Multivariate Skew-normal Linear Mixed Models for Multi-outcome Longitudinal Data

Dr. Tsung I. Lin

(Joint work with Dr. Wan-Lun Wang)

Institute of Statistics National Chung Hsing University

August 25, 2014

T.I. Lin (NCHU)

National Chung Hsing University

August 25, 2014 1 / 23

Outline

- Motivating example: ACTG 315 clinical trials
- 2 Multivariate SN (MSN) distribution
- 3 Multivariate skew-normal linear mixed model (MSNLMM)
- Maximum likelihood inference
 - The AECM algorithm
 - Random effects estimation
- 5 Application: ACTG 315 data revisited

Conclusion

1. Introduction

- Shah et al. (1997) proposed the multivariate linear mixed model (MLMM) for multi-outcome longitudinal data.
- Lin and Lee (2008) proposed the skew-normal linear mixed model (SNLMM) to handle asymmetric single-outcome longitudinal data.
- Goal: Extend the SNLMM to the multivariate skew-normal linear mixed model (MSNLMM).

イロト イポト イラト イラト

2. ACTG 315 Clinical Trials (Lederman et al. 1998)

• 53 HIV-1 infected patients were collected from 3 clinical centers.

- 5 weeks prior to study, patients discontinued any antiretroviral therapy and then were treated with a combination of potent antiviral drugs (ritonavir, 3TC, and AZT).
- monitored at days 0, 2, 7, 10 and weeks 2, 4, 8, 12, 24, and 48.
- Response variables:
 - virologic marker (plasma HIV-1 RNA copies)
 - immunologic marker (CD4+ T cell counts)
- We concentrate on 48 patients with the two markers completely observed for the first 24 weeks (168 days) of treatment.

-

イロト イポト イラト イラト

\log_{10} RNA and CD4^{0.5} for 48 HIV-1 Infected Patients

T.I. Lin (NCHU)

August 25, 2014 5 / 23

Diagonal entries

Between-responses correlations at exactly monitored days.

- Upper-triangular entries
 - \Rightarrow Between-occasion correlations for \log_{10} RNA copies.
- Lower-triangular entries
 - Between-occasion correlations for CD4^{0.5} cell counts.

		\log_{10} RNA							
		day 2	day 7	day 10	week 2	week 4	week 8	week 12	week 24
CD4 ^{0.5}	day 2	-0.3231	0.8375	0.7631	0.6850	0.5770	0.4728	0.3136	0.4197
	day 7	0.7405	<mark>-0.1542</mark>	0.8785	0.8167	0.6520	0.4285	0.3039	0.4333
	day 10	0.6942	0.8447	-0.1195	0.8381	0.6860	0.5398	0.2502	0.4436
	day 14	0.5739	0.7335	0.7786	-0.0494	0.7662	0.3912	0.3810	0.3233
	day 28	0.5216	0.7356	0.7433	0.7951	0.0592	0.5970	0.5708	0.3903
	day 56	0.6869	0.6689	0.7663	0.7301	0.7967	0.0768	0.6733	0.3015
	day 84	0.4265	0.5625	0.5926	0.6858	0.6828	0.7273	<mark>-0.4579</mark>	0.4180
	day 168	0.5952	0.6908	0.7243	0.7540	0.8120	0.8093	0.8565	0.0318

・ロト・西・・日・・日・ うくや

Preliminary Analysis for ACTG 315 data

- Let $y_{i1} = \log_{10} \mathsf{RNA}_i$, $y_{i2} = \mathsf{CD4}_i^{0.5}$, $i = 1, \dots, 48$.
- Fit a bivariate LMM (Shah et al., 1997) to the data:

$$\begin{bmatrix} \boldsymbol{y}_{i1} \\ \boldsymbol{y}_{i2} \end{bmatrix} = \boldsymbol{I}_2 \otimes [\boldsymbol{1}_i : \boldsymbol{t}_i : \boldsymbol{t}_i^2 : \operatorname{rna}_i \boldsymbol{1}_i] \boldsymbol{\beta} + \begin{bmatrix} \boldsymbol{1}_i & \boldsymbol{0}_i & \boldsymbol{0}_i \\ \boldsymbol{0}_i & \boldsymbol{1}_i & \boldsymbol{t}_i \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_{i10} \\ \boldsymbol{b}_{i20} \\ \boldsymbol{b}_{i21} \end{bmatrix} + \begin{bmatrix} \boldsymbol{e}_{i1} \\ \boldsymbol{e}_{i2} \end{bmatrix}$$

- *I_d* is an identity matrix of order *d*;
- $\mathbf{0}_i$ and $\mathbf{1}_i$ are $s_i \times 1$ vectors with each entry being 0 and 1, respectively;
- $t_i = (t_{i1}, \ldots, t_{is_i})$ with $t_{ik} = day_{ik}/7$ for $k = 1, \ldots, s_i$;
- rna_i is the baseline log_{10} RNA (time independent covariate);
- b_{i10} : random intercepts for \log_{10} RNA;
- ► (b_{i20}) random intercepts and (b_{i21}) random slopes for CD4^{0.5}.

帰 トイラト イラト ニラ

Empirical Bayes estimates of random effects obtained by fitting bivariate LMM

T.I. Lin (NCHU)

National Chung Hsing Universit

August 25, 2014 8 / 23

< A >

Multivariate Skew-Normal Distribution (Azzalini and Dalla Valle 1996)

- $X \sim SN_d(\mu, \Omega, \lambda)$: the MSN distribution with location vector $\mu \in \mathbb{R}^d$, scale covariance matrix Ω and skewness vector $\lambda \in \mathbb{R}^d$.
- Probability density function:

$$f(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Omega},\boldsymbol{\lambda}) = 2\phi_d(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Omega})\Phi(\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{\Omega}^{-1/2}(\boldsymbol{x}-\boldsymbol{\mu}))$$

• Stochastic representation:

$$oldsymbol{x} = oldsymbol{\mu} + oldsymbol{\Omega}^{1/2} oldsymbol{\delta} oldsymbol{\gamma} + oldsymbol{\Omega}^{1/2} (oldsymbol{I}_d - oldsymbol{\delta} oldsymbol{\delta}^{\mathrm{T}})^{1/2} oldsymbol{z}, \hspace{0.2cm} \gamma oldsymbol{oldsymbol{\Delta}} oldsymbol{z}, \hspace{0.2cm} \gamma oldsymbol{oldsymbol{\Delta}} oldsymbol{z}, \hspace{0.2cm} \gamma oldsymbol{oldsymbol{z}}$$

 $\gamma \sim \mathcal{TN}(0, 1; (0, \infty)), \boldsymbol{z} \sim \mathcal{N}_d(\boldsymbol{0}, \boldsymbol{I}_d), \boldsymbol{\delta} = \boldsymbol{\lambda}(1 + \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda})^{-1/2}.$

• Hierarchical formulation:

 $\boldsymbol{x}|\gamma \sim \mathcal{N}_d(\boldsymbol{\mu} + \boldsymbol{\Omega}^{1/2} \boldsymbol{\delta}\gamma, \boldsymbol{\Omega}^{1/2}(\boldsymbol{I}_d - \boldsymbol{\delta}\boldsymbol{\delta}^{\mathrm{T}})\boldsymbol{\Omega}^{1/2}), \ \gamma \sim \mathcal{T}\mathcal{N}(0, 1; (0, \infty)).$

Notation for the MSNLMM

 $\boldsymbol{y}_i = \operatorname{vec}(\boldsymbol{Y}_i): n_i \times 1 \text{ vector } n_i = s_i r.$

• $E_i = [e_{i1} : \cdots : e_{ir}]: s_i \times r$ within-subject errors matrix.

 $e_i = \operatorname{vec}(E_i) : n_i \times 1$ vector.

• $X_i = \text{diag}\{X_{i1}, \dots, X_{ir}\}$: $n_i \times p$ design matrix for fixed effects

• $\mathbf{Z}_i = \text{diag}\{\mathbf{Z}_{i1}, \dots, \mathbf{Z}_{ir}\}$: $n_i \times q$ design matrix for random effects

 $\Rightarrow p = \sum_{j=1}^{r} p_j$ and $q = \sum_{j=1}^{r} q_j$; $p_j = \operatorname{rank}(X_{ij})$ and $q_j = \operatorname{rank}(Z_{ij})$

3. Multivariate Skew-Normal Linear Mixed Model

MSNLMM for subject *i*

$$\boldsymbol{y}_{i} = \boldsymbol{X}_{i}\boldsymbol{\beta} + \boldsymbol{Z}_{i}\boldsymbol{b}_{i} + \boldsymbol{e}_{i} \quad \text{with} \\ \begin{bmatrix} \boldsymbol{b}_{i} \\ \boldsymbol{e}_{i} \end{bmatrix} \sim \mathcal{SN}_{q+n_{i}} \left(\begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{D} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}_{i} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\lambda} \\ \boldsymbol{0} \end{bmatrix} \right) \quad (1)$$

• $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^{\mathrm{T}}, \dots, \boldsymbol{\beta}_r^{\mathrm{T}})^{\mathrm{T}}$: (*p*-dimensional) regression coefficients

• $\mathbf{R}_i = \mathbf{\Sigma} \otimes \mathbf{C}_i$: $n_i \times n_i$ kronecker product matrix.

Damped Exponential Correlation (DEC)

$$oldsymbol{C}_i = oldsymbol{C}_i(oldsymbol{\phi}, oldsymbol{\xi}; oldsymbol{t}_i) = igg[oldsymbol{\phi}^{|t_{ik} - t_{ik'}|^{oldsymbol{\xi}}}igg], \quad 0 \le \phi < 1, \quad oldsymbol{\xi} \ge 0,$$

 $\xi = 1$: DEC \rightarrow CAR(1) and $\phi = 0$: DEC \rightarrow UNC

-

1. Marginal distribution:

$$oldsymbol{y}_i \sim \mathcal{SN}_{n_i}(oldsymbol{X}_ioldsymbol{eta}, oldsymbol{\Lambda}_i, oldsymbol{\lambda}_{oldsymbol{y}_i})$$

 $\mathbf{\Lambda}_i = \mathbf{Z}_i \mathbf{D} \mathbf{Z}_i^{\mathrm{T}} + \mathbf{\Sigma} \otimes \mathbf{C}_i, \ \mathbf{\lambda}_{\mathbf{y}_i} = (1 + \mathbf{d}_i^{\mathrm{T}} \mathbf{\Psi}_i^{-1} \mathbf{d}_i)^{-1/2} \mathbf{\Lambda}_i^{1/2} \mathbf{\Psi}_i^{-1} \mathbf{d}_i.$ $\mathbf{\Psi}_i = \mathbf{\Lambda}_i - \mathbf{d}_i \mathbf{d}_i^{\mathrm{T}}, \ \mathbf{d}_i = \mathbf{Z}_i F \boldsymbol{\delta}, \ \boldsymbol{\delta} = \boldsymbol{\delta}(\boldsymbol{\lambda}) = \boldsymbol{\lambda} / \sqrt{1 + \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda}} \in (-1, 1)^q.$

2. Two-level hierarchy:

$$\boldsymbol{y}_i|\gamma_i \sim \mathcal{N}_{n_i}(\boldsymbol{X}_i\boldsymbol{\beta} + \boldsymbol{d}_i\gamma_i, \boldsymbol{\Psi}_i), \quad \gamma_i \sim \mathcal{TN}(0, 1, (0, \infty)).$$
 (3)

3. Three-level hierarchy:

$$\begin{aligned} \boldsymbol{y}_{i} | \boldsymbol{b}_{i}, \gamma_{i} &\sim \mathcal{N}_{n_{i}} \big(\boldsymbol{X}_{i} \boldsymbol{\beta} + \boldsymbol{Z}_{i} \boldsymbol{b}_{i}, \boldsymbol{\Sigma} \otimes \boldsymbol{C}_{i} \big), \\ \boldsymbol{b}_{i} | \gamma_{i} &\sim \mathcal{N}_{q} (\boldsymbol{\alpha} \gamma_{i}, \boldsymbol{W}), \quad \gamma_{i} \sim \mathcal{TN}(0, 1, (0, \infty)). \end{aligned}$$
(4)

• $\alpha = F\delta$ and $W = D - \alpha \alpha^{\mathrm{T}}$

-

イロト イポト イヨト イヨト

1. Marginal distribution:

$$oldsymbol{y}_i \sim \mathcal{SN}_{n_i}(oldsymbol{X}_ioldsymbol{eta}, oldsymbol{\Lambda}_i, oldsymbol{\lambda}_{oldsymbol{y}_i})$$

 $\mathbf{\Lambda}_i = \mathbf{Z}_i \mathbf{D} \mathbf{Z}_i^{\mathrm{T}} + \mathbf{\Sigma} \otimes \mathbf{C}_i, \ \mathbf{\lambda}_{\mathbf{y}_i} = (1 + \mathbf{d}_i^{\mathrm{T}} \mathbf{\Psi}_i^{-1} \mathbf{d}_i)^{-1/2} \mathbf{\Lambda}_i^{1/2} \mathbf{\Psi}_i^{-1} \mathbf{d}_i.$ $\mathbf{\Psi}_i = \mathbf{\Lambda}_i - \mathbf{d}_i \mathbf{d}_i^{\mathrm{T}}, \ \mathbf{d}_i = \mathbf{Z}_i F \boldsymbol{\delta}, \ \boldsymbol{\delta} = \boldsymbol{\delta}(\boldsymbol{\lambda}) = \boldsymbol{\lambda} / \sqrt{1 + \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda}} \in (-1, 1)^q.$

2. Two-level hierarchy:

$$\boldsymbol{y}_i|\gamma_i \sim \mathcal{N}_{n_i}(\boldsymbol{X}_i\boldsymbol{\beta} + \boldsymbol{d}_i\gamma_i, \boldsymbol{\Psi}_i), \quad \gamma_i \sim \mathcal{TN}(0, 1, (0, \infty)).$$
 (3)

3. Three-level hierarchy:

$$\begin{aligned} \boldsymbol{y}_{i} | \boldsymbol{b}_{i}, \gamma_{i} &\sim \mathcal{N}_{n_{i}} \big(\boldsymbol{X}_{i} \boldsymbol{\beta} + \boldsymbol{Z}_{i} \boldsymbol{b}_{i}, \boldsymbol{\Sigma} \otimes \boldsymbol{C}_{i} \big), \\ \boldsymbol{b}_{i} | \gamma_{i} &\sim \mathcal{N}_{q} (\boldsymbol{\alpha} \gamma_{i}, \boldsymbol{W}), \quad \gamma_{i} \sim \mathcal{TN}(0, 1, (0, \infty)). \end{aligned}$$
(4)

• $\alpha = F\delta$ and $W = D - \alpha \alpha^{\mathrm{T}}$

-

イロト イポト イヨト イヨト

1. Marginal distribution:

$$oldsymbol{y}_i \sim \mathcal{SN}_{n_i}(oldsymbol{X}_ioldsymbol{eta}, oldsymbol{\Lambda}_i, oldsymbol{\lambda}_{oldsymbol{y}_i})$$

 $\mathbf{\Lambda}_i = \mathbf{Z}_i \mathbf{D} \mathbf{Z}_i^{\mathrm{T}} + \mathbf{\Sigma} \otimes \mathbf{C}_i, \ \mathbf{\lambda}_{\mathbf{y}_i} = (1 + \mathbf{d}_i^{\mathrm{T}} \mathbf{\Psi}_i^{-1} \mathbf{d}_i)^{-1/2} \mathbf{\Lambda}_i^{1/2} \mathbf{\Psi}_i^{-1} \mathbf{d}_i.$ $\mathbf{\Psi}_i = \mathbf{\Lambda}_i - \mathbf{d}_i \mathbf{d}_i^{\mathrm{T}}, \ \mathbf{d}_i = \mathbf{Z}_i F \boldsymbol{\delta}, \ \boldsymbol{\delta} = \boldsymbol{\delta}(\boldsymbol{\lambda}) = \boldsymbol{\lambda} / \sqrt{1 + \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda}} \in (-1, 1)^q.$

2. Two-level hierarchy:

$$\boldsymbol{y}_i|\gamma_i \sim \mathcal{N}_{n_i}(\boldsymbol{X}_i\boldsymbol{\beta} + \boldsymbol{d}_i\gamma_i, \boldsymbol{\Psi}_i), \quad \gamma_i \sim \mathcal{TN}(0, 1, (0, \infty)).$$
 (3)

3. Three-level hierarchy:

$$\begin{aligned} \boldsymbol{y}_{i} | \boldsymbol{b}_{i}, \gamma_{i} &\sim \mathcal{N}_{n_{i}} \big(\boldsymbol{X}_{i} \boldsymbol{\beta} + \boldsymbol{Z}_{i} \boldsymbol{b}_{i}, \boldsymbol{\Sigma} \otimes \boldsymbol{C}_{i} \big), \\ \boldsymbol{b}_{i} | \gamma_{i} &\sim \mathcal{N}_{q} (\boldsymbol{\alpha} \gamma_{i}, \boldsymbol{W}), \quad \gamma_{i} \sim \mathcal{TN}(0, 1, (0, \infty)). \end{aligned}$$
(4)

• $\alpha = F\delta$ and $W = D - \alpha \alpha^{\mathrm{T}}$.

-

イロト イポト イヨト イヨト

Alternating Expectation Conditional Maximization

T.I. Lin (NCHU)

4.1 The AECM algorithm for MSNLMM

- Partition parameters θ as $\theta_1 = (\beta, \alpha)$, $\theta_2 = (F, \Sigma, \delta)$, $\theta_3 = (\phi, \xi)$
- Initial values: $\hat{\theta}^{(0)} = (\hat{\beta}^{(0)}, \hat{F}^{(0)}, \hat{\Sigma}^{(0)}, \hat{\delta}^{(0)}, \hat{\phi}^{(0)}, \hat{\xi}^{(0)})$

Cycle I

The complete data is $oldsymbol{Y}_{\mathrm{arg}}^{[1]}=(oldsymbol{y},oldsymbol{\gamma})$, and

$$\ell_c^{[1]}(\boldsymbol{\theta}|\boldsymbol{Y}_{\mathrm{arg}}^{[1]}) = -\frac{1}{2}\sum_{i=1}^N \Big\{ \log|\boldsymbol{\Psi}_i| + \mathsf{tr}\big(\boldsymbol{\Psi}_i^{-1}\boldsymbol{\Omega}_{1i}\big) + \gamma_i^2 \Big\},\$$

where $\Omega_{1i} = (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta} - \boldsymbol{Z}_i \boldsymbol{\alpha} \gamma_i) (\boldsymbol{y}_i - \boldsymbol{X}_i \boldsymbol{\beta} - \boldsymbol{Z}_i \boldsymbol{\alpha} \gamma_i)^{\mathrm{T}}.$

E-step: Evaluate $Q^{[1]}(\boldsymbol{\theta}|\hat{\boldsymbol{\theta}}^{(k)}) = E[\ell_c^{[1]}(\boldsymbol{\theta}|\boldsymbol{Y}_{arg}^{[1]})|\boldsymbol{y}, \hat{\boldsymbol{\theta}}^{(k)}].$

 $\begin{array}{l} \text{CM-step:} \ \text{Update} \ \hat{\pmb{\theta}}_1^{(k)} = (\hat{\pmb{\beta}}^{(k)}, \hat{\pmb{\alpha}}^{(k)}) \ \text{by maximizing} \ Q^{[1]}(\pmb{\theta}| \hat{\pmb{\theta}}^{(k)}) \ \text{over} \ \pmb{\beta} \\ \text{and} \ \pmb{\alpha} \end{array}$

Cycle II

The complete data is
$$m{Y}_{\mathrm{aug}}^{[2]} = (m{Y}_{\mathrm{aug}}^{[1]}, m{b})$$
, and

$$\begin{split} \ell_c^{[2]}(\boldsymbol{\theta}|\boldsymbol{Y}_{\mathrm{aug}}^{[2]}) &= -\frac{1}{2}\sum_{i=1}^N \Big\{ \log|\boldsymbol{\Sigma}\otimes\boldsymbol{C}_i| + \log|\boldsymbol{W}| + \mathsf{tr}\big((\boldsymbol{\Sigma}\otimes\boldsymbol{C}_i)^{-1}\boldsymbol{\Omega}_{2i}\big) \\ &+ \mathsf{tr}\big(\boldsymbol{W}^{-1}\boldsymbol{\Omega}_{3i}\big) + \gamma_i^2 \Big\}, \end{split}$$

where $\Omega_{2i} = e_i e_i^{\mathrm{T}}$, $\Omega_{3i} = (b_i - \alpha \gamma_i)(b_i - \alpha \gamma_i)^{\mathrm{T}}$, $e_i = y_i - X_i \beta - Z_i b_i$. E-step: Evaluate $Q^{[2]}(\theta|\hat{\theta}^{(k)}) = E[\ell_c^{[2]}(\theta|Y_{\mathrm{arg}}^{[2]})|y, \hat{\theta}^{(k+1/3)}]$. CM-step: Update $\hat{W}^{(k)}$ and $\hat{\Sigma}^{(k)}$ by maximizing $Q^{[2]}(\theta|\hat{\theta}^{(k+1/3)})$ over W and σ_{jl} , and then update $\hat{D}^{(k)}$ and $\hat{\delta}^{(k)}$. CML-step: Calculate $\hat{\theta}_3^{(k+1)} = (\hat{\phi}^{(k+1)}, \hat{\xi}^{(k+1)})$ by maximizing the constrained log-likelihood function evaluated at $\theta_1 = \hat{\theta}_1^{(k+1)}$ and $\theta_2 = \hat{\theta}_2^{(k+1)}$.

イロン イポン イヨン イヨン

Closed-form expressions

$$\begin{bmatrix} \hat{\boldsymbol{\beta}}^{(k+1)} \\ \hat{\boldsymbol{\alpha}}^{(k+1)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} \boldsymbol{X}_{i}^{\mathrm{T}} \hat{\boldsymbol{\Psi}}_{i}^{(k)^{-1}} \boldsymbol{X}_{i} & \sum_{i=1}^{N} \hat{\gamma}_{i}^{(k)} \boldsymbol{X}_{i}^{\mathrm{T}} \hat{\boldsymbol{\Psi}}_{i}^{(k)^{-1}} \boldsymbol{Z}_{i} \\ \sum_{i=1}^{N} \hat{\gamma}_{i}^{(k)} \boldsymbol{Z}_{i}^{\mathrm{T}} \hat{\boldsymbol{\Psi}}_{i}^{(k)^{-1}} \boldsymbol{X}_{i} & \sum_{i=1}^{N} \hat{\gamma}_{i}^{2^{(k)}} \boldsymbol{Z}_{i}^{\mathrm{T}} \hat{\boldsymbol{\Psi}}_{i}^{(k)^{-1}} \boldsymbol{Z}_{i} \end{bmatrix}^{-1} \\ \times \begin{bmatrix} \sum_{i=1}^{N} \boldsymbol{X}_{i}^{\mathrm{T}} \hat{\boldsymbol{\Psi}}_{i}^{(k)^{-1}} \boldsymbol{y}_{i} \\ \sum_{i=1}^{N} \hat{\gamma}_{i}^{(k)} \boldsymbol{Z}_{i}^{\mathrm{T}} \hat{\boldsymbol{\Psi}}_{i}^{(k)^{-1}} \boldsymbol{y}_{i} \end{bmatrix}, \\ \hat{\boldsymbol{W}}^{(k+1)} &= \frac{1}{N} \sum_{i=1}^{N} \hat{\boldsymbol{\Omega}}_{3i}^{(k+1/3)} (\hat{\boldsymbol{\alpha}}^{(k+1)}), \\ \hat{\boldsymbol{D}}^{(k+1)} &= \hat{\boldsymbol{W}}^{(k+1)} + \hat{\boldsymbol{\alpha}}^{(k+1)} \hat{\boldsymbol{\alpha}}^{(k+1)^{\mathrm{T}}}, \\ \hat{\boldsymbol{\delta}}^{(k+1)} &= \hat{\boldsymbol{F}}^{(k+1)^{-1}} \hat{\boldsymbol{\alpha}}^{(k+1)}, \qquad \hat{\boldsymbol{\lambda}}^{(k+1)} = \hat{\boldsymbol{\delta}}^{(k+1)} (1 - \hat{\boldsymbol{\delta}}^{(k+1)^{\mathrm{T}}} \hat{\boldsymbol{\delta}}^{(k+1)})^{-1/2}, \\ \hat{\boldsymbol{\sigma}}_{jl}^{(k+1)} &= \begin{bmatrix} \left(\sum_{i=1}^{N} s_{i} \right)^{-1} \sum_{i=1}^{N} \operatorname{tr} \left(\hat{\boldsymbol{C}}_{i}^{(k)^{-1}} \hat{\boldsymbol{\Omega}}_{ijl}^{(k+1/3)} \right) & \text{for } j = l, \\ (2 \sum_{i=1}^{N} s_{i})^{-1} \sum_{i=1}^{N} \operatorname{tr} \left(\hat{\boldsymbol{C}}_{i}^{(k)^{-1}} (\hat{\boldsymbol{\Omega}}_{ijl}^{(k+1/3)} + \hat{\boldsymbol{\Omega}}_{ilj}^{(k+1/3)}) \right) & \text{for } j \neq l. \end{bmatrix}$$

T.I. Lin (NCHU)

National Chung Hsing Universit

August 25, 2014 16 / 23

4.2 Random effects estimation

The posterior density of b_i

$$f(\boldsymbol{b}_i|\boldsymbol{y}_i) = \phi_q(\boldsymbol{\mu}_{\boldsymbol{b}_i|\boldsymbol{y}_i}, \boldsymbol{\Sigma}_{\boldsymbol{b}_i|\boldsymbol{y}_i}) \frac{\Phi(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{D}^{-1/2} \boldsymbol{b}_i)}{\Phi(\eta_i)},$$

$$\begin{split} \boldsymbol{\mu}_{\boldsymbol{b}_i|\boldsymbol{y}_i} &= \boldsymbol{D}\boldsymbol{Z}_i^{\mathrm{T}}\boldsymbol{\Lambda}_i^{-1}(\boldsymbol{y}_i - \boldsymbol{X}_i\boldsymbol{\beta}), \quad \boldsymbol{\Sigma}_{\boldsymbol{b}_i|\boldsymbol{y}_i} = \left[\boldsymbol{D}^{-1} + \boldsymbol{Z}_i^{\mathrm{T}}(\boldsymbol{\Sigma} \otimes \boldsymbol{C}_i)^{-1}\boldsymbol{Z}_i\right]^{-1}, \\ \eta_i &= (1 + \boldsymbol{d}_i\boldsymbol{\Psi}_i^{-1}\boldsymbol{d}_i)^{-\frac{1}{2}}\boldsymbol{d}_i^{\mathrm{T}}\boldsymbol{\Psi}_i^{-1}(\boldsymbol{y}_i - \boldsymbol{X}_i\boldsymbol{\beta}). \end{split}$$

The posterior mean

$$\tilde{\boldsymbol{b}}_i(\boldsymbol{\theta}) = E(\boldsymbol{b}_i | \boldsymbol{y}_i) = \boldsymbol{u}_{\boldsymbol{b}_i}(\mu_{\gamma_i} + \kappa_i \sigma_{\gamma_i}) + \boldsymbol{v}_{\boldsymbol{b}_i},$$
 (5)

$$\begin{split} \boldsymbol{u}_{\boldsymbol{b}_{i}} &= \left(\boldsymbol{Z}_{i}^{\mathrm{T}}(\boldsymbol{\Sigma}\otimes\boldsymbol{C}_{i})^{-1}\boldsymbol{Z}_{i}+\boldsymbol{W}^{-1}\right)^{-1}\boldsymbol{W}^{-1}\boldsymbol{\alpha}, \quad \boldsymbol{W}=\boldsymbol{D}-\boldsymbol{\alpha}\boldsymbol{\alpha}^{\mathrm{T}},\\ \boldsymbol{v}_{\boldsymbol{b}_{i}} &= \left(\boldsymbol{Z}_{i}^{\mathrm{T}}(\boldsymbol{\Sigma}\otimes\boldsymbol{C}_{i})^{-1}\boldsymbol{Z}_{i}+\boldsymbol{W}^{-1}\right)^{-1}\boldsymbol{Z}_{i}^{\mathrm{T}}(\boldsymbol{\Sigma}\otimes\boldsymbol{C}_{i})^{-1}(\boldsymbol{y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta}),\\ \boldsymbol{\mu}_{\boldsymbol{\gamma}_{i}} &= \sigma_{\boldsymbol{\gamma}_{i}}\eta_{i}, \ \sigma_{\boldsymbol{\gamma}_{i}}^{2}=1-\boldsymbol{d}_{i}^{\mathrm{T}}\boldsymbol{\Lambda}_{i}^{-1}\boldsymbol{d}_{i}, \ \kappa_{i}=\phi(\eta_{i})/\Phi(\eta_{i}). \end{split}$$

• The empirical Bayes estimate $\hat{m{b}}_i = ilde{m{b}}_i(\hat{m{ heta}})$

5. Application: ACTG 315 data revisited

- Let $y_{i1,k}$ and $y_{i2,k}$ be \log_{10} RNA and CD4^{0.5} responses, respectively, at the *k*th time point for subject *i*.
- RI-RI scenario:

 $\begin{array}{lll} y_{i1,k} & = & \beta_{10} + \beta_{11}t_{ik} + \beta_{12}t_{ik}^2 + \beta_{13}\mathrm{rna}_i + b_{i10} + e_{i1,t}, \\ \\ y_{i2,k} & = & \beta_{20} + \beta_{21}t_{ik} + \beta_{22}t_{ik}^2 + \beta_{23}\mathrm{rna}_i + b_{i20} + e_{i2,t}, \end{array}$

RI-RIS scenario:

$$y_{i1,k} = \beta_{10} + \beta_{11}t_{ik} + \beta_{12}t_{ik}^2 + \beta_{13}\mathsf{rna}_i + b_{i10} + e_{i1,t},$$

 $y_{i2,k} = \beta_{20} + \beta_{21}t_{ik} + \beta_{22}t_{ik}^2 + \beta_{23}\mathsf{rna}_i + b_{i20} + b_{i21}t_{i,k} + e_{i2,t},$

- For C_i, we adopt the DEC structure and two reduced cases, namely uncorrelated (UNC) and CAR(1).
- For model comparison, the MLMM is also fitted.

T.I. Lin (NCHU)

National Chung Hsing University

Table 1: Summary of model selection criteria

	Model		RI-RI		RI-RIS			
	Woder	UNC	CAR1	DEC	UNC	CAR1	DEC	
AIC	MLMM	2110.706	2064.147	2054.823	2111.710	2070.165	2060.814	
	MSNLMM	2096.949	2050.342	2051.074	2099.910	2058.300	2057.077	
BIC	MLMM	2136.903	2092.215	2084.762	2143.520	2103.847	2096.367	
	MSNLMM	2126.888	2082.152	2084.756	2137.334	2097.596	2098.244	
$AIC = 2m - 2\ell_{max}$ and $BIC = m \log N - 2\ell_{max}$								

T.I. Lin (NCHU)

(a)

 Table 2: ML estimates along with the associated standard errors for the

 MSNLMM with RI-RI and AR1 errors.

	$\hat{oldsymbol{eta}}$		$\hat{m{F}}$		$\hat{\mathbf{\Sigma}}$
β_{10}	0.7196 (0.990)	f_{11}	0.4839 (0.151)	σ_{11}	0.4457 (0.041)
β_{11}	<mark>–0.2971 (</mark> 0.028)	f_{12}	-0.2659 (0.211)	σ_{12}	-0.3792 (0.078)
β_{12}	<mark>0.0098 (</mark> 0.001)	f_{22}	2.6418 (0.737)	σ_{22}	3.5848 (0.415)
β_{13}	0.6591 (0.188)				$\hat{ ho}_{12} = -0.3$
β_{20}	16.7921 (5.917)				
β_{21}	<mark>0.3621</mark> (0.106)				
β_{22}	<mark>–0.0108</mark> (0.005)				
β_{23}	-0.1969 (1.072)				
	$\hat{m{C}}_i$		$\hat{oldsymbol{\delta}}$		
ϕ	0.3757 (0.075)	δ_1	0.8764 (0.303)		
ξ	1.0000 ()	δ_2	-0.4817 (0.550)		
				< □	

Scatter plot, contour lines, histograms and density corves for estimated (b_{10}, b_{20})

T.I. Lin (NCHU)

National Chung Hsing University

August 25, 2014 21 / 23

Summary and Future Research

- A multivariate extension of skew-normal linear mixed model (MSNLMM) is introduced.
- A computationally feasible AECM algorithm is developed for carrying out ML estimation.
- The analysis of the ACTG 315 data illustrates the usefulness of the MSNLMM.
- Future work:
 - Establish missing-data imputation techniques to handle incomplete multiple repeated measures.
 - Develop a joint modelling of the time-to-event data and multivariate longitudinal data.

イロト イポト イラト イラト 一戸

THANK YOU FOR YOUR ATTENTION!

T.I. Lin (NCHU)

National Chung Hsing University

August 25, 2014 23 / 23

★ ∃ > < ∃ >

< 🗗 🕨