Free Probability approach to Random Matrices An alternative Cumulant–Moment relation formula

Jolanta Pielaszkiewicz

Linköping University, Sweden

LinStat2014 August 27, 2014

Outline

- 1 Free probability (for random matrices)
 - General introduction
 - For random matrices
- 2 Cumulant–Moment relation formulas
 - Recursive + non-crossing partitions
 - Non-recursive
 - Recursive
 - Illustrative example
- 3 References

Free Probability approach to Random Matrices An alternative Cumulant–Moment relation formula

Let Free Probability (for random matrices)

General introduction

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

Free Probability approach to Random Matrices An alternative Cumulant–Moment relation formula

Let Free Probability (for random matrices)

General introduction

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

triple $(\Omega, \mathcal{F}, P) \to (\mathcal{A}, \tau)$, where \mathcal{A} is unitary *-algebra with τ functional such that $\tau: \mathcal{A} \to \mathbb{C}$ and $\tau(1_{\mathcal{A}}) = 1$ non–commutative *-probability space

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

triple $(\Omega, \mathcal{F}, P) \to (\mathcal{A}, \tau)$, where \mathcal{A} is unitary *-algebra with τ functional such that $\tau: \mathcal{A} \to \mathbb{C}$ and $\tau(1_{\mathcal{A}}) = 1$ non–commutative *-probability space

random variables ightarrow elements of the *-algebra ${\mathcal A}$

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

triple $(\Omega, \mathcal{F}, P) \to (\mathcal{A}, \tau)$, where \mathcal{A} is unitary *-algebra with τ functional such that $\tau: \mathcal{A} \to \mathbb{C}$ and $\tau(1_{\mathcal{A}}) = 1$ non–commutative *-probability space random variables \to elements of the *-algebra \mathcal{A} independence \to freeness

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

triple $(\Omega, \mathcal{F}, P) \to (\mathcal{A}, \tau)$, where \mathcal{A} is unitary *-algebra with τ functional such that $\tau: \mathcal{A} \to \mathbb{C}$ and $\tau(1_{\mathcal{A}}) = 1$ non-commutative *-probability space random variables \to elements of the *-algebra \mathcal{A} independence \to freeness 91' some matrices satisfy asymptotically freeness

80's Dan Voiculescu

- analysis of some special classes of von Neumann algebra

triple $(\Omega, \mathcal{F}, P) \to (\mathcal{A}, \tau)$, where \mathcal{A} is unitary *-algebra with τ functional such that $\tau: \mathcal{A} \to \mathbb{C}$ and $\tau(1_{\mathcal{A}}) = 1$ non–commutative *-probability space random variables \to elements of the *-algebra \mathcal{A} independence \to freeness 91' some matrices satisfy asymptotically freeness

Then the free moments of a self–adjoint element $a \in \mathcal{A}$ are defined as

$$m_k := au(a^k) := \int_{\mathbb{R}} x^k d\mu(x)$$

and they characterize a compactly supported *-distribution of a. The *-distribution is denoted by μ and $supp(\mu) \subset \mathbb{R}$.

For random matrices

for Random Matrices - space $(RM_p(\mathbb{C}), \tau)$

$$A = RM_n(\mathbb{C})$$

$$\tau(\cdot) := \frac{1}{n} Tr(\cdot)$$

for Random Matrices - space $(RM_p(\mathbb{C}), \tau)$

$$A = RM_n(\mathbb{C})$$

$$\tau(\cdot) := \frac{1}{n} Tr(\cdot)$$

Let (Ω, \mathcal{F}, P) be a probability space. The $RM_p(\mathbb{C})$ denotes set of all $p \times p$ matrices, with entries which belongs to $\bigcap_{p=1,2,\dots} L^p(\Omega,P)$. Defined in this way set is a *-algebra, with matrix multiplication as product and conjugate transpose as *-operation. The *-algebra is equipped in trace functional τ as

$$\tau(X) := \mathbb{E}(\mathsf{Tr}_p(X)) = \mathbb{E}\left(\frac{1}{p}\,\mathsf{Tr}(X)\right) = \frac{1}{p}\mathbb{E}(\sum_{i=1}^p X_{ii}) = \frac{1}{p}\sum_{i=1}^p \mathbb{E}\lambda_i,$$

where
$$X=(X_{ij})_{i,j=1}^p\in RM_p(\mathbb{C}).$$

For random matrices

for Random Matrices - space $(RM_p(\mathbb{C}), \tau)$

$$A = RM_n(\mathbb{C})$$

$$\tau(\cdot) := \frac{1}{n} Tr(\cdot)$$

Let (Ω, \mathcal{F}, P) be a probability space. The $RM_p(\mathbb{C})$ denotes set of all $p \times p$ matrices, with entries which belongs to $\bigcap_{p=1,2,...} L^p(\Omega, P)$. Defined in this way set is a *-algebra, with matrix multiplication as product and conjugate transpose as *-operation. The *-algebra is equipped in trace functional τ as

$$\tau(X) := \mathbb{E}(\mathsf{Tr}_p(X)) = \mathbb{E}\left(\frac{1}{p}\,\mathsf{Tr}(X)\right) = \frac{1}{p}\mathbb{E}(\sum_{i=1}^p X_{ii}) = \frac{1}{p}\sum_{i=1}^p \mathbb{E}\lambda_i,$$

where $X=(X_{ij})_{i,i=1}^p\in RM_p(\mathbb{C}).$

Let (A, τ) be a non-commutative probability space. Then we define the *cumulant* functionals $k_k : A^k \to \mathbb{C}$, for all $i \in \mathbb{N}$ by the moment-cumulant relation

$$k_1(a) = \tau(a),$$

$$\tau(a_1 \cdots a_k) = \sum_{\pi \in NC(k)} k_{\pi}[a_1, \dots, a_k],$$

where the sum is taken over all non-crossing partitions of the set $\{a_1,a_2,\ldots,a_k\}$, where $a_i\in\mathcal{A}$ for all $i=1,2,\ldots,k$ and

$$k_{\pi}[a_1,\ldots,a_k] = \prod_{i=1}^r k_{V(i)}[a_1,\ldots,a_k] \qquad \pi = \{V(1),\ldots,V(r)\},$$

 $k_{V}[a_1,\ldots,a_k] = k_{s}(a_{V(1)},\ldots,a_{V(s)}) \qquad V = (v(1),\ldots,v(s)).$

Non-crossing partitions =

Number of n-c partitions of
$$\{1, 2, ..., n\}$$

= Catalan number $\frac{1}{n+1} \binom{2n}{n}$

Non-crossing partitions =

```
Number of n–c partitions of \{1, 2, \ldots, n\}
= Catalan number \frac{1}{n+1} \binom{2n}{n}
= \#\{\text{rooted trees with k edges which are embedded on the plane}\}
```

Non-crossing partitions =

```
Number of n–c partitions of \{1,2,\ldots,n\} = Catalan number \frac{1}{n+1}\binom{2n}{n} = \#\{\text{rooted trees with k edges which are embedded on the plane}\} ...
```

$$k_{\pi}[a_1,\ldots,a_k] = \sum_{\sigma \in NC(k),\sigma < \pi} \tau_{\sigma}[a_1,\ldots,a_k] \mu(\sigma,\pi),$$

where

$$\begin{array}{l} \tau_k(\mathsf{a}_1,\ldots,\mathsf{a}_k) := \tau(\mathsf{a}_1\cdots\mathsf{a}_k), \ \tau_\pi[\mathsf{a}_1,\ldots,\mathsf{a}_k] := \prod_{V\in\pi}\tau_V[\mathsf{a}_1,\ldots,\mathsf{a}_k], \\ \tau_V[\mathsf{a}_1,\ldots,\mathsf{a}_k] := \tau_k(\mathsf{a}_{i_1},\ldots,\mathsf{a}_{i_k}) \ \text{for} \ V = \{(i_1,\ldots,i_k) : i_1 < \ldots < i_k\} \\ \text{and} \ \mu \ \text{is the M\"obius function on} \ \mathit{NC}(k). \end{array}$$

Speicher, R. (1994).

Multiplicative functions on the lattice of noncrossing partitions and free convolution.

Math. Ann., **298** (1994), 611–628.

Nica, A., Speicher, R. (2006).

Lectures on the Combinatorics of Free Probability.

Cambridge University Press, Cambridge, 2006.

Non-recursive

Non-recursive cumulant-moment formula - n-c partitions

$$k_p = m_p + \sum_{j=2}^p \frac{(-1)^{j-1}}{j} {p+j-2 \choose j-1} \sum_{Q_j} m_{q_1} \cdots m_{q_j},$$
 $m_p = k_p + \sum_{j=2}^p \frac{1}{j} {p \choose j-1} \sum_{Q_j} k_{q_1} \cdots k_{q_j},$

where
$$Q_i = \{(q_1, q_2, \dots, q_i) \in \mathbb{N}^j | \sum_{i=1}^j q_i = p \}.$$

Introduction to non–commutative probability.

http://www.math.ku.dk/~musat/Free%20probability%20project_final.pdf Accessed 25 July 2014.

Haagerup, U. (1997).
On Voiculescu's R- and S-Transforms for free Non–Commuting Random Variables.

Fields Institute Communications, Vol. 12

Notation:

$$\binom{\mathbf{m},h,\succ}{t} = \sum_{\substack{i_1+i_2+\ldots+i_h=t\\\forall_i,i_i\succ 0}} m_{i_1}m_{i_2}\cdot\ldots\cdot m_{i_h},$$

where m_i denotes *i*th moment and \succ reflect the ordering relation.

Theorem

Let $\{k_i\}_{i=1}^{\infty}$ be the free cumulants and $\{m_i\}_{i=1}^{\infty}$ be the free moments for an element of a non–commutative probability space. Then, the following recursive formula holds $k_1 = m_1$ and for $t = 2, 3, \ldots$

$$k_t = \sum_{i=1}^{t} (-1)^{i+1} {\mathbf{m}, i, > \choose t} - \sum_{h=2}^{t-1} k_h {\mathbf{m}, h-1, \geq \choose t-h}.$$

Notation:

$$\binom{\mathbf{m},h,\succ}{t} = \sum_{\substack{i_1+i_2+\ldots+i_h=t\\\forall i_1i_2>0}} m_{i_1}m_{i_2}\cdot\ldots\cdot m_{i_h},$$

where m_i denotes *i*th moment and \succ reflect the ordering relation.

Theorem

Let $\{k_i\}_{i=1}^{\infty}$ be the free cumulants and $\{m_i\}_{i=1}^{\infty}$ be the free moments for an element of a non–commutative probability space. Then, the following recursive formula holds $k_1 = m_1$ and for $t = 2, 3, \ldots$

$$k_t = \sum_{i=1}^{t} (-1)^{i+1} {\mathbf{m}, i, > \choose t} - \sum_{h=2}^{t-1} k_h {\mathbf{m}, h-1, \geq \choose t-h}.$$

Stieltjes transform

Definition (Stieltjes transform)

Let μ be a non-negative, finite borel measure on the $\mathbb R$. Then we define the Stieltjes transform of μ by the formula

$$G_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{z - x} d\mu(x),$$

for all $z \in \{z : z \in \mathbb{C}, \Im(z) > 0\}$, where $\Im(z)$ denotes imaginary part of the complex z.

Theorem (Stieltjes inversion formula)

For any open interval I = (a, b), such that neither a nor b are atoms for the probability measure μ the inversion formula

$$\mu(I) = -\frac{1}{\pi} \lim_{y \to 0} \int_{I} \Im G_{\mu}(x + \mathbf{i}y) dx$$

holds.

Here convergence is with respect to the weak topology on the space of all real probability measures.

Theorem

Let the free moments $m_k = \int_{\mathbb{R}} x^k d\mu(x)$, $k = 1, 2, \ldots$ Then

$$G_{\mu}(z) = \frac{1}{z}\left(1+\sum_{i=1}^{\infty}z^{-i}m_i\right).$$

Sketch of the proof

Firstly

$$z = G_{\mu}^{-1}(G_{\mu}(z))$$

$$= z + z \sum_{j=1}^{\infty} \left(-\sum_{i=1}^{\infty} z^{-i} m_{i} \right)^{j} + \sum_{i=0}^{\infty} \frac{k_{i+1}}{z^{i}} \left(\sum_{j=0}^{\infty} z^{-j} m_{j} \right)^{i}.$$

Then

$$z\sum_{j=0}^{\infty}\sum_{l=0}^{j+1}\binom{j+1}{l}(-1)^{l+1}\bigg(\sum_{i=0}^{\infty}z^{-i}m_i\bigg)^{l} = \sum_{i=0}^{\infty}\frac{k_{i+1}}{z^i}\bigg(\sum_{j=0}^{\infty}z^{-j}m_j\bigg)^{i}.$$

Sketch of the proof

Firstly

$$z = G_{\mu}^{-1}(G_{\mu}(z))$$

$$= z + z \sum_{i=1}^{\infty} \left(-\sum_{i=1}^{\infty} z^{-i} m_{i} \right)^{j} + \sum_{i=0}^{\infty} \frac{k_{i+1}}{z^{i}} \left(\sum_{j=0}^{\infty} z^{-j} m_{j} \right)^{i}.$$

Then

$$z\sum_{j=0}^{\infty}\sum_{l=0}^{j+1}\binom{j+1}{l}(-1)^{l+1}\bigg(\sum_{i=0}^{\infty}z^{-i}m_i\bigg)^{l} = \sum_{i=0}^{\infty}\frac{k_{i+1}}{z^i}\bigg(\sum_{j=0}^{\infty}z^{-j}m_j\bigg)^{i}.$$

Stieltjes inversion formula

Ву

$$\left(\sum_{i=0}^{\infty} m_i z^i\right)^k = \sum_{n=0}^{\infty} {m, k \choose n} z^n,$$

we have

$$\sum_{j=0}^{\infty} \left(-1 + \sum_{l=1}^{j+1} {j+1 \choose l} (-1)^{l+1} \sum_{t=0}^{\infty} {m, l \choose t} z^{-t} \right)$$

$$= \frac{k_1}{z} + \sum_{i=1}^{\infty} k_{i+1} \sum_{t=0}^{\infty} {m, i \choose t} z^{-(t+i+1)}.$$

By the identification of coefficients of z^{-t} and inductive proof we obtain

$$k_t = \sum_{j=0}^{\infty} \sum_{l=1}^{j+1} {j+1 \choose l} (-1)^{l+1} {\mathbf{m}, l, \geq \choose t} - \sum_{i=1}^{t-2} k_{i+1} {\mathbf{m}, i, \geq \choose t-i-1}.$$

Then we show that

$$\sum_{j=t}^{\infty} \sum_{l=1}^{j+1} {j+1 \choose l} (-1)^{l+1} {\mathbf{m}, l, \ge \choose t} = 0$$

By the identification of coefficients of z^{-t} and inductive proof we obtain

$$k_t = \sum_{j=0}^{\infty} \sum_{l=1}^{j+1} {j+1 \choose l} (-1)^{l+1} {\mathbf{m}, l, \geq \choose t} - \sum_{i=1}^{t-2} k_{i+1} {\mathbf{m}, i, \geq \choose t-i-1}.$$

Then we show that

$$\sum_{j=t}^{\infty} \sum_{l=1}^{j+1} {j+1 \choose l} (-1)^{l+1} {\mathbf{m}, l, \ge \choose t} = 0$$

and using the inductive proof and some combinatoric argument we obtain that the statement of theorem is true.

By the identification of coefficients of z^{-t} and inductive proof we obtain

$$k_t = \sum_{j=0}^{\infty} \sum_{l=1}^{j+1} {j+1 \choose l} (-1)^{l+1} {\mathbf{m}, l, \geq \choose t} - \sum_{i=1}^{t-2} k_{i+1} {\mathbf{m}, i, \geq \choose t-i-1}.$$

Then we show that

$$\sum_{j=t}^{\infty} \sum_{l=1}^{j+1} {j+1 \choose l} (-1)^{l+1} {\mathbf{m}, l, \ge \choose t} = 0$$

and using the inductive proof and some combinatoric argument we obtain that the statement of theorem is true.

$$k_{5} = \sum_{i=1}^{5} (-1)^{i+1} \sum_{\substack{j_{1}+\ldots+j_{i}=5\\\forall k,j_{k}>0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{i}}$$
$$-\sum_{h=2}^{4} k_{h} \sum_{\substack{j_{1}+\ldots+j_{h-1}=5-h\\\forall k,j_{k}\geq0}} m_{j_{1}} \cdot \ldots \cdot m_{j_{h-1}}$$

$$k_{5} = \sum_{i=1}^{5} (-1)^{i+1} \sum_{\substack{j_{1} + \dots + j_{i} = 5 \\ \forall_{k} j_{k} > 0}} m_{j_{1}} \cdot \dots \cdot m_{j_{i}}$$

$$- \sum_{h=2}^{4} k_{h} \sum_{\substack{j_{1} + \dots + j_{h-1} = 5 - h \\ \forall_{k} j_{k} \ge 0}} m_{j_{1}} \cdot \dots \cdot m_{j_{h-1}}$$

$$= m_{5} - 2m_{1} m_{4} - 2m_{3} m_{2} + 3m_{1}^{2} m_{3} + 3m_{1} m_{2}^{2} - 4m_{1}^{3} m_{2} + m_{1}^{5}$$

$$- k_{2} m_{3} - k_{3} (2m_{2} + m_{1}^{2}) - 3k_{4} m_{1}$$

$$k_{5} = \sum_{i=1}^{5} (-1)^{i+1} \sum_{\substack{j_{1} + \dots + j_{i} = 5 \\ \forall k, j_{k} > 0}} m_{j_{1}} \cdot \dots \cdot m_{j_{i}}$$

$$- \sum_{h=2}^{4} k_{h} \sum_{\substack{j_{1} + \dots + j_{h-1} = 5 - h \\ \forall k, j_{k} \geq 0}} m_{j_{1}} \cdot \dots \cdot m_{j_{h-1}}$$

$$= m_{5} - 2m_{1}m_{4} - 2m_{3}m_{2} + 3m_{1}^{2}m_{3} + 3m_{1}m_{2}^{2} - 4m_{1}^{3}m_{2} + m_{1}^{5}$$

$$- k_{2}m_{3} - k_{3}(2m_{2} + m_{1}^{2}) - 3k_{4}m_{1}$$

$$= m_{5} - 5m_{4}m_{1} - 5m_{3}m_{2} + 15m_{3}m_{1}^{2} + 15m_{2}^{2}m_{1} - 35m_{2}m_{1}^{3} + 14m_{1}^{5}$$

$$k_{5} = \sum_{i=1}^{5} (-1)^{i+1} \sum_{\substack{j_{1} + \dots + j_{i} = 5 \\ \forall_{k} j_{k} > 0}} m_{j_{1}} \cdot \dots \cdot m_{j_{i}}$$

$$- \sum_{h=2}^{4} k_{h} \sum_{\substack{j_{1} + \dots + j_{h-1} = 5 - h \\ \forall_{k} j_{k} \geq 0}} m_{j_{1}} \cdot \dots \cdot m_{j_{h-1}}$$

$$= m_{5} - 2m_{1} m_{4} - 2m_{3} m_{2} + 3m_{1}^{2} m_{3} + 3m_{1} m_{2}^{2} - 4m_{1}^{3} m_{2} + m_{1}^{5}$$

$$- k_{2} m_{3} - k_{3} (2m_{2} + m_{1}^{2}) - 3k_{4} m_{1}$$

$$= m_{5} - 5m_{4} m_{1} - 5m_{3} m_{2} + 15m_{3} m_{1}^{2} + 15m_{2}^{2} m_{1} - 35m_{2} m_{1}^{3} + 14m_{1}^{5}$$

Free Probability approach to Random Matrices An alternative Cumulant–Moment relation formula

Cumulant–Moment relation formulas

Illustrative example

$$NC(5) \not \Rightarrow \{\{1,2,4\},\{3,5\}\}, \quad NC(5) \not \Rightarrow \{\{1,4\},\{2,3,5\}\}, \quad NC(5) \not \Rightarrow \{\{1,3,4\},\{2,5\}\}, \quad NC(5) \not \Rightarrow \{\{2,4\},\{1,3,5\}\}, \quad NC(5) \not \Rightarrow \{\{1,3\},\{2,4\},\{5\}\}, \quad NC(5) \not \Rightarrow \{\{1,3\},\{2,4,5\}\}, \quad NC(5) \not \Rightarrow \{\{1,4\},\{2,5\},\{3\}\}, \quad NC(5) \not \Rightarrow \{\{1,4\},\{2,5\},\{4\}\}, \quad NC(5) \not$$

Then,

$$m_{5} = \sum_{\pi \in NC(5)} k_{\pi}[a, a, a, a, a]$$

$$= k_{5} + 5k_{4}k_{1} + {5 \choose 2} - 5k_{3}k_{2} + {5 \choose 3}k_{3}k_{1}^{2}$$

$$+ {5 \choose 1} \frac{1}{2} {4 \choose 2} - 5k_{2}^{2}k_{1} + {5 \choose 2}k_{2}k_{1}^{3} + k_{1}^{5}$$

$$= k_{5} + 5k_{4}k_{1} + 5k_{3}k_{2} + 10k_{3}k_{1}^{2} + 10k_{2}^{2}k_{1} + 10k_{2}k_{1}^{3} + k_{1}^{5},$$

$$k_{5} = m_{5} - 5m_{4}m_{1} + 15m_{3}m_{1}^{2} + 15m_{2}^{2}m_{1} - 35m_{2}m_{1}^{3} - 5m_{3}m_{2} + 14m_{1}^{5}.$$

Voiculescu, D. (1985).

Symmetries of some reduced free product *C**-algebras, Operator algebras and their connections with topology and ergodic theory. *Proc. Conf., Busteni/Rom., Lect. Notes Math.*, 1132:556–588.

Voiculescu, D. (1991).
Limit laws for Random matrices and free products. *Invent. math.*, 104:201–220.

Nica, A. and Speicher, R. (2006). Lectures on the Combinatorics of Free Probability. Number t. 13 in London Mathematical Society Lecture Note Series. Cambridge University Press.

Thank you for your attention!