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Basic model

We consider the extended growth curve model as defined in von Rosen
(1989):

X =

m∑
i=1

AiBiCi + E (1)

where the sample matrix X : p× n, the mean parameter matrices
Bi : qi × ki, the within individual design matrices Ai : p× qi and the
between individual design matrices Ci : ki × n are such that
C(C′i) ⊆ C(C′i−1), i = 2, 3, . . . ,m.

The columns of E are assumed to be independently distributed as a
p-variate normal distribution with mean zero and a dispersion matrix
Σ.
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Maximum likelihood estimators

The maximum likelihood method is one of several approaches used to
find estimators of parameters in the EGC model.

One can find an exhaustive description of how to get those estimators
in Kollo and von Rosen (2005).

Hereafter we give some important results from which the main idea of
our discussion is derived starting with the theorem stated and proved
in von Rosen (1989).
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Maximum likelihood estimators

Let B̂i’s be the maximum likelihood estimators of Bi’s in the EGC
model. Then

Pr

m∑
i=r

AiB̂iCi =

m∑
i=r

(I−Ti)XC′i(CiC
′
i)
−Ci,

where,

Pr = Tr−1Tr−2 × · · · ×T0, T0 = I, r = 1, 2, . . . ,m + 1,

Ti = I−PiAi(A
′
iP
′
iS
−1
i PiAi)

−A′iP
′
iS
−1
i , i = 1, 2, . . . ,m,

Si =

i∑
j=1

Kj , i = 1, 2, . . . ,m,

Kj = PjX(C′j−1(Cj−1C
′
j−1)

−Cj−1 −C′j(CjC
′
j)
−Cj)X

′P′j , C0 = I.
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Maximum likelihood estimators

When r = 1, we get the estimated mean structure, i.e.,

Ê[X] =
∑m

i=1
AiB̂iCi =

m∑
i=1

(I−Ti)XC′i(CiC
′
i)
−Ci (2)

or equivalently

Ê[X] =

m∑
i=1

PiAi(A
′
iP
′
iS
−1
i PiAi)

−A′iP
′
iS
−1
i XC′i(CiC

′
i)
−Ci. (3)
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Maximum likelihood estimators

To shorten matrix expressions put

PPiAi,Si = PiAi(A
′
iP
′
iS
−1
i PiAi)

−A′iP
′
iS
−1
i and PC′

i
= C′i(CiC

′
i)
−Ci.

Thus, (3) becomes

Ê[X] =

m∑
i=1

PPiAi,SiXPC′
i
. (4)

Noticing that the matrix PPiAi,Si and PC′
i

are projector matrices, we
see that estimators of the mean structure is based on a projection of
the observations on the space generated by the design matrices.

Naturally, the estimators of the variance parameters are based on a
projection of the observations on the residual space, that is the
orthogonal complement to the design space.
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Main idea and space decomposition

If Σ would have been known, we would have from least squares theory
the best linear estimator (BLUE) given by

Ẽ[X] =

m∑
i=1

PPiAi,ΣXPC′
i
, (5)

where Si in Pi is replaced with Σ.

We see that in the projections, if Σ is unknown, the parameter has
been replaced with Si’s, which according to their expressions are not
maximum likelihood estimators. However, Si’s define consistent
estimators of Σ in the sense that n−1Si → Σ in probability.
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Main idea and space decomposition

Applying the vec-operator on both sides of (4) we get

vec(Ê[X]) =

m∑
i=1

(PC′
i
⊗PPiAi,Si)vecX.

where ⊗ denotes the Kronecker product.

Note that the matrix P =
∑m

i=1 PC′
i
⊗PPiAi,Si is a projector and its

column space is the design space

C(P) =

m∑
i=1

C(C′i)⊗ CSi(PiAi) (6)

where now ⊗ denotes a tensor product of linear spaces and the
subscript Si in CSi(PiAi) indicates that the inner products are defined
via the positive definite matrices S−1i .
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Main idea and space decomposition

Therefore C(P) is used to estimate the mean structure whereas C(P)⊥

is used to create residuals, where ⊥ denotes the orthogonal complement.

To estimate Σ, the general idea is to use the variation in the residuals.
For our purposes we decompose the residual space into m + 1
orthogonal subspaces.

On one hand, the conditions C(C′i) ⊆ C(C′i−1), i = 2, 3, . . . ,m, imply
that C(C′1) can be decomposed as a sum of orthogonal subspaces as
follows:

C(C′1) = [C(C′1) ∩ C(C′2)⊥]⊕ [C(C′2) ∩ C(C′3)⊥]⊕ · · ·
⊕[C(C′m−1) ∩ C(C′m)⊥]⊕ C(C′m)

where ⊕ denotes the direct sum of linear spaces.
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Main idea and space decomposition
On the other hand, the subspaces

Vi = CSi(PiAi), i = 1, 2, . . . ,m,

are orthogonal.

Now, put

W0 = C(C′1)⊥,Wr = C(C′r) ∩ C(C′r+1)
⊥, r = 1, . . . ,m− 1,

Wm = C(C′m), and V0 = ⊕m
i=1Vi ⊕ (⊕m

i=1Vi)⊥.

With these notations, the residual space is decomposed as

C(P)⊥ = I0 � I1 � · · ·� Im

where � denotes the orthogonal direct sum of tensor spaces,

Ir =Wr ⊗ (⊕r
i=1Vi)⊥, r = 0, 1, 2, . . . ,m,

in which by convenience (⊕0
i=1Vi)⊥ = ∅⊥ = V0.
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Main idea and space decomposition

The residuals obtained by projecting data to these subspaces are

Rr = (I−
r∑

i=1

PPiAi,Si)X(PC′
r
−PC′

r+1
), r = 0, 1, 2, 3, . . . ,m,

where we use for convenience
∑k

i=k+1 PPiAi,Si = 0, C0 = I and
Cm+1 = 0.

Thus a natural estimator of Σ is obtained from the sum of squared
residuals, i.e.,

nΣ̂ = R0R
′
0 + R1R

′
1 + · · ·+ RmR′m.
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Estimators when the covariance matrix is linearly
structured

Now we consider the EGC model when the covariance matrix Σ is
linearly structured (e.g.: Uniform, compound symmetry, banded,
Toeplitz). This Σ will be denoted Σ(s) so that E ∼ Np,n(0,Σ(s), In).

By vecΣ(K) we mean the patterned vectorization of the linearly
structured matrix Σ(s), that is the columnwise vectorization of Σ(s)

where all 0’s and repeated elements (by modulus) have been
disregarded. Then there exists a transformation matrix T such that

vecΣ(K) = TvecΣ(s) or vecΣ(s) = T+vecΣ(K), (7)

where T+ denotes the Moore-Penrose generalized inverse of T.
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Estimators when the covariance matrix is linearly
structured

The estimation procedure that we propose will rely on the
decomposition of the spaces as we did for the unstructured case, the
only difference being that, for the structured case, we do not replace
Σ(s)with Si’s because now Σ(s) is structured.

The idea was first used by Ohlson and von Rosen (2010) for the
classical growth curve model.
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Estimators when the covariance matrix is linearly
structured

Here we use

Pr = Tr−1Tr−2 × · · · ×T0, T0 = I, r = 1, 2, . . . ,m + 1,

Ti = I−PPiAi,Σ(s) , i = 1, 2, . . . ,m,

Vi = CΣ(s)(PiAi), i = 1, 2, . . . ,m.

The corresponding residuals will be denoted

Hr = (I−
r∑

i=1

PPiAi,Σ(s))X(PC′
r
−PC′

r+1
), r = 0, 1, 2, 3, . . . ,m.
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Estimators when the covariance matrix is linearly
structured

If Σ(s) would have been known, we would have a BLUE of the mean

Ẽ[X] =

m∑
i=1

M̃i,

where M̃i = PPiAi,Σ(s)XPC′
i
, that is a projection of observations on

C(C′i)⊗ Vi.
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Estimators when the covariance matrix is linearly
structured

To get more insight on what is going on, we are going to illustrate the
space decomposition for m = 3. In this case the BLUE of the mean is

Ẽ[X] = M̃1 + M̃2 + M̃3,

where

M̃1 = PA1,Σ(s)XPC′
1
,

M̃2 = PT 1A2,Σ(s)XPC′
2
, T 1 = I−PA1,Σ(s) = T1,

M̃3 = PT 2A3,Σ(s)XPC′
3
, T 2 = I−PA1,Σ(s) −PT 1A2,Σ(s) = T2T1.
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Estimators when the covariance matrix is linearly
structured

From here we see that the estimated mean is obtained by projecting
observations on some subspaces.

The matrices PA1,Σ(s) , PT 1A2,Σ(s) and PT 2A3,Σ(s) are projector
matrices on the subspaces

V1 = CΣ(s)(A1),

V2 = CΣ(s)(A1 : A2) ∩ CΣ(s)(A1)
⊥ and

V3 = CΣ(s)(A1 : A2 : A3) ∩ CΣ(s)(A1 : A2)
⊥

respectively.
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Estimators when the covariance matrix is linearly
structured

W1 W2 W3 W4

V1

V2

V3

V4

M̃3

M̃2

M̃1

H0

H1

H2

H3
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Estimators when the covariance matrix is linearly
structured

In practice Σ(s) is not known and should be estimated. As for the
unstructured case, it is natural to use the sum of squared residuals
when finding inner product estimate.

We will sequentially estimate the inner product in the spaces Vi,
i = 1, 2, . . . ,m.

While finding the inner product estimate in the space V1 it is natural
to use Q0 = H0H

′
0 and apply the general least squares approach by

minimizing tr
{

(Q0 − (n− r1)Σ
(s))( )′

}
with respect to Σ(s), where the

notation (Y)( )′ stands for (Y)(Y)′. That is

Σ̂
(s)
1 = min tr

{
(Q0 − (n− r1)Σ

(s))( )′
}
.
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Estimators when the covariance matrix is linearly
structured

Assuming that Σ̂
(s)
1 is positive definite (which always holds for large

n), we can use Σ̂
(s)
1 to define the inner product in the space V1, and

therefore we consider C
Σ̂

(s)
1

(A1) instead of CΣ(s)(A1).

By the same time an estimator of M1, and also that of H1 are found
by projecting observations on C(C′1)⊗ V1 and

(
C(C′1) ∩ C(C′2)⊥

)
⊗ V⊥1

respectively, i.e.,

M̂1 = P
A1,Σ̂

(s)
1

XPC′
1
, (8)

Ĥ1 = (I−P
A1,Σ̂

(s)
1

)X(PC′
1
−PC′

2
).

A second estimator of Σ(s) is obtained using the sum of Q0 and Ĥ1Ĥ
′
1

and so on.
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Estimators when the covariance matrix is linearly
structured
After the rth stage we have the following quantities.

Wi = X(PC′
i
−PC′

i+1
)X′ ∼Wp(Σ

(s), ri − ri+1),

i = 0, 1, 2, . . . , r,

P̂j = T̂j−1T̂j−2 × · · · × T̂0, T̂0 = I, j = 1, 2, . . . , i,

T̂i = I−P
P̂iAi,Σ(s) , i = 0, 2, . . . , r,

T̂ i = I−
i∑

j=1

P
P̂jAj ,Σ̂

(s)
j

, i = 0, 1, 2, 3, . . . , r,

ĤiĤ
′
i = T̂ iWiT̂

′
i, i = 0, 1, 2, 3, . . . , r,

Q̂r =

r∑
i=0

ĤiĤ
′
i =

r∑
i=0

T̂ iWiT̂
′
i, r = 0, 1, 2, 3, . . . ,m,

T̂ rWrT̂
′
r|Q̂r−1 ∼ Wp(T̂ rΣ

(s)T̂
′
r, rr − rr+1).

Nzabanita, J. (Math. Stat., LiU) Multivariate Linear Models 22 / 26



Estimators when the covariance matrix is linearly
structured

Theorem: Let Q̂r be defined as in (10) and let

Υ̂r =

r∑
i=0

(ri − ri+1)T̂ i ⊗ T̂ i, r = 0, 1, 2, . . . ,m.

Then, the minimizers of

fr(Σ
(s)) = tr

{(
Q̂r −

r∑
i=0

(ri − ri+1)T̂ iΣ
(s)T̂

′
i

)
()′

}
, r = 0, 1, 2, . . . ,m,

are given by

vecΣ̂
(s)
r+1 = T+

(
(T+)′Υ̂′rΥ̂rT

+
)−

(T+)′Υ̂′rvecQ̂r.
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Estimators when the covariance matrix is linearly
structured

Theorem [Main result]: Let the EGC model be given by (1). Then

(i) A consistent estimator of the structured covariance matrix Σ(s) is
given by

vecΣ̂
(s)
m+1 = T+

(
(T+)′Υ̂′mΥ̂mT+

)−
(T+)′Υ̂′mvecQ̂m. (9)

(ii) An unbiased estimator of the mean is given by

Ê[X] =
m∑
i=1

(I− T̂ i)XC′i(CiC
′
i)
−Ci. (10)
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Thank you!
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