Free Probability approach to Random Matrices An alternative Cumulant-Moment relation formula

Jolanta Pielaszkiewicz

Linköping University, Sweden

LinStat2014
August 27, 2014

Outline

1 Free probability (for random matrices)
■ General introduction
■ For random matrices

2 Cumulant-Moment relation formulas
■ Recursive + non-crossing partitions
■ Non-recursive

- Recursive
- Illustrative example

3 References

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

80's Dan Voiculescu
 - analysis of some special classes of von Neumann algebra

triple $(\Omega, \mathcal{F}, P) \rightarrow(\mathcal{A}, \tau)$, where \mathcal{A} is unitary $*$-algebra with τ functional such that $\tau: \mathcal{A} \rightarrow \mathbb{C}$ and $\tau\left(1_{\mathcal{A}}\right)=1$

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra
triple $(\Omega, \mathcal{F}, P) \rightarrow(\mathcal{A}, \tau)$, where \mathcal{A} is unitary $*$-algebra with τ functional such that $\tau: \mathcal{A} \rightarrow \mathbb{C}$ and $\tau\left(1_{\mathcal{A}}\right)=1$
non-commutative $*$-probability space
random variables \rightarrow elements of the $*$-algebra \mathcal{A}

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra
triple $(\Omega, \mathcal{F}, P) \rightarrow(\mathcal{A}, \tau)$, where \mathcal{A} is unitary $*$-algebra with τ functional such that $\tau: \mathcal{A} \rightarrow \mathbb{C}$ and $\tau\left(1_{\mathcal{A}}\right)=1$ non-commutative $*$-probability space random variables \rightarrow elements of the $*$-algebra \mathcal{A} independence \rightarrow freeness

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra
triple $(\Omega, \mathcal{F}, P) \rightarrow(\mathcal{A}, \tau)$, where \mathcal{A} is unitary $*$-algebra with τ functional such that $\tau: \mathcal{A} \rightarrow \mathbb{C}$ and $\tau\left(1_{\mathcal{A}}\right)=1$ non-commutative $*$-probability space random variables \rightarrow elements of the $*$-algebra \mathcal{A} independence \rightarrow freeness

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra
triple $(\Omega, \mathcal{F}, P) \rightarrow(\mathcal{A}, \tau)$, where \mathcal{A} is unitary $*$-algebra with τ functional such that $\tau: \mathcal{A} \rightarrow \mathbb{C}$ and $\tau\left(1_{\mathcal{A}}\right)=1$ non-commutative $*$-probability space random variables \rightarrow elements of the $*$-algebra \mathcal{A} independence \rightarrow freeness
91' some matrices satisfy asymptoticaly freeness

Then the free moments of a self-adjoint element $a \in \mathcal{A}$ are defined as

$$
m_{k}:=\tau\left(a^{k}\right):=\int_{\mathbb{R}} x^{k} d \mu(x)
$$

and they characterize a compactly supported $*$-distribution of a. The $*$-distribution is denoted by μ and $\operatorname{supp}(\mu) \subset \mathbb{R}$.

for Random Matrices - space $\left(R M_{p}(\mathbb{C}), \tau\right)$

$\mathcal{A}=R M_{n}(\mathbb{C})$
$\tau(\cdot):=\frac{1}{n} \operatorname{Tr}(\cdot)$

for Random Matrices - space $\left(R M_{p}(\mathbb{C}), \tau\right)$

$\mathcal{A}=R M_{n}(\mathbb{C})$
$\tau(\cdot):=\frac{1}{n} \operatorname{Tr}(\cdot)$
Let (Ω, \mathcal{F}, P) be a probability space. The $R M_{p}(\mathbb{C})$ denotes set of all $p \times p$ matrices, with entries which belongs to
$\bigcap_{p=1,2, \ldots} L^{p}(\Omega, P)$. Defined in this way set is a $*$-algebra, with matrix multiplication as product and conjugate transpose as *-operation. The $*$-algebra is equipped in trace functional τ as $\tau(X):=\mathbb{E}\left(\operatorname{Tr}_{p}(X)\right)=\mathbb{E}\left(\frac{1}{p} \operatorname{Tr}(X)\right)=\frac{1}{p} \mathbb{E}\left(\sum_{i=1}^{p} X_{i i}\right)=\frac{1}{p} \sum_{i=1}^{p} \mathbb{E} \lambda_{i}$, where $X=\left(X_{i j}\right)_{i, j=1}^{p} \in R M_{p}(\mathbb{C})$.

for Random Matrices - space $\left(R M_{p}(\mathbb{C}), \tau\right)$

$\mathcal{A}=R M_{n}(\mathbb{C})$
$\tau(\cdot):=\frac{1}{n} \operatorname{Tr}(\cdot)$
Let (Ω, \mathcal{F}, P) be a probability space. The $R M_{p}(\mathbb{C})$ denotes set of all $p \times p$ matrices, with entries which belongs to
$\bigcap_{p=1,2, \ldots} L^{p}(\Omega, P)$. Defined in this way set is a $*$-algebra, with matrix multiplication as product and conjugate transpose as *-operation. The $*$-algebra is equipped in trace functional τ as
$\tau(X):=\mathbb{E}\left(\operatorname{Tr}_{p}(X)\right)=\mathbb{E}\left(\frac{1}{p} \operatorname{Tr}(X)\right)=\frac{1}{p} \mathbb{E}\left(\sum_{i=1}^{p} X_{i i}\right)=\frac{1}{p} \sum_{i=1}^{p} \mathbb{E} \lambda_{i}$,
where $X=\left(X_{i j}\right)_{i, j=1}^{p} \in R M_{p}(\mathbb{C})$.

Recursive + non-crossing partitions

Let (\mathcal{A}, τ) be a non-commutative probability space. Then we define the cumulant functionals $k_{k}: \mathcal{A}^{k} \rightarrow \mathbb{C}$, for all $i \in \mathbb{N}$ by the moment-cumulant relation

$$
k_{1}(a)=\tau(a), \quad \tau\left(a_{1} \cdots a_{k}\right)=\sum_{\pi \in N C(k)} k_{\pi}\left[a_{1}, \ldots, a_{k}\right],
$$

where the sum is taken over all non-crossing partitions of the set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where $a_{i} \in \mathcal{A}$ for all $i=1,2, \ldots, k$ and

$$
\begin{array}{ll}
k_{\pi}\left[a_{1}, \ldots, a_{k}\right]=\prod_{i=1}^{r} k_{V(i)}\left[a_{1}, \ldots, a_{k}\right] & \pi=\{V(1), \ldots, V(r)\}, \\
k_{V}\left[a_{1}, \ldots, a_{k}\right]=k_{s}\left(a_{v(1)}, \ldots, a_{v(s)}\right) & V=(v(1), \ldots, v(s)) .
\end{array}
$$

Non-crossing partitions $=$

Number of $n-c$ partitions of $\{1,2, \ldots, n\}$
$=$ Catalan number $\frac{1}{n+1}\binom{2 n}{n}$
$\left\llcorner_{\text {Recursive }}+\right.$ non-crossing partitions

Non-crossing partitions $=$

Number of $n-c$ partitions of $\{1,2, \ldots, n\}$
$=$ Catalan number $\frac{1}{n+1}\binom{2 n}{n}$
$=\#\{$ rooted trees with k edges which are embedded on the plane $\}$

Non-crossing partitions $=$

Number of $n-c$ partitions of $\{1,2, \ldots, n\}$
$=$ Catalan number $\frac{1}{n+1}\binom{2 n}{n}$
$=\#\{$ rooted trees with k edges which are embedded on the plane $\}$

Recursive + non-crossing partitions

$$
k_{\pi}\left[a_{1}, \ldots, a_{k}\right]=\sum_{\sigma \in N C(k), \sigma \leq \pi} \tau_{\sigma}\left[a_{1}, \ldots, a_{k}\right] \mu(\sigma, \pi),
$$

where
$\tau_{k}\left(a_{1}, \ldots, a_{k}\right):=\tau\left(a_{1} \cdots a_{k}\right), \tau_{\pi}\left[a_{1}, \ldots, a_{k}\right]:=\prod_{V \in \pi} \tau_{V}\left[a_{1}, \ldots, a_{k}\right]$, $\tau_{V}\left[a_{1}, \ldots, a_{k}\right]:=\tau_{k}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ for $V=\left\{\left(i_{1}, \ldots, i_{k}\right): i_{1}<\ldots<i_{k}\right\}$ and μ is the Möbius function on $N C(k)$.

Speicher, R. (1994).
Multiplicative functions on the lattice of noncrossing partitions and free convolution.
Math. Ann., 298 (1994), 611-628.
Nica, A., Speicher, R. (2006).
Lectures on the Combinatorics of Free Probability. Cambridge University Press, Cambridge, 2006.

Non-recursive cumulant-moment formula - n-c partitions

$$
\begin{aligned}
k_{p} & =m_{p}+\sum_{j=2}^{p} \frac{(-1)^{j-1}}{j}\binom{p+j-2}{j-1} \sum_{Q_{j}} m_{q_{1}} \cdots m_{q_{j}}, \\
m_{p} & =k_{p}+\sum_{j=2}^{p} \frac{1}{j}\binom{p}{j-1} \sum_{Q_{j}} k_{q_{1}} \cdots k_{q_{j}}, \\
\text { where } Q_{j} & =\left\{\left(q_{1}, q_{2}, \ldots, q_{j}\right) \in \mathbb{N}^{j} \mid \sum_{i=1}^{j} q_{i}=p\right\} .
\end{aligned}
$$

围 Mottelson, I. W. (2012).
Introduction to non-commutative probability.
http://www.math.ku.dk/~musat/Free\ probability\ project_final.pdf Accessed 25 July 2014.
T- Haagerup, U. (1997).
On Voiculescu's R- and S-Transforms for free Non-Commuting Random Variables.
Fields Institute Communications, Vol. 12

Recursive - non-crossing partitions

Notation:

$$
\binom{\mathbf{m}, h, \succ}{t}=\sum_{\substack{i_{1}+i_{2}+\ldots+i_{h}=t \\ \forall_{k} i_{k} \succ 0}} m_{i_{1}} m_{i_{2}} \cdot \ldots \cdot m_{i_{h}}
$$

where m_{i} denotes i th moment and \succ reflect the ordering relation.
Theorem
Let $\left\{k_{i}\right\}_{i=1}^{\infty}$ be the free cumulants and $\left\{m_{i}\right\}_{i=1}^{\infty}$ be the free
moments for an element of a non-commutative probability space. Then, the following recursive formula holds $k_{1}=m_{1}$ and for $t=2,3, \ldots$

Recursive - non-crossing partitions

Notation:

$$
\binom{\mathbf{m}, h, \succ}{t}=\sum_{\substack{i_{1}+i_{2}+\ldots+i_{h}=t \\ \forall_{k} i_{k} \succ 0}} m_{i_{1}} m_{i_{2}} \cdot \ldots \cdot m_{i_{h}},
$$

where m_{i} denotes i th moment and \succ reflect the ordering relation.
Theorem
Let $\left\{k_{i}\right\}_{i=1}^{\infty}$ be the free cumulants and $\left\{m_{i}\right\}_{i=1}^{\infty}$ be the free moments for an element of a non-commutative probability space.
Then, the following recursive formula holds $k_{1}=m_{1}$ and for $t=2,3, \ldots$

$$
k_{t}=\sum_{i=1}^{t}(-1)^{i+1}\binom{\mathbf{m}, i,>}{t}-\sum_{h=2}^{t-1} k_{h}\binom{\mathbf{m}, h-1, \geq}{ t-h}
$$

Definition (Stieltjes transform)

Let μ be a non-negative, finite borel measure on the \mathbb{R}. Then we define the Stieltjes transform of μ by the formula

$$
G_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{z-x} d \mu(x)
$$

for all $z \in\{z: z \in \mathbb{C}, \Im(z)>0\}$, where $\Im(z)$ denotes imaginary part of the complex z.

Theorem (Stieltjes inversion formula)

For any open interval $I=(a, b)$, such that neither a nor b are atoms for the probability measure μ the inversion formula

$$
\mu(I)=-\frac{1}{\pi} \lim _{y \rightarrow 0} \int_{I} \Im G_{\mu}(x+\mathbf{i} y) d x
$$

holds.
Here convergence is with respect to the weak topology on the space of all real probability measures.

Theorem
Let the free moments $m_{k}=\int_{\mathbb{R}} x^{k} d \mu(x), k=1,2, \ldots$ Then

$$
G_{\mu}(z)=\frac{1}{z}\left(1+\sum_{i=1}^{\infty} z^{-i} m_{i}\right)
$$

Sketch of the proof

Firstly

$$
\begin{aligned}
z & =G_{\mu}^{-1}\left(G_{\mu}(z)\right) \\
& =z+z \sum_{j=1}^{\infty}\left(-\sum_{i=1}^{\infty} z^{-i} m_{i}\right)^{j}+\sum_{i=0}^{\infty} \frac{k_{i+1}}{z^{i}}\left(\sum_{j=0}^{\infty} z^{-j} m_{j}\right)^{i}
\end{aligned}
$$

Sketch of the proof

Firstly

$$
\begin{aligned}
z & =G_{\mu}^{-1}\left(G_{\mu}(z)\right) \\
& =z+z \sum_{j=1}^{\infty}\left(-\sum_{i=1}^{\infty} z^{-i} m_{i}\right)^{j}+\sum_{i=0}^{\infty} \frac{k_{i+1}}{z^{i}}\left(\sum_{j=0}^{\infty} z^{-j} m_{j}\right)^{i}
\end{aligned}
$$

Then

$$
z \sum_{j=0}^{\infty} \sum_{l=0}^{j+1}\binom{j+1}{l}(-1)^{l+1}\left(\sum_{i=0}^{\infty} z^{-i} m_{i}\right)^{l}=\sum_{i=0}^{\infty} \frac{k_{i+1}}{z^{i}}\left(\sum_{j=0}^{\infty} z^{-j} m_{j}\right)^{i}
$$

By

$$
\left(\sum_{i=0}^{\infty} m_{i} z^{i}\right)^{k}=\sum_{n=0}^{\infty}\binom{\mathbf{m}, k}{n} z^{n}
$$

we have

$$
\begin{array}{r}
\sum_{j=0}^{\infty}\left(-1+\sum_{l=1}^{j+1}\binom{j+1}{l}(-1)^{l+1} \sum_{t=0}^{\infty}\binom{\mathbf{m}, /}{t} z^{-t}\right) \\
=\frac{k_{1}}{z}+\sum_{i=1}^{\infty} k_{i+1} \sum_{t=0}^{\infty}\binom{\mathbf{m}, i}{t} z^{-(t+i+1)}
\end{array}
$$

By the identification of coefficients of z^{-t} and inductive proof we obtain

$$
k_{t}=\sum_{j=0}^{\infty} \sum_{l=1}^{j+1}\binom{j+1}{l}(-1)^{l+1}\binom{\mathbf{m}, l, \geq}{ t}-\sum_{i=1}^{t-2} k_{i+1}\binom{\mathbf{m}, i, \geq}{ t-i-1}
$$

Then we show that

By the identification of coefficients of z^{-t} and inductive proof we obtain

$$
k_{t}=\sum_{j=0}^{\infty} \sum_{l=1}^{j+1}\binom{j+1}{l}(-1)^{l+1}\binom{\mathbf{m}, l, \geq}{ t}-\sum_{i=1}^{t-2} k_{i+1}\binom{\mathbf{m}, i, \geq}{ t-i-1}
$$

Then we show that

$$
\sum_{j=t}^{\infty} \sum_{l=1}^{j+1}\binom{j+1}{l}(-1)^{I+1}\binom{\mathbf{m}, l, \geq}{ t}=0
$$

and using the inductive proof and some combinatoric argument we obtain that the statement of theorem is true.

By the identification of coefficients of z^{-t} and inductive proof we obtain

$$
k_{t}=\sum_{j=0}^{\infty} \sum_{l=1}^{j+1}\binom{j+1}{l}(-1)^{I+1}\binom{\mathbf{m}, l, \geq}{ t}-\sum_{i=1}^{t-2} k_{i+1}\binom{\mathbf{m}, i, \geq}{ t-i-1} .
$$

Then we show that

$$
\sum_{j=t}^{\infty} \sum_{l=1}^{j+1}\binom{j+1}{l}(-1)^{l+1}\binom{\mathbf{m}, l, \geq}{ t}=0
$$

and using the inductive proof and some combinatoric argument we obtain that the statement of theorem is true.

$$
\begin{aligned}
k_{5}= & \sum_{i=1}^{5}(-1)^{i+1} \sum_{\substack{j_{1}+\ldots+j_{i}=5 \\
\forall_{k} j_{k}>0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{i}} \\
& -\sum_{h=2}^{4} k_{h} \sum_{\substack{j_{1}+\ldots+j_{h-1}=5-h \\
\forall_{k} j_{k} \geq 0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{h-1}}
\end{aligned}
$$

$$
\begin{aligned}
k_{5}= & \sum_{i=1}^{5}(-1)^{i+1} \sum_{\substack{j_{1}+\ldots+j_{i}=5 \\
\forall j_{k} j_{k}>0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{i}} \\
& -\sum_{h=2}^{4} k_{h} \sum_{\substack{j_{1}+\ldots+j_{h-1}=5-h \\
\forall j_{k} \geq 0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{h-1}} \\
= & m_{5}-2 m_{1} m_{4}-2 m_{3} m_{2}+3 m_{1}^{2} m_{3}+3 m_{1} m_{2}^{2}-4 m_{1}^{3} m_{2}+m_{1}^{5} \\
& -k_{2} m_{3}-k_{3}\left(2 m_{2}+m_{1}^{2}\right)-3 k_{4} m_{1}
\end{aligned}
$$

$$
\begin{aligned}
k_{5}= & \sum_{i=1}^{5}(-1)^{i+1} \sum_{\substack{j_{1}+\ldots+j_{i}=5 \\
\forall_{k} j_{k}>0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{i}} \\
& -\sum_{h=2}^{4} k_{h} \sum_{\substack{j_{1}+\ldots+j_{h-1}=5-h \\
\forall k j_{k} \geq 0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{h-1}} \\
= & m_{5}-2 m_{1} m_{4}-2 m_{3} m_{2}+3 m_{1}^{2} m_{3}+3 m_{1} m_{2}^{2}-4 m_{1}^{3} m_{2}+m_{1}^{5} \\
& -k_{2} m_{3}-k_{3}\left(2 m_{2}+m_{1}^{2}\right)-3 k_{4} m_{1} \\
= & m_{5}-5 m_{4} m_{1}-5 m_{3} m_{2}+15 m_{3} m_{1}^{2}+15 m_{2}^{2} m_{1}-35 m_{2} m_{1}^{3}+14 m_{1}^{5}
\end{aligned}
$$

$$
\begin{aligned}
k_{5}= & \sum_{i=1}^{5}(-1)^{i+1} \sum_{\substack{j_{1}+\ldots+j_{i}=5 \\
\forall k_{k}>0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{i}} \\
& -\sum_{h=2}^{4} k_{h} \sum_{\substack{j_{1}+\ldots+j_{h-1}=5-h \\
\forall j_{k} \geq 0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{h-1}} \\
= & m_{5}-2 m_{1} m_{4}-2 m_{3} m_{2}+3 m_{1}^{2} m_{3}+3 m_{1} m_{2}^{2}-4 m_{1}^{3} m_{2}+m_{1}^{5} \\
& -k_{2} m_{3}-k_{3}\left(2 m_{2}+m_{1}^{2}\right)-3 k_{4} m_{1} \\
= & m_{5}-5 m_{4} m_{1}-5 m_{3} m_{2}+15 m_{3} m_{1}^{2}+15 m_{2}^{2} m_{1}-35 m_{2} m_{1}^{3}+14 m_{1}^{5}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& m_{5}= \sum_{\pi \in N C(5)} k_{\pi}[a, a, a, a, a] \\
&= k_{5}+5 k_{4} k_{1}+\left(\binom{5}{2}-5\right) k_{3} k_{2}+\binom{5}{3} k_{3} k_{1}^{2} \\
&+\left(\binom{5}{1} \frac{1}{2}\binom{4}{2}-5\right) k_{2}^{2} k_{1}+\binom{5}{2} k_{2} k_{1}^{3}+k_{1}^{5} \\
&= k_{5}+5 k_{4} k_{1}+5 k_{3} k_{2}+10 k_{3} k_{1}^{2}+10 k_{2}^{2} k_{1}+10 k_{2} k_{1}^{3}+k_{1}^{5} \\
& k_{5}=m_{5}-5 m_{4} m_{1}+15 m_{3} m_{1}^{2}+15 m_{2}^{2} m_{1}-35 m_{2} m_{1}^{3}-5 m_{3} m_{2}+14 m_{1}^{5} .
\end{aligned}
$$

Marčenko, V. A. and Pastur, L. A. (1967).
Distribution of eigenvalues for some sets of random matrices.
Mathematics of the USSR-Sbornik, 1:457-483.
显
Voiculescu, D. (1985).
Symmetries of some reduced free product C^{*}-algebras, Operator algebras and their connections with topology and ergodic theory. Proc. Conf., Busteni/Rom., Lect. Notes Math., 1132:556-588.

目 Voiculescu, D. (1991).
Limit laws for Random matrices and free products.
Invent. math., 104:201-220.
Q Nica, A. and Speicher, R. (2006).
Lectures on the Combinatorics of Free Probability.
Number t. 13 in London Mathematical Society Lecture Note Series. Cambridge University Press.

Thank you for your attention!

