} & \cdots \\
U_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots
\end{array}\right] \\
W & W
\end{array} \cdots
$$

Three-level multivariate data

Lemma

Let $Z=\underset{s \times s}{C} \otimes \underset{p \times p}{C^{*}} \otimes I_{q}$ where C and C^{*} are orthogonal matrices whose first rows are proportional to 1 's. Let Γ be a doubly exchangeable covariance matrix, then $Z \Gamma Z^{\prime}$ is a diagonal matrix with blocks on diagonal as follows:

$$
\begin{aligned}
& \qquad \Gamma Z^{\prime}=\operatorname{Diag}\left(\Delta_{3} ; \Delta_{1} ; \ldots ; \Delta_{1} ; \Delta_{2} ; \Delta_{1} ; \ldots ; \Delta_{1} ; \ldots ; \Delta_{2} ; \Delta_{1} ; \ldots ; \Delta_{1}\right) \\
& \text { where } \\
& \qquad \begin{array}{l}
\Delta_{1}=U_{0}-U_{1} \\
\Delta_{2}=U_{0}+(p-1) U_{1}-p W=\left(U_{0}-U_{1}\right)+p\left(U_{1}-W\right) \\
\Delta_{3}=U_{0}+(p-1) U_{1}+p(s-1) W=\left(U_{0}-U_{1}\right)+p\left(U_{1}-W\right)+s p W .
\end{array}
\end{aligned}
$$

Unbiased Estimators of Δ_{1}, Δ_{2} and Δ_{3}

- Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the data matrix from $N_{s p q}(\mu, \Gamma)$ with doubly exchangeable covariance matrix Γ.

Unbiased Estimators of Δ_{1}, Δ_{2} and Δ_{3}

- Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the data matrix from $N_{s p q}(\mu, \Gamma)$ with doubly exchangeable covariance matrix Γ.
-

$$
S=\frac{1}{n-1} X Q_{n} X^{\prime} \sim W_{s p q}\left(n-1, \frac{1}{n-1} \Gamma\right)
$$

Unbiased Estimators of Δ_{1}, Δ_{2} and Δ_{3}

- Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the data matrix from $N_{s p q}(\mu, \Gamma)$ with doubly exchangeable covariance matrix Γ.
-

$$
S=\frac{1}{n-1} X Q_{n} X^{\prime} \sim W_{s p q}\left(n-1, \frac{1}{n-1} \Gamma\right)
$$

- Since $\mathrm{E}(S)=\Gamma$, the unbiased estimators of Δ_{1}, Δ_{2} and Δ_{3} are

$$
\begin{aligned}
& \widehat{\Delta}_{1}=\frac{1}{s(p-1)} \mathrm{BTr}_{q}\left[\left(I_{s} \otimes Q_{p} \otimes I_{q}\right) S\right], \\
& \widehat{\Delta}_{2}=\frac{1}{s-1} \operatorname{BTr}_{q}\left[\left(Q_{s} \otimes P_{p} \otimes I_{q}\right) S\right], \\
& \widehat{\Delta}_{3}=\operatorname{BTr}_{q}\left[\left(P_{s} \otimes P_{p} \otimes I_{q}\right) S\right] .
\end{aligned}
$$

Distributions of $\widehat{\Delta}_{1}, \widehat{\Delta}_{2}$ and $\widehat{\Delta}_{3}$

Theorem
The estimators $\widehat{\Delta}_{1}, \widehat{\Delta}_{2}$ and $\widehat{\Delta}_{3}$ are mutually independent and

$$
\begin{aligned}
(n-1) s(p-1) \widehat{\boldsymbol{\Delta}}_{1} & \sim W_{q}\left((n-1) s(p-1), \Delta_{1}\right), \\
(n-1)(s-1) \widehat{\boldsymbol{\Delta}}_{2} & \sim W_{q}\left((n-1)(s-1), \Delta_{2}\right), \\
(n-1) \widehat{\boldsymbol{\Delta}}_{3} & \sim W_{q}\left((n-1), \Delta_{3}\right) .
\end{aligned}
$$

Test statistic

- The hypothesis:

$$
H_{0}: \mu=\mu_{0} \quad \text { vs } \quad H_{1}: \mu \neq \mu_{0}
$$

Test statistic

- The hypothesis:

$$
H_{0}: \mu=\mu_{0} \quad \text { vs } \quad H_{1}: \mu \neq \mu_{0}
$$

- The test statistic

$$
B T^{2}=n\left(\bar{X}-\mu_{0}\right)^{\prime} Z^{\prime} G Z\left(\bar{X}-\mu_{0}\right) \sim T_{q, n-1}^{2}+T_{q,(n-1)(s-1)}^{2}+T_{q,(n-1) s(p-1)}^{2}
$$

where
$G=\boldsymbol{e}_{1, s} \boldsymbol{e}_{1, s}^{\prime} \otimes \boldsymbol{e}_{1, p} \boldsymbol{e}_{1, p}^{\prime} \otimes \widehat{\Delta}_{3}^{-1}+P_{s}^{0} \otimes \boldsymbol{e}_{1, p} \boldsymbol{e}_{1, p}^{\prime} \otimes \widehat{\Delta}_{2}^{-1}+P_{s} \otimes P_{p}^{0} \otimes \widehat{\Delta}_{1}^{-1}$,
and

$$
P_{p}^{0}=\frac{1}{p-1} J_{p}^{0}
$$

where J_{p}^{0} is matrix J_{p} where the elements of first row and first column are zero.

Another approach

- Under H_{0} the statistics

$$
\begin{aligned}
\sqrt{n}\left(\mathbf{1}_{s p}^{\prime} \otimes I_{q}\right) Z\left(\bar{X}-\mu_{0}\right) & \sim N_{q}\left(\mathbf{0} ; s p U_{0}\right) \\
S^{*}=\left(\mathbf{1}_{s p}^{\prime} \otimes I_{q}\right) Z S Z^{\prime}\left(\mathbf{1}_{s p} \otimes I_{q}\right) & \sim W_{q}\left(n-1 ; \frac{s p}{n-1} U_{0}\right)
\end{aligned}
$$

are independent.

Another approach

- Under H_{0} the statistics

$$
\begin{aligned}
\sqrt{n}\left(\mathbf{1}_{s p}^{\prime} \otimes I_{q}\right) Z\left(\bar{X}-\mu_{0}\right) & \sim N_{q}\left(\mathbf{0} ; s p U_{0}\right) \\
S^{*}=\left(\mathbf{1}_{s p}^{\prime} \otimes I_{q}\right) Z S Z^{\prime}\left(\mathbf{1}_{s p} \otimes I_{q}\right) & \sim W_{q}\left(n-1 ; \frac{s p}{n-1} U_{0}\right)
\end{aligned}
$$

are independent.

- Then

$$
n s p\left(\bar{X}-\mu_{0}\right)^{\prime} Z^{\prime}\left(P_{s p} \otimes S^{*-1}\right) Z\left(\bar{X}-\mu_{0}\right) \sim T_{q, n-1}^{2}
$$

Power simulation

- The hypothesis tested is $H_{0}: \mu=\mathbf{0}$.

Power simulation

- The hypothesis tested is $H_{0}: \mu=\mathbf{0}$.
- The number of sites p is chosen as $2,3,5$ and 7 and the number of characteristics q is taken as 3 .

Power simulation

- The hypothesis tested is $H_{0}: \mu=\mathbf{0}$.
- The number of sites p is chosen as $2,3,5$ and 7 and the number of characteristics q is taken as 3 .
- Samples of various sizes are drawn from $N_{p q}(\mu ; \Gamma)$, with $\Gamma=I_{p} \otimes\left(\Sigma_{0}-\Sigma_{1}\right)+J_{p} \otimes \Sigma_{1}$.

Power simulation

- The hypothesis tested is $H_{0}: \mu=\mathbf{0}$.
- The number of sites p is chosen as $2,3,5$ and 7 and the number of characteristics q is taken as 3 .
- Samples of various sizes are drawn from $N_{p q}(\mu ; \Gamma)$, with $\Gamma=I_{p} \otimes\left(\Sigma_{0}-\Sigma_{1}\right)+J_{p} \otimes \Sigma_{1}$.
- The (3×3)-dimensional variance-covariance matrices Σ_{0} and Σ_{1} are taken as

$$
\Sigma_{0}=\left(\begin{array}{ccc}
1.54 & 0.63 & 0.26 \\
0.63 & 7.26 & -0.31 \\
0.26 & -0.31 & 1.57
\end{array}\right), \quad \Sigma_{1}=\left(\begin{array}{ccc}
0.29 & 1.03 & -0.11 \\
1.03 & 3.65 & -0.17 \\
-0.11 & -0.17 & 0.31
\end{array}\right)
$$

Power simulation

- The hypothesis tested is $H_{0}: \mu=\mathbf{0}$.
- The number of sites p is chosen as $2,3,5$ and 7 and the number of characteristics q is taken as 3 .
- Samples of various sizes are drawn from $N_{p q}(\mu ; \Gamma)$, with $\Gamma=I_{p} \otimes\left(\Sigma_{0}-\Sigma_{1}\right)+J_{p} \otimes \Sigma_{1}$.
- The (3×3)-dimensional variance-covariance matrices Σ_{0} and Σ_{1} are taken as

$$
\Sigma_{0}=\left(\begin{array}{ccc}
1.54 & 0.63 & 0.26 \\
0.63 & 7.26 & -0.31 \\
0.26 & -0.31 & 1.57
\end{array}\right), \quad \Sigma_{1}=\left(\begin{array}{ccc}
0.29 & 1.03 & -0.11 \\
1.03 & 3.65 & -0.17 \\
-0.11 & -0.17 & 0.31
\end{array}\right)
$$

- Different real mean values μ are taken as $\mathbf{1}_{p q}, e_{1, p} \otimes \mathbf{1}_{q}$ and $e_{1, p} \otimes w$, where $w=(1,2, \ldots, q)^{\prime}$.

Power simulation

$$
\mu=\mathbf{1}_{p q}
$$

$$
p=2
$$

$$
p=5
$$

$$
p=7
$$

Power simulation

$$
\begin{array}{r}
\mu=e_{1, p} \otimes \mathbf{1}_{q} \\
p=2
\end{array}
$$

$$
p=5
$$

$$
p=3
$$

$$
p=7
$$

Power simulation

$$
\mu=e_{1, p} \otimes w
$$

References

T- Žežula, I., Klein, D. (2010). Orthogonal decompositions in growth curve models. Acta et Commentationes Universitatis Tartuensis de Mathematica 14, 35-44.

Leiva, R. (2007). Linear discrimination with equicorrelated training vectors. Journal of Multivariate Analysis 98, 384-409.
Rob A., Leiva, R. (2008). Likelihood Ratio Tests for Triply Multivariate Data with Structured Correlation on Spatial Repeated Measurements. Statistics \& Probability Letters 78(13), 1971-1980.Roy, A., Leiva, R. (2011). Estimating and Testing a Structured Covariance Matrix for Three-level Multivariate Data. Communications in Statistics - Theory and Methods 40(10), 1945-1963.

Roy, A., Fonseca, M. (2012). Linear Models with Doubly Exchangeable Distributed Errors. Communications in Statistics - Theory and Methods 41(13), 2545-2569.

Roy, A., Leiva, R., Žežula, I., Klein, D. (2013). Testing the Equality of Mean Vectors for Paired Doubly Multivariate Observations in Blocked Compound Symmetric Covariance Matrix Setup. To appear.

Dyer, D. (1982). The Convolution of Generalized F Distributions. Journal of the American Statistical Association 77(377), 184-189.

Thank you for your attention

