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independence — freeness

91' some matrices satisfy asymptoticaly freeness
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L Free probability (for random matrices)

L General introduction

Then the free moments of a self-adjoint element a € A are defined
as

=7(a") = [ xKdu(x
e = 7(3) /R du(x)

and they characterize a compactly supported x—distribution of a.
The x—distribution is denoted by p and supp(p) C R.
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For random matrices

for Random Matrices - space (RM,(C), 7)

A = RM,(C)
() = 1Tr()

Let (2, F, P) be a probability space. The RM,(C) denotes set of
all p x p matrices, with entries which belongs to

Np=1.2... LP(Q2, P). Defined in this way set is a x-algebra, with
matrix multiplication as product and conjugate transpose as
x-operation. The x-algebra is equipped in trace functional 7 as

1Ez”: z":

7(X) = E(Try(X)) = E(l JEC

p

(X))

where X = (X,-J-)f-)d-:1 € RM,(C).
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L Free probability (for random matrices)

For random matrices

for Random Matrices - space (RM,(C), 7)

A = RM,(C)
()= 3Tr()

Let (Q, F, P) be a probability space. The RM,(C) denotes set of
all p x p matrices, with entries which belongs to

(p=12... LP(2, P). Defined in this way set is a *-algebra, with
matrix multiplication as product and conjugate transpose as
x-operation. The x-algebra is equipped in trace functional 7 as

(X) 1= E(Te,(00) = B( 5 (X)) = SB(Y. Xi) = Y BX,

p

where X = (XU)Z/‘=1 € RM,(C).
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Recursive + non—crossing partitions

Let (A, 7) be a non-commutative probability space. Then we
define the cumulant functionals ky : Ak - C, foralli e N by the
moment-cumulant relation

ki(a) = 7(a), T(ay---ak) = Z kelai,. .., ak],

meNC(k)

where the sum is taken over all non-crossing partitions of the set
{a1,a2,...,ak}, where a; € Aforalli=1,2,... k and

kﬂ[al, N ak] = H kv(;)[al, ey ak] ™ = {V(l), ey V(r)},
i=1

klan.ad = k(@ ) V=), v(s)):
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I—Recursive + non—crossing partitions

Non—crossing partitions =

Number of n—c partitions of {1,2,...,n}

_ 1 (2n
= Catalan number =5 )

= #{rooted trees with k edges which are embedded on the plane}
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I—Recursive + non—crossing partitions

Recursive + non—crossing partitions

kelar, . al = > Tolar,...aldp(o, ),
ceNC(k),o<m
where
Ti(at, ... ak) :=7(a1- - ak), Txl[a1, ..., ak] = HVETr TvlaL, ..., ak],
T\/[al,...,ak] = Tk(a,-l,...,a,-k) for V = {(il,...,ik) Th<.. < ik}

and p is the Mdébius function on NC(k).
[§ Speicher, R. (1994).

Multiplicative functions on the lattice of noncrossing partitions and
free convolution.

Math. Ann., 298 (1994), 611-628.

¥ Nica, A., Speicher, R. (2006).
Lectures on the Combinatorics of Free Probability.
Cambridge University Press, Cambridge, 2006.
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L Non-recursive

Non-recursive cumulant—-moment formula - n—c partitions
(1)’ p+j—2
ko = mp+Z j—1 D May e M
Q)
mo= ke 5,0 Sk ke

where Q; = {(q1.q2, ... q;) € N| Y0, ¢ = p}.

[ Mottelson, I. W. (2012).
Introduction to non—commutative probability.
http://www.math.ku.dk/~musat/Free’20probability%20project_final.pdf
Accessed 25 July 2014.

[ Haagerup, U. (1997).
On Voiculescu's R- and S-Transforms for free Non—Commuting Random
Variables.
Fields Institute Communications, Vol. 12


http://www.math.ku.dk/~musat/Free%20probability%20project_final.pdf
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Notation:

m, h, ~
( ’t’ ): Z mi My, - ... My,

i+i+...+ip=t
Viig>=0

where m; denotes ith moment and > reflect the ordering relation.
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L Recursive

Recursive - non—crossing partitions
Notation:

m, h, >~
< " > = Z m,'lm,'2~...'m,'h,

i+i+...+ip=t
Viig>=0

where m; denotes ith moment and > reflect the ordering relation.

Theorem

Let {k;}°, be the free cumulants and {m;}2, be the free
moments for an element of a non—commutative probability space.

Then, the following recursive formula holds ki = my and for
t=2,3,...

t

- B Bl

i=1
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L Cumulant—Moment relation formulas

L Stieltjes transform

Definition (Stieltjes transform)

Let i be a non-negative, finite borel measure on the R. Then we
define the Stieltjes transform of y by the formula

Gul(2) = /R L du(x).

zZ— X

for all z € {z:z € C,3(z) > 0}, where ¥(z) denotes imaginary
part of the complex z.
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I—St:ieltjes inversion formula

Theorem (Stieltjes inversion formula)

For any open interval | = (a, b), such that neither a nor b are
atoms for the probability measure . the inversion formula

u(l) = ! lim /%GH(X +iy)dx

™ y—>0 |

holds.
Here convergence is with respect to the weak topology on the
space of all real probability measures.

Theorem
Let the free moments my = [, x*du(x), k =1,2,.... Then

Gu(z) = %(Hif"m,-).
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I—Stieltjes inversion formula

Sketch of the proof

Firstly

z = G (Gu(2))

o] 0 ) Jj o] ki+1
= z—l—zg (—g z"m,-) —i—g i
j=1 i=1 i=0
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I—Stieltjes inversion formula

Sketch of the proof

Firstly

z = G (Gu(2))

= > (- m) ()
j=1 =1 =0 Jj=0
Then
oo j+1 j+1 0o / 00 k o'}
+1
25 (e (Sem) = S (S
j=0 /=0 =0 =0 j=0
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L Cumulant—Moment relation formulas

I—Stieltjes inversion formula

By
> k > /m, k
(Zme) =2 (7)=
i=0 n=0
we have
00 Jj+1 . 00
j+1 m,/\ _
(- () (V)
j=0 =1 t=0
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L Cumulant—Moment relation formulas

I—Stieltjes inversion formula

By the identification of coefficients of z~* and inductive proof we
obtain

oo j+1 t—2 .
j+1 = m,i,>
=33 () (M) - ()
j 1 i=1
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L Cumulant—Moment relation formulas

I—Stieltjes inversion formula

By the identification of coefficients of z~* and inductive proof we

obtain
S (e (M) - En(12)

Jj=0

Then we show that

SR (T )r (1)
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I—St:ieltjes inversion formula

By the identification of coefficients of z~* and inductive proof we

obtain
oo j+1 2
J+ m,/, > m,j,>
=33 (e (M) Sk (7).
j=0 I=1 i=1

Then we show that
oo j+1
1 [, >
S5 (e (MF) =0
j=t I=1

and using the inductive proof and some combinatoric argument we
obtain that the statement of theorem is true.
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L Cumulant—Moment relation formulas

I—IIIustrative example

5
ks o= Y (-1 > my-
i=1

it +ji=5
Vijk>0

_Zkh Z my ...

h=2  j+...4+js—1=5—h
Yijk >0
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L Cumulant—Moment relation formulas

I—IIIustrative example

5
k5 = Z(—l)i+l Z mj - ...-mj
i=1

it +ji=5
Vijk>0

_Zkh Z mj - ...-mj_,

h=2  j+...4+js—1=5—h
Vijk>0

2
= ms —2mimy —2mzmy + 3mimsz + 3m; mg — 4/77%[772 + mi’

—koms — k3(2my + mf) — 3kgmy



R

Free Probability approach to Random Matrices An alternative Cumulant—-Moment relation formula

L Cumulant—Moment relation formulas

I—IIIustrative example

ks

5
DT mymy
i=1

A+...+ji=5
Vijk>0

_Zkh Z mpy - .oomj,

h=2  j+...4+js—1=5—h
Vijk>0

ms —2mymyg — 2msmy + 3m%m3 + 3m1m§ — 4m?m2 + mf

—koms — k3(2m2 + m%) — 3kym
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L Cumulant—Moment relation formulas

I—IIIustrative example

5
k5 = Z(—l)i+1 Z mj - ...-mj
i=1

A+...+ji=5
Vijk>0

_Zkh Z mpy - .oomj,

h=2  j+...4+js—1=5—h
Vijk>0

= mg—2mymyg — 2mzmy + 3m%m3 + 3m1m§ — 4m?m2 + m?
—koms — k3(2m2 + m%) — 3kym

= ms—5mgmy —b5mzmy + 15m3m§ + 15m§m1 — 35m2m? + 14m§’
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I—IIIustrative example

NCGY2 ((1.2.41.13.5))., NC(5)3 {LALIZ35)  NCG)? ((1.3.4512.5)).

NCG) 3 (2.41{1,3,5),  NCG)3 {1.3}.{2.4).{5}), NCS) 3 {1.3}.12,4.5}),  NC(S) #{{1,4}.{2.5L{3}}.
NCGS) p{{1L12.4).43.5)),  NC(G) 3{{1.41.{2}.13.5}}). NC(5) 2{{1.3}.{2.5}. 14}}.

TR R WS
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I—IIIustrative example

Then,

ms = Z krla, a, a, a,

TeNC(5)

5 5
= @+%m+(g)—a@@+(g@@
5\1/4 5
((0)26) )i+ )+

= ks + Skaki + 5ksko + 10ksk? + 10k3 ky + 10koki + k3,

ks = ms—5mam;+ 15m3mf + 15m§m1 — 35m2mi’ —b5mymy+ 14m‘;’.
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