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History of Hodrick-Prescott Filter

The univariate HP filter extracts a ’signal’ y(α, x) = (y1(α, x), . . . , yT(α, x)) from
a noisy time series x = (x1, . . . , xT) as a minimizer of

T∑
t=1

(xt − yt)
2 + α

T∑
t=3

(yt − 2yt−1 + yt−2)2, (1)

with respect to y = (y1, . . . , yT), for an appropriately chosen positive parameter
α, called the smoothing parameter.
The second order diferencing operator Py(t) = yt − 2yt−1 + yt−2 is written in
vector form as the following (T − 2)× T-matrix

P :=


1 −2 1 0 ... ... 0
0 1 −2 1 ... ... 0
0 0 1 −2 1 ... 0

. . . . . . . . . . . .
0 0 0 0 1 −2 1

 .
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History of Hodrick-Prescott Filter

To determine an appropriate value of the smoothing parameter α, Hodrick and
Prescott (1997) suggest the time series (x, y) satisfies the following linear
mixed model: {

x = y + u,
Py = v. (2)

where, u ∼ N(0, σ2
uIT) and v ∼ N(0, σ2

v IT−2).
The ’optimal smooth’ signal associated with x is

ȳ(α, x) := arg min
y

{
‖x− y‖2

RT + α ‖Py‖2
RT−2

}
. (3)

Using the model above, the appropriate smoothing parameter turns out to be
the noise-to-signal ratio α∗ = σ2

u/σ
2
v .
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History of Hodrick-Prescott Filter

Schlicht in (2005) proved that the noise-to-signal ratio satisfies

E[ y| x] = y(
σ2

u

σ2
v
, x), (4)

where E[ y| x] is the best predictor of any signal y given the time series x.
Dermoune et al. proposed in (2009) an optimality criterion for choosing the
smoothing parameter for the HP-filter. The smoothing parameter α is chosen
as the following:

α∗ = arg min
α

{
‖E[ y| x]− y(α, x)‖2} (5)

Furthermore, Dermoune et al. (2009) proposed a multivariate version of the
HP filter and determined the possible optimal smoothing parameters.
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A Hilbert space-valued Hodrick-Prescott filter

Definition
Let H1 and H2 be two separable Hilbert spaces, with norms ‖· ‖Hi

and inner
products 〈·, ·〉Hi , i = 1, 2, and x ∈ H1 be a functional time series of
observables. A functional Hodrick-Prescott filter reconstructs an ’optimal
smooth signal’ y ∈ H1 that solves an equation Ay = v, corrupted by a noise v
which is apriori unobservable, from observations x corrupted by a noise u
which is also apriori unobservable:{

x = y + u,

Ay = v,
(6)

given the linear operator A : H1 −→ H2 and u, v are independent random
variables with zero mean and covariance operators Σu and Σv respectively.
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A Hilbert space-valued Hodrick-Prescott filter

The ’optimal smooth’ signal associated with x is given by:

y(B, x) := arg min
y

{
‖x− y‖2

H1
+ 〈Ay,BAy〉H2

}
, (7)

where B : H2 −→ H2 is a smoothing operator, provided that

〈Ah,BAh〉H2 ≥ 0, h ∈ H1.

Definition
The optimal smoothing operator associated with the Hodrick-Prescott filter (6)
is the minimizer of the difference between the optimal solution y(B, x), and the
conditional expectation E[y|x], the best predictor of any signal y given the
functional data x:

B̂ = arg min
B
‖E[y|x]− y(B, x)‖2

H1
. (8)
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A Hilbert space-valued Hodrick-Prescott filter

Proposition
Let A : H1 −→ H2 be a compact operator with the singular system (λn, en, dn).
Assume further that the smoothing operator B : H2 −→ H2 is linear, bounded
and satisfies

〈Ah,BAh〉H2 ≥ 0, h ∈ H1. (9)

Then, there exists a unique y(B, x) ∈ H1 which minimizes the functional

JB(y) = ‖x− y‖2
H1

+ 〈Ay,BAy〉H2 .

This minimizer is given by the formula

y(B, x) = (IH1 + A∗BA)−1x. (10)
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A Hilbert space-valued Hodrick-Prescott filter

If the smoothing operator B : H2 → H2 admits the following representation

Bh =

∞∑
k=1

βk〈h, dk〉dk, h ∈ H2, (11)

where βk > 0, k = 1, 2, . . ., and the sum converges in the operator norm, i.e. B

is linear, compact and injective, then

y(B, x) = (IH1 + A∗BA)−1x =

∞∑
j=1

1
1 + λ2

j βj
〈x, ej〉ej. (12)
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Functional Hodrick-Prescott filter with compact operators HP filter associated with trace class covariance

Assumptions

1 u and v are independent random variables with zero mean and
covariance operators Σu and Σv respectively.

2 The independent random variables u and v are respectively N(0,Σu) and
N(0,Σv) distributed, where the covariance operators Σu and Σv are
positive-definite and trace class operators on H1 and H2 respectively.

3 The orthogonal (in H1) random variables Πu and (IH1 −Π)u are
independent:

ΠΣu = ΣuΠ. (13)

4 The operator
Qv := A∗(AA∗)−1Σv(AA∗)−1A

is trace class.
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Functional Hodrick-Prescott filter with compact operators HP filter associated with trace class covariance

Since the covariance operators Σu and Σv are trace class and thus compact,
by Riesz’ Representation Theorem, they admit the following decompositions:

Σuh =

∞∑
k=1

µk〈h, ek〉ek, h ∈ H1, (14)

Σvh =

∞∑
k=1

τk〈h, dk〉dk, h ∈ H2, (15)

where the sums converge in the corresponding operator norm.
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Functional Hodrick-Prescott filter with compact operators HP filter associated with trace class covariance

Proposition
Let X,Y be jointly Gaussian H-valued random variables. Assume that both X
and Y have means µX and µY , and that the covariance of X, ΣX, is injective.
Then, the conditional expectation of Y given X is

E[Y|X] = µY + ΣXYΣ−1
X (X − µX), (16)

provided that the operator
T = ΣXYΣ

− 1
2

X (17)

is Hilbert-Schmidt.
See Mandelbaum [8]
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Functional Hodrick-Prescott filter with compact operators HP filter associated with trace class covariance

Theorem
Let Assumptions (1) to (4) hold, and that

‖T‖2
2 =

∞∑
k=1

τk

λ2
k

(
λ2

kµk

τk
+ 1
)−1

<∞, (18)

then, for all x ∈ H1, the smoothing operator (which is linear, compact and
injective)

B̂h := (AA∗)−1AΣuA∗Σ−1
v h =

∞∑
k=1

µk

τk
〈h, dk〉dk, h ∈ H2, (19)

where, the sum converges in the operator norm, is the unique operator which
satisfies

B̂ = arg min
B
‖y(B, x)− E[y|x]‖H1

,

where the minimum is taken with respect to all linear bounded operators
which satisfy the positivity condition (9).
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Functional Hodrick-Prescott filter with compact operators HP filter associated with trace class covariance

Furthermore, we have

y(B̂, x)− E[y|x] = (IH1 −Π)(x− E[x]), (20)

and its covariance operator is

cov (y(B̂, x)− E[y|x]) = (IH1 −Π)Σu. (21)

In particular,

E
(∥∥y(B̂, x)− E[y|x]

∥∥2

H1

)
= trace ((IH1 −Π)Σu) . (22)

Linnéuniversitet 14 / 30 LinStat 2014



Functional Hodrick-Prescott filter with compact operators Extension to non-trace class covariance operators

Assume that u ∼ N(0,Σu) and v ∼ N(0,Σv) where Σu and Σv are self-adjoint
positive-definite and bounded but not trace class operators on H1 and H2,
respectively.

Following Rozanov (1968), we can look at these Gaussian variables as
generalized random variables on an appropriate Hilbert scale, where the
covariance operators can be maximally extended to self-adjoint
positive-definite, bounded and trace class operators on a larger space.

We first construct the Hilbert scales (Hn
1)n∈R ((Hn

2)n∈R) induced by
K1 = (A∗A)−1 (K2 = (AA∗)−1 ) of H1, (H2).

For all n ∈ N the space Hn
1 is a complete space with respect to the norm

induced by the following inner product

〈x, y〉Hn
1

:= 〈(A∗A)−nx, (A∗A)−ny〉H1 , x, y ∈ Hn
1 . (23)
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Functional Hodrick-Prescott filter with compact operators Extension to non-trace class covariance operators

Assumption (5): There is n0 > 0 such that for all n ≥ n0 we have

∞∑
k=1

λ4n−2
k µk <∞ and

∞∑
k=1

λ4n
k τk <∞.

Under Assumption 5, the covariance operators Σ̃u, Σ̃ and Σ̃v are trace class
on the Hilbert spaces H−n

1 and H−n
2 , respectively, where

Σ̃u = (A∗A)nΣu(A∗A)n, Σ̃v = (AA∗)nΣv(AA∗)n (24)

and

Σ̃ =

(
Σ̃u + Q̃v Q̃v

Q̃v Q̃v

)
, (25)

where,
Q̃v := (A∗A)nQv(A∗A)n = A∗(AA∗)−1Σ̃v(AA∗)−1A. (26)
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Functional Hodrick-Prescott filter with compact operators Extension to non-trace class covariance operators

Theorem
Let Assumption 5 hold. Then, the operator

B̂h := (AA∗)−1AΣ̃uA∗Σ̃−1
v h, h ∈ H−n

2 , (27)

is the unique optimal smoothing operator associated with the HP filter
associated with H−n

1 -valued data x.
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Functional Hodrick-Prescott filter with compact operators Extension to non-trace class covariance operators

In this section we apply Theorem 7 to the case where u and v are white noise
i.e. u and v are independent Gaussian random variables with zero means and
covariance operators

Σu = σuIH1 , Σv = σvIH2 ,

where IH1 and IH2 denotes the H1 and H2 identity operators, respectively and
σu and σv are constant scalars. Assumption 5, reduces to

Assumption 6. There is an n0 > 0 such that
∑∞

k=1 λ
2(2n−1)
k <∞ for all n ≥ n0.

Under this assumption, the associated covariance operators Σ̃u, Σ̃v and Q̃v are
all trace class operators. Hence, the expression (27) giving the optimal
smoothing operator B̂ reduces to

B̂ = (AA∗)−1AΣuA∗Σ−1
v =

σu

σv

∞∑
k=1

〈·, dk〉dk =
σu

σv
IH−n

2
, (28)

i.e. B̂ is the noise-to-signal ratio.

Linnéuniversitet 18 / 30 LinStat 2014



Functional H-P filter with non-compact operators HP filter associated with trace class covariance

Assumptions

7 the linear operator A : H1 → H2 is
(1a) Closed and defined on a dense subspace D(A) of H1,
(1b) Its range, Ran(A), is closed.

8 u and v are independent Gaussian random variables with zero mean and
covariance operators Σu and Σv respectively.

9 The orthogonal (in H1) random variables Πu and (IH1 −Π)u are
independent:

ΠΣu = ΣuΠ. (29)

Assumption (1) is equivalent to the fact that A† is bounded.
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Functional H-P filter with non-compact operators HP filter associated with trace class covariance

Proposition
Let A : H1 −→ H2 be a closed, linear operator and its domain is dense in H1.
Assume further the smoothing operator B : H2 −→ H2 is closed, densely
defined and satisfies

〈Ah,BAh〉H2 ≥ 0, h ∈ H1. (30)

Then, there exists a unique y(B, x) ∈ H1 which minimizes the functional

JB(y) = ‖x− y‖2
H1

+ 〈Ay,BAy〉H2 .

This minimizer is given by the formula

y(B, x) = (IH1 + A∗BA)−1x. (31)
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Functional H-P filter with non-compact operators HP filter associated with trace class covariance

Given Assumption (8), it holds that (x, y) is Gaussian with covariance operator

Σ =

(
Σu + Qv Qv

Qv Qv

)
, (32)

where,
Qv := A†Σv(A†)∗. (33)

Lemma
The linear operator Qv is trace class.

Moreover, the linear operator

T := Qv [Σu + Qv]
−1/2

is Hilbert-Schmidt.
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Functional H-P filter with non-compact operators HP filter associated with trace class covariance

Theorem
Under Assumptions (7), (8) and (9), the smoothing operator

B̂ := (A†)∗ΣuA∗Σ−1
v (34)

is the unique operator which satisfies

B̂ = arg min
B
‖E[y|x]− y(B, x)‖H1

,

where the minimum is taken with respect to all linear closed and densely
defined operators which satisfy the positivity condition (30).
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Functional H-P filter with non-compact operators Extension to non-trace class covariance operators

Assuming that u ∼ N(0,Σu) and v ∼ N(0,Σv) where Σu and Σv are self-adjoint
positive-definite bounded but not trace class operators on H1 and H2,
respectively. In view of Assumption (7), the operator A† : H2 → H1 is linear and

bounded operator. Put H3 := Ran A, H3 is a Hilbert space, since it is a closed
subspace of Hilbert space H2. Let Ā† be the restriction of A† on H3 i.e.
Ā† : H3 → H1. Hence Ā† is injective bounded linear operator.

Remark
In view of Hodrick-Prescott Filter (6), v ∈ Ran(A) = H3 i.e. it can be seen as
H3-random variable with covariance operator Σv : H3 → H3.
Set

K1 := (Ā†(Ā†)∗)−1 : H1 → H1,

and
K2 := ((Ā†)∗Ā†)−1 : H3 → H3.
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Functional H-P filter with non-compact operators Extension to non-trace class covariance operators

Assumption (10): There is n0 > 0 such that the covariance operators Σ̃u, Σ̃
and Σ̃v are trace class on the Hilbert spaces H−n

1 and H−n
3 , respectively, where

Σ̃u = (Ā†(Ā†)∗)nΣu(Ā†(Ā†)∗)n, Σ̃v = ((Ā†)∗Ā†)nΣv((Ā†)∗Ā†)n (35)

and

Σ̃ =

(
Σ̃u + Q̃v Q̃v

Q̃v Q̃v

)
, (36)

where,
Q̃v := Ā†Σ̃v(Ā†)∗. (37)

Theorem
Let assumption 5 hold. Then, the unique optimal smoothing operator
associated with the HP filter associated with H−n

1 -valued data x is given by:

B̂h := (Ā†)∗Σ̃uA∗Σ̃−1
v h, h ∈ H−n

3 . (38)
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Functional H-P filter with non-compact operators Extension to non-trace class covariance operators

Assuming u and v independent and Gaussian random variables with zero
means and covariance operators Σu = σuIH1 and Σv = σvIH3 , where IH1 and IH3

denote the H1 and H3 identity operators, respectively and σu and σv are
constant scalars. Assumption 5 reduces to

Assumption 11. There is an n0 > 0 such that
(
Ā†(Ā†)∗

)2n and
(
(Ā†)∗Ā†

)2n are
trace class for all n ≥ n0.
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Functional H-P filter with non-compact operators Extension to non-trace class covariance operators

Under this assumption, the associated covariance operators

Σ̃u = (Ā†(Ā†)∗)nΣu(Ā†(Ā†)∗)n = σu
(
Ā†(Ā†)∗

)2n
,

Σ̃v = ((Ā†)∗Ā†)nΣv((Ā†)∗Ā†)n = σv
(
(Ā†)∗Ā†

)2n

and
Q̃v = σvA†

(
(A†)∗A†

)2n
(A†)∗ = σv

(
A†(A†)∗

)2n+1

are trace class, the expression (38) giving the optimal smoothing operator B̂
reduces to

B̂ = (Ā†)∗Σ̃uA∗Σ̃−1
v h =

σu

σv
IH−n

3
, (39)

i.e. B̂ is the noise-to-signal ratio which is in the same pattern as in the
classical HP filter.
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Thanks for your attention!
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