Hypothesis testing in multilevel models with block circular covariance structures

Yuli Liang ${ }^{1}$, Dietrich von Rosen ${ }^{2,3}$ and Tatjana von Rosen ${ }^{1}$
${ }^{1}$ Department of Statistics, Stockholm University
${ }^{2}$ Department of Energy and Technology, Swedish University of Agricultural Sciences
${ }^{3}$ Department of Mathematics, Linköping University

Presentation at LinStat2014, Linköping (24-28 August, 2014)

Circular dependence: Circular Toeplitz (CT) matrix

CT matrix, cont.

An $n \times n$ matrix T of the form

$$
\boldsymbol{T}=\left(\begin{array}{ccccc}
t_{0} & t_{1} & t_{2} & \cdots & t_{1} \\
t_{1} & t_{0} & t_{1} & \cdots & t_{2} \\
t_{2} & t_{1} & t_{0} & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
t_{1} & t_{2} & \cdots & t_{1} & t_{0}
\end{array}\right)=\operatorname{Toep}\left(t_{0}, t_{1}, t_{2} \ldots, t_{1}\right)
$$

is called a symmetric circular Toeplitz matrix. The matrix $\boldsymbol{T}=\left(t_{i j}\right)$ depends on $[n / 2]+1$ parameters, where [.] stands for the integer part, and for $i, j=1, \ldots, n$,

$$
t_{i j}= \begin{cases}t_{|j-i|} & |j-i| \leqslant[n / 2] \\ t_{n-|j-i|} & \text { otherwise }\end{cases}
$$

A specific structure

Flower 1

Flower 2...

...Flower n_{2}

Outline

Model and hypotheses
Model setup
Hypotheses

Outline

Model and hypotheses
Model setup
Hypotheses

Previous work of symmetry model

Outline

Model and hypotheses
Model setup
Hypotheses

Previous work of symmetry model

External test

Outline

Model and hypotheses
Model setup
Hypotheses

Previous work of symmetry model

External test

Simulation study

Outline

Model and hypotheses
Model setup
Hypotheses

Previous work of symmetry model

External test

Simulation study

Internal test

Balanced three-level model

- $\mathbf{y}_{k}=\mu \mathbf{1}_{p}+\boldsymbol{Z}_{3} \boldsymbol{\alpha}+\boldsymbol{Z}_{2} \boldsymbol{\beta}+\boldsymbol{\epsilon}_{k}, k=1, \ldots, n$, where $p=n_{2} n_{1}, \boldsymbol{Z}_{3}=\boldsymbol{I}_{n_{2}} \otimes \mathbf{1}_{n_{1}}$ and $\boldsymbol{Z}_{2}=\boldsymbol{I}_{n_{2}} \otimes \boldsymbol{I}_{n_{1}}$, $\operatorname{Cov}(\boldsymbol{\alpha})=\boldsymbol{V}_{3} \geqslant 0, \operatorname{Cov}(\boldsymbol{\beta})=\boldsymbol{V}_{2} \geqslant 0$ and $\operatorname{Var}\left(\epsilon_{k}\right)=\sigma^{2} \boldsymbol{I}_{p}>0, \alpha$ and β are independent.
- $\mathbf{y}_{k} \sim N_{p}\left(\mu \mathbf{1}_{p}, \boldsymbol{\Sigma}\right)$ and $\boldsymbol{\Sigma}=\boldsymbol{Z}_{3} \boldsymbol{V}_{3} \boldsymbol{Z}_{3}^{\prime}+\boldsymbol{V}_{2}+\sigma^{2} \boldsymbol{I}_{p}$.
- $\boldsymbol{Y} \sim N_{p, n}\left(\mu \mathbf{1}_{p} \mathbf{1}_{n}^{\prime}, \boldsymbol{\Sigma}, \boldsymbol{I}_{n}\right)$, where $\boldsymbol{Y}=\left(\mathbf{y}_{1}: \mathbf{y}_{2}: \ldots: \mathbf{y}_{n}\right)$ are n independent samples.

External test

Hypotheses at "macro-level": test the global structures of Σ

- $H_{1}: \boldsymbol{\Sigma}_{I}=\boldsymbol{I}_{n_{2}} \otimes \boldsymbol{\Sigma}_{1}+\left(\boldsymbol{J}_{n_{2}}-\boldsymbol{I}_{n_{2}}\right) \otimes \boldsymbol{\Sigma}_{2}$, where $\boldsymbol{\Sigma}_{h}$, $h=1,2$, is a $n_{1} \times n_{1}$ unstructured matrix.
- $H_{2}: \boldsymbol{\Sigma}_{I I}=\boldsymbol{I}_{n_{2}} \otimes \boldsymbol{\Sigma}_{1}+\left(\boldsymbol{J}_{n_{2}}-\boldsymbol{I}_{n_{2}}\right) \otimes \boldsymbol{\Sigma}_{2}$, where $\boldsymbol{\Sigma}_{h}$, $h=1,2$, is a CT matrix and depends on r parameters, $r=\left[n_{1} / 2\right]+1$.
- $H_{3}: \boldsymbol{\Sigma}_{I I I}=\boldsymbol{I}_{n_{2}} \otimes \boldsymbol{\Sigma}_{1}+\left(\boldsymbol{J}_{n_{2}}-\boldsymbol{I}_{n_{2}}\right) \otimes \boldsymbol{\Sigma}_{2}$, where $\boldsymbol{\Sigma}_{h}$, $h=1,2$, is a CS matrix and can be written as $\boldsymbol{\Sigma}_{h}=\sigma_{h 1} \boldsymbol{I}_{n_{1}}+\sigma_{h 2}\left(\boldsymbol{J}_{n_{1}}-\boldsymbol{I}_{n_{1}}\right)$.
The number of parameters are $n_{1}\left(n_{1}+1\right), 2 r$ and 4 , respectively.

If $n_{2}=4, n_{1}=4$, then

Selected previous work of symmetry model

- Olkin and Press (1969), Olkin (1973)
- Andersson (1975), Perlman (1987)
- Nahtman (2006) and Nahtman and von Rosen (2008) studied properties of some patterned covariance matrices arising under different symmetry restrictions in balanced mixed linear models.
- Roy and Fonseca (2012): double exchangeability

Canonical reduction and equivalent hypotheses

Lemma

(Arnold, 1973) Suppose $\boldsymbol{Y} \sim N_{p, n}\left(\mu \mathbf{1}_{p} \mathbf{1}_{n}^{\prime}, \boldsymbol{\Sigma}_{I}, \boldsymbol{I}_{n}\right)$, where $p=n_{2} n_{1}$ and μ is an unknown scalar parameter. Let Γ_{1} be an $n_{2} \times n_{2}$ orthogonal matrix whose first column is proportional to $\mathbf{1}_{n_{1}}$ and put $\left(\boldsymbol{Y}_{1}^{\prime}: \boldsymbol{Y}_{2}^{\prime}\right)^{\prime}=\left(\boldsymbol{\Gamma}_{1}^{\prime} \otimes \boldsymbol{I}_{n_{1}}\right) \boldsymbol{Y}$, where $\boldsymbol{Y}_{1}: n_{1} \times n$ and \boldsymbol{Y}_{2} : $n_{1}\left(n_{2}-1\right) \times n$. Then, \boldsymbol{Y}_{1} and \boldsymbol{Y}_{2} are independently distributed, and

$$
\begin{align*}
& \boldsymbol{Y}_{1} \sim N_{n_{1}, n}\left(\sqrt{n_{2}} \mu \mathbf{1}_{n_{1}} \mathbf{1}_{n}^{\prime}, \boldsymbol{\Delta}_{1}, \boldsymbol{I}_{n}\right), \tag{1}\\
& \boldsymbol{Y}_{2} \sim N_{n_{1}\left(n_{2}-1\right), n}\left(\mathbf{0}, \boldsymbol{I}_{n_{2}-1} \otimes \boldsymbol{\Delta}_{2}, \boldsymbol{I}_{n}\right), \tag{2}
\end{align*}
$$

where $\boldsymbol{\Delta}_{1}=\boldsymbol{\Sigma}_{1}+\left(n_{2}-1\right) \boldsymbol{\Sigma}_{2}$ and $\boldsymbol{\Delta}_{2}=\boldsymbol{\Sigma}_{1}-\boldsymbol{\Sigma}_{2}$. Moreover, $\boldsymbol{\Sigma}_{I}$ is positive definite if and only if both Δ_{1} and Δ_{2} are positive definite.

Theorem

Let Γ_{2} be the orthogonal matrix whose columns $v_{1}, \ldots, v_{n_{1}}$ are the known orthonormal eigenvectors of any $n_{1} \times n_{1} C T$ matrices. To test H_{i}, $i=1,2,3$, is respectively equivalent to test

$$
\begin{aligned}
H_{1}: & \left(\boldsymbol{\Gamma}_{1}^{\prime} \otimes \boldsymbol{I}_{n_{1}}\right) \boldsymbol{\Sigma}\left(\boldsymbol{\Gamma}_{1} \otimes \boldsymbol{I}_{n_{1}}\right)=\operatorname{block}-\operatorname{diag}\left(\boldsymbol{\Delta}_{1}, \boldsymbol{\Delta}_{2}=\cdots=\boldsymbol{\Delta}_{2}\right), \\
H_{2}: & \boldsymbol{\Gamma}_{2}^{\prime} \boldsymbol{\Delta}_{1} \boldsymbol{\Gamma}_{2}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n_{1}}\right), \lambda_{i}=\lambda_{n_{1}-i+2}, \\
& \boldsymbol{\Gamma}_{2}^{\prime} \boldsymbol{\Lambda}_{2} \boldsymbol{\Gamma}_{2}=\cdots=\boldsymbol{\Gamma}_{2}^{\prime} \boldsymbol{\Delta}_{2} \boldsymbol{\Gamma}_{2} \\
& =\operatorname{diag}\left(\lambda_{n_{1}+1}, \cdots, \lambda_{2 n_{1}}\right)=\cdots=\operatorname{diag}\left(\lambda_{\left(n_{2}-1\right) n_{1}+1}, \cdots, \lambda_{n_{2} n_{1}}\right) \\
& \text { and } \lambda_{(j-1) n_{1}+i}=\lambda_{j n_{1}-i+2}, i=2, \ldots,\left[n_{1} / 2\right]+1, j=2, \ldots, n_{2}, \\
& \text { assuming } H_{1},
\end{aligned}
$$

$$
H_{3}: \quad \lambda_{2}=\cdots=\lambda_{n_{1}}, \lambda_{n_{1}+1}=\lambda_{2 n_{1}+1}=\cdots=\lambda_{\left(n_{2}-1\right) n_{1}+1},
$$

$$
\lambda_{n_{1}+2}=\cdots=\lambda_{2 n_{1}}=\cdots=\lambda_{\left(n_{2}-1\right) n_{1}+2}=\cdots=\lambda_{n_{2} n_{1}}
$$

assuming H_{2}.

Likelihood ratio test

$H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{I I}$ and $H_{A}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{I}$,
i.e. test one exchangeable hierarchy in data and the other level is circularly correlated versus one exchangeable hierarchy and the other unstructured level in data.

$$
\lambda_{21}=\left(\frac{\left|\frac{\boldsymbol{T}_{2}}{n\left(n_{2}-1\right)}\right|^{n_{2}-1}\left|\frac{\boldsymbol{T}_{1}}{n}\right|}{\prod_{i=1}^{2 r}\left(\frac{t_{2 i}}{n m_{i}}\right)^{m_{i}}}\right)^{n / 2}
$$

$$
\begin{aligned}
& \text { where } t_{21}=\operatorname{tr}\left(\boldsymbol{T}_{1} \boldsymbol{P}_{n_{1}}\right), t_{2 i}=\operatorname{tr}\left(\boldsymbol{T}_{1}\left(\boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\prime}+\boldsymbol{v}_{n_{1}-i+2} \boldsymbol{v}_{n_{1}-i+2}^{\prime}\right)\right), \\
& t_{2(r+1)}=\operatorname{tr}\left(\boldsymbol{T}_{2} \boldsymbol{P}_{n_{1}}\right) \text { and } \\
& t_{2(r+i)}=\operatorname{tr}\left(\boldsymbol{T}_{2}\left(\boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\prime}+\boldsymbol{v}_{n_{1}-i+2} \boldsymbol{v}_{n_{1}-i+2}^{\prime}\right)\right), i=2, \ldots, r .
\end{aligned}
$$

LRT, cont.

$H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{I I I}$ and $H_{A}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{I}$,
i.e. test the doubly exchangeable hierarchical data versus one exchangeable hierarchy and the other unstructured level in data.

$$
\lambda_{31}=\left(\frac{\left|\frac{T_{2}}{n\left(n_{2}-1\right)}\right|^{n_{2}-1}\left|\frac{T_{1}}{n}\right|}{\prod_{j=1}^{4}\left(\frac{t_{3 j}}{n m_{j}}\right)^{m_{j}}}\right)^{n / 2}
$$

where $t_{31}=\operatorname{tr}\left(\boldsymbol{T}_{1} \boldsymbol{P}_{n_{1}}\right), t_{32}=\operatorname{tr}\left(\boldsymbol{T}_{1} \boldsymbol{Q}_{n_{1}}\right), t_{33}=\operatorname{tr}\left(\boldsymbol{T}_{2} \boldsymbol{P}_{n_{1}}\right)$ and $t_{34}=\operatorname{tr}\left(\boldsymbol{T}_{2} \boldsymbol{Q}_{n_{1}}\right)$.

LRT, cont.

$H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{I I I}$ and $H_{A}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{I I}$,
i.e. test the doubly exchangeable hierarchical data versus one exchangeable hierarchy in data and the other level is circularly correlated.

$$
\lambda_{32}=\left(\frac{\prod_{i=2}^{r}\left(\frac{t_{2 i}}{n m_{i}}\right)^{m_{i}} \prod_{i=r+2}^{2 r}\left(\frac{t_{2 i}}{n m_{i}}\right)^{m_{i}}}{\left(\frac{t_{32}}{n\left(n_{1}-1\right)}\right)^{n_{1}-1}\left(\frac{t_{34}}{n\left(n_{2}-1\right)\left(n_{1}-1\right)}\right)^{\left(n_{2}-1\right)\left(n_{1}-1\right)}}\right)^{n / 2} .
$$

$$
n_{2}=3, n_{1}=4
$$

Tabela : Type I error probabilities of LRT for $\alpha=5 \%$

n	λ_{21}	λ_{32}	λ_{31}
5	0.614	0.075	0.613
10	0.191	0.067	0.197
20	0.093	0.053	0.109
30	0.078	0.056	0.075
40	0.071	0.050	0.077
50	0.063	0.054	0.060
60	0.064	0.047	0.057
70	0.064	0.055	0.065
80	0.059	0.046	0.056
90	0.058	0.040	0.051
100	0.045	0.057	0.054

Internal test

Hypotheses at "micro-level": testing the specific variance components given Σ has a block circular structure.

- Assuming $\boldsymbol{V}_{3}=\sigma_{1} \boldsymbol{I}_{n_{2}}+\sigma_{2}\left(\boldsymbol{J}_{n_{2}}-\boldsymbol{I}_{n_{2}}\right)$ and \boldsymbol{V}_{2} has the same structure of $\Sigma_{I I}$.
- $\tilde{\boldsymbol{\Sigma}}=\boldsymbol{I}_{n_{2}} \otimes \tilde{\boldsymbol{\Sigma}}_{1}+\left(\boldsymbol{J}_{n_{2}}-\boldsymbol{I}_{n_{2}}\right) \otimes \tilde{\boldsymbol{\Sigma}}_{2}$, where $\tilde{\boldsymbol{\Sigma}}_{h}, h=1,2$, is also a CT matrix.
- $\tilde{\boldsymbol{\Sigma}}_{1}=\operatorname{Toep}\left(\sigma^{2}+\sigma_{1}+\tau_{1}, \sigma_{1}+\tau_{2}, \ldots, \sigma_{1}+\tau_{2}\right)$ and $\tilde{\boldsymbol{\Sigma}}_{2}=\operatorname{Toep}\left(\sigma_{2}+\tau_{r+1}, \sigma_{2}+\tau_{r+2}, \ldots, \sigma_{2}+\tau_{r+2}\right)$.
- $\boldsymbol{\theta}=\left(\sigma^{2}, \sigma_{1}, \sigma_{2}, \tau_{1}, \ldots, \tau_{2 r}\right)^{\prime}$ and $\eta=\left(\eta_{1}, \ldots, \eta_{2 r}\right)^{\prime}$

Remarks

- The model does not have explicit expression since the number of unknown parameters in $\Sigma(2 r+3)$ is more than the number of distinct eigenvalues of $\Sigma(2 r)$. (Szatrowski, 1980)
- Different restricted models are considered. (Liang et al., 2014)
- Testing hypotheses means to impose restrictions on restricted models.
- possible to derive equivalent hypotheses through the distinct eigenvalues η

Equivalent hypotheses

Theorem
For the model under the restriction $K_{1} \theta=0$, the following hypotheses are equivalent:
(i) $\sigma_{2}=0$,
(ii) $\eta_{1}=\eta_{r+1}$.
$\lambda_{1}^{2 / n} \stackrel{d}{\sim} \begin{cases}X(1-X)^{n_{2}-1}, & \text { with probability } P\left[F\left(n-1, n\left(n_{2}-1\right)\right) \leqslant \frac{n}{n-1}\right], \\ 1, & \text { with probability } 1-P\left[F\left(n-1, n\left(n_{2}-1\right)\right) \leqslant \frac{n}{n-1}\right]\end{cases}$
where $X \sim \operatorname{Beta}\left(\frac{n-1}{2}, \frac{n\left(n_{2}-1\right)}{2}\right)$.

Theorem
For the model under the restriction $\boldsymbol{K}_{1} \boldsymbol{\theta}=\mathbf{0}$, the following hypotheses are equivalent:
(i) $\tau_{2}=\ldots=\tau_{r}$ and $\tau_{r+2}=\ldots=\tau_{2 r}$,
(ii) $\eta_{2}=\ldots=\eta_{r}$ and $\eta_{r+2}=\ldots=\eta_{2 r}$.

$$
\lambda_{2}^{2 / n} \stackrel{d}{\sim} \prod_{i} B_{i}^{m_{i}}, \quad i \in\{2, \ldots, r\} \cup\{r+2, \ldots, 2 r\} .
$$

where $B_{i} \sim \operatorname{Beta}\left(\frac{n m_{i}}{2}, \frac{n\left(\sum_{i=2}^{r} m_{i}-m_{i}\right)}{2}\right)$.

References

Andersson, S. (1975). Invariant normal models. Annals of Statistics, 3, 132-154.
Arnold, S. F. (1973). Application of the theory of products of problems to certain patterned covariance matrices. Annals of Statistics, 1, 682-699.
Nahtman, T. (2006). Marginal permutation invariant covariance matrices with applications to linear models. Linear Algebra and its Applications, 417, 183-210.
Nahtman, T. and von Rosen, D. (2008). Shift permutation invariance in linear random factor models. Mathematical Methods of Statistics, 17, 173-185.
Olkin, I. (1973). Testing and estimation for structures which are circularly symmetric in blocks. In D. G. Kabe and R. P. Gupta, eds., Multivariate statistical inference. 183-195, North-Holland, Amsterdam.
Olkin, I. and Press, S. (1969). Testing and estimation for a circular stationary model. The Annals of Mathematical Statistics, 40, 1358-1373.
Perlman, M. D. (1987). Group symmetry covariance models. Statistical Science, 2, 421-425.
Roy, A. and Fonseca, M. (2012). Linear models with doubly

Thank you for your attention!

