Introduction and background Sp	peeding up MCMC	Application and Results	Conclu
0000000 04	00000000	000	00

Speeding Up MCMC by Efficient Data Subsampling

Matias Quiroz¹, Mattias Villani² and Robert Kohn³

¹Sveriges Riksbank and Department of Statistics, Stockholm University

²Department of Computer and Information Science, Linköping University

³Australian Business School, University of New South Wales

August 28, 2014

A (1) > (1) > (1)

э

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000			
Problem statement and i	dea		

- **Problem:** Markov Chain Monte Carlo algorithms (MCMC) are very costly for complex models and/or Big Data. Can we do something about it?
- Objective: Generic MCMC algorithm being able to handle large data sets.
- Achieved so far: Speeding up MCMC for complex models. Good insight of the challenges with Big Data for "non-complex" models.

• **Big Data:** *Tall data.* Many observations, not necessary many variables. **Example:** Microeconomic data.

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000			
Problem statement and i	dea		

- **Problem:** Markov Chain Monte Carlo algorithms (MCMC) are very costly for complex models and/or Big Data. Can we do something about it?
- Objective: Generic MCMC algorithm being able to handle large data sets.
- Achieved so far: Speeding up MCMC for complex models. Good insight of the challenges with Big Data for "non-complex" models.

• **Big Data:** *Tall data.* Many observations, not necessary many variables. **Example:** Microeconomic data.

• The main idea: Combine MCMC and Survey sampling.

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	00000000	000	00
МСМС			

• Notation:

- Parameters $\theta = (\theta_1, \dots, \theta_p)^T$
- **Data** $y = (y_1, ..., y_n)^T$.
- Data distribution $p(y_k|\theta)$
- Likelihood $p(y|\theta) = \left(\prod_{k=1}^{n} p(y_k|\theta)\right)$
- posterior $p(\theta|y) \propto \left(\prod_{k=1}^{n} p(y_k|\theta)\right) p(\theta)$

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	00000000	000	00
МСМС			

• Notation:

- Parameters $\theta = (\theta_1, \dots, \theta_p)^T$
- **Data** $y = (y_1, ..., y_n)^T$.
- Data distribution $p(y_k|\theta)$
- Likelihood $p(y|\theta) = \left(\prod_{k=1}^{n} p(y_k|\theta)\right)$
- posterior $p(\theta|y) \propto \left(\prod_{k=1}^{n} p(y_k|\theta)\right) p(\theta)$

MCMC:

- In general: MCMC gives N draws $\{x_j\}_{j=1}^N$ from any p(x).
- For Bayesians: $p(x) = p(\theta|y)$.
- Idea: Construct a Markov Chain $\{\theta_j\}_{j=1}^N$ which admits $p(\theta|y)$ as invariant distribution.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	00000000	000	00
MCMC, cont			

• Metropolis Hastings (M-H) algorithm:

set $\theta_c = \text{guess}$ let $\theta_1 = \theta_c$ for j = 2:N $\theta_p \sim q(\theta_p | \theta_c)$ (proposal distribution) $\alpha = \min\left(1, \frac{p(\theta_p | y)/q(\theta_p | \theta_c)}{p(\theta_c | y)/q(\theta_c | \theta_p)}\right)$ accept $\theta_j = \theta_p$ with probability α . If rejected set $\theta_j = \theta_c$ set $\theta_c = \theta_j$ endfor

Output: $\{\theta_j\}_{j=1}^N$ draws from $p(\theta|y)$ (after discarding burn-in period)

• Why is MCMC expensive?: Need to evaluate $p(\theta_p|y) \propto (\prod_{k=1}^n p(y_k|\theta_p)) p(\theta_p)$. Massive product for large datasets. Complex $p(y_k|\theta_p)$.

・ロ・・ 同・ ・ヨ・ ・ヨ・ ・ りゅつ

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000			
Survey sampling and MC	MC		

- Survey sampling: Area of statistics which deals with estimation when the population is finite. Problem: What is the total sales of all Swedish firms?
- **Key:** Which firms to include in the sample to answer this accurately?
- Total sales = (finite) population total.

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000			
Survey sampling and MC	MC		

• Survey sampling: Area of statistics which deals with estimation when the population is finite.

Problem: What is the total sales of all Swedish firms? **Key:** Which firms to include in the sample to answer this accurately?

- Total sales = (finite) population total.
- Analogy: In any given MCMC iteration the full data log-likelihood is a population total

$$I(\theta) = \log p(y|\theta) = \sum_{k=1}^{n} \log p(y_k|\theta).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

- In MCMC: Subsample data and estimate $I(\theta)$ using Survey sampling. Plug in the estimated likelihood in the acceptance probability.
- The estimated likelihood is noisy standard MCMC theory does not apply.

MCMC with analytically	intractable $p(y \theta)$		
000000	00000000	000	00
Introduction and background	Speeding up MCMC	Application and Results	Conclusions

- Forget data subsampling. Consider situations when $p(y|\theta)$ is analytically intractable.
- MCMC with estimation of the likelihood: Use *particles u* to construct an estimator $\hat{p}(y|\theta, u)$ of $p(y|\theta)$. Pseudo-marginal MCMC (PMCMC).
- PMCMC samples from $p(\theta, u|y)$ by constructing a Markov chain

$$\{\theta_j, u_j\}_{j=1}^N$$

and accepting with

$$\alpha = \min\left(1, \frac{\hat{p}(y|\theta_p, u_p)p(\theta_p)/q(\theta_p|\theta_c)}{\hat{p}(y|\theta_c, u_c)p(\theta_c)/q(\theta_c|\theta_p)}\right).$$

- Note: We have replaced the true likelihood with an estimate.
- Andrieu and Roberts (2009): The marginal distribution of θ admits $p(\theta|y)$ as invariant distribution, regardless of the variance!
- Requirement: unbiased likelihood estimator

$$p(y|\theta) = \int \hat{p}(y|\theta, u)p(u)du.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
0000000	00000000	000	00
MCMC with analytically	intractable $p(y \theta)$, co	ont	

- In practice: Efficiency and computing time depends on the variance.
- Low variance: Gives efficient draws but expensive to compute the estimator (more particles required)
- High variance: Less efficient draws but faster to compute (less particles required)
- Trade-off between computing time and efficiency. Doucet et al (2012) finds that an estimator with *standard deviation around 1* is optimal. Main message: Choose the number of particles so that this is fulfilled.

イロン 不同 とくほう イヨン

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
MCMC with data subsan	npling		

- ... Back to data subsampling.
- Constructing an unbiased estimator of the likelihood using subsampling of data fits the framework in PMCMC.
- The particles *u* become the **selection indicators** for which observations to include for estimating the likelihood.
- Key point: We can obtain the exact same result by only using a small fraction of the data instead of the full data. Speeds up our computations.

• This was also noted by Korattikara et al (2013) but quickly dismissed. Why?

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
MCMC with data subsan	npling		

- ... Back to data subsampling.
- Constructing an unbiased estimator of the likelihood using subsampling of data fits the framework in PMCMC.
- The particles *u* become the **selection indicators** for which observations to include for estimating the likelihood.
- Key point: We can obtain the exact same result by only using a small fraction of the data instead of the full data. Speeds up our computations.
- This was also noted by Korattikara et al (2013) but quickly dismissed. Why?
- The variance of the estimator becomes too large for PMCMC to be useful (the chain gets stuck)...

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
MCMC with data subsan	npling		

- ... Back to data subsampling.
- Constructing an unbiased estimator of the likelihood using subsampling of data fits the framework in PMCMC.
- The particles *u* become the **selection indicators** for which observations to include for estimating the likelihood.
- Key point: We can obtain the exact same result by only using a small fraction of the data instead of the full data. Speeds up our computations.
- This was also noted by Korattikara et al (2013) but quickly dismissed. Why?
- The variance of the estimator becomes too large for PMCMC to be useful (the chain gets stuck)...

• ... but these conclusion are based on a Simple random sampling design.

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	00000000	000	00
MCMC with data subsan	npling		

- ... Back to data subsampling.
- Constructing an unbiased estimator of the likelihood using subsampling of data fits the framework in PMCMC.
- The particles *u* become the **selection indicators** for which observations to include for estimating the likelihood.
- Key point: We can obtain the exact same result by only using a small fraction of the data instead of the full data. Speeds up our computations.
- This was also noted by Korattikara et al (2013) but quickly dismissed. Why?
- The variance of the estimator becomes too large for PMCMC to be useful (the chain gets stuck)...
- ... but these conclusion are based on a Simple random sampling design.
- Our main contribution: Design efficient sampling schemes to make PMCMC useful.

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	••••••	000	00
Notations			

- Let *n* be the size of the population and let *m* be the sample size.
- Notations: Let y be the response and x the covariates

$$L_k(\theta) = p(y_k|\theta, x_k)$$
$$L(\theta) = \prod_{k=1}^n L_k(\theta)$$
$$l_k(\theta) = \log p(y_k|\theta, x_k)$$
$$l(\theta) = \sum_{k=1}^n l_k(\theta)$$

• Goal: Sample *m* observations and construct $\hat{l}(\theta)$ such that $E[\hat{l}(\theta)] = l(\theta)$ and $\operatorname{std}[\hat{l}(\theta)] \approx 1$ (Doucet et al, 2012).

▲ロ → ▲ 団 → ▲ 臣 → ▲ 臣 → の < ⊙

- Survey sampling literature (Särndal et al, 2003)
- Unbiased estimation using Simple random sampling (SI) without replacement:

$$\hat{l}(\theta) = \frac{n}{m} \sum_{k \in S(u)} l_k(\theta) = \frac{n}{m} \sum_{k=1}^n l_k(\theta) u_k$$

S(u) - the index-set of sampled observations. |S(u)| = m. $u = (u_1, \ldots, u_n)^T$ binary selection indicators. All observations equally probable to be selected: $\pi_k = P(u_k = 1) = m/n$.

Unbiased variance estimator

$$\hat{V}[\hat{l}(\theta)] = n^2 \frac{(1-f)}{m} s_5^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

where $f = \frac{m}{n}$ is the sampling fraction and $s_{S}^{2} = \frac{1}{m-1} \sum_{k \in S} (I_{k}(\theta) - \overline{I}_{S}(\theta))^{2}$

C' I I I I I I I I I I I I I I I I I I I	all and the second second		
000000	00000000	000	00
Introduction and background	Speeding up MCMC	Application and Results	Conclusions

Simple random sampling does not work

・ロト ・回ト ・ヨト ・ヨト

= 990

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
	00000000		
Estimating a population	total using Probability	v proportional-to-size	

• SI does not work because it treats all $\log p(y_k|\theta, x_k)$ symmetrically $(\pi_k = P(u_k = 1) = m/n)$. Proportional-to-size sampling a better idea.

- SI does not work because it treats all $\log p(y_k|\theta, x_k)$ symmetrically $(\pi_k = P(u_k = 1) = m/n)$. Proportional-to-size sampling a better idea.
- Unbiased estimation using general *π_k*: Horvitz-Thompson estimator for the population total:

$$\hat{l}(\theta) = \sum_{k \in S(u)} \frac{l_k(\theta)}{\pi_k}$$

Unbiased variance estimator

$$\hat{V}[\hat{l}(\theta)] = \sum_{k \in S} \sum_{l \in S} \left(1 - \frac{\pi_k \pi_l}{\pi_{kl}}\right) \frac{l_k(\theta)}{\pi_k} \frac{l_l(\theta)}{\pi_l}$$

$$\pi_{kl}=P(u_k=1,u_l=1)$$

• How to choose π_k ?

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	000000000	000	00
Estimating a population t	total using Probability	proportional-to-size, co	ont

• Assume we choose
$$\pi_k \propto I_k(\theta)$$
, i.e. $\frac{I_k(\theta)}{\pi_k} = c$

• Then

$$\hat{l}(\theta) = \sum_{k \in S(u)} \frac{l_k(\theta)}{\pi_k} = mc$$

= na0

イロン イボン イヨン イヨン

is constant so $V[\hat{l}(\theta)] = 0$.

Ideal estimator. Requires I_k(θ) for k = 1,..., n. I(θ) is exactly known in this case. No point in subsampling.

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	00000000	000	00
Estimating a population t	total using Probability	proportional-to-size, co	ont

• Assume we choose
$$\pi_k \propto I_k(\theta)$$
, i.e. $\frac{I_k(\theta)}{\pi_k} = c$

• Then

$$\hat{l}(\theta) = \sum_{k \in S(u)} \frac{l_k(\theta)}{\pi_k} = mc$$

is constant so $V[\hat{l}(\theta)] = 0$.

- Ideal estimator. Requires I_k(θ) for k = 1,..., n. I(θ) is exactly known in this case. No point in subsampling.
- Assume we can construct $w_k > 0$ such that $\frac{l_k(\theta)}{w_k} \approx c$ for all k.
- Set

$$\pi_k = \frac{w_k}{\sum_{k=1}^n w_k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

then $\frac{l_k(\theta)}{\pi_k}$ is approximately constant and $V[\hat{l}(\theta)]$ small.

• w_k needs to be a good **proxy** of $I_k(\theta)$. More on this later.

0000000	00000000	000	00
Estimating a population	total using Probability	proportional-to-size, c	ont

- This Probability proportional-to-size without replacement is known as π PS sampling. Without replacement makes π PS computationally intractable for large *n*.
- PPS-sampling is the equivalent when sampling is done with replacement.
- PPS has slightly higher variance but is much faster. PPS is our final choice.

I naa

000000	000000000	000	00
Introduction and background	Speeding up MCMC	Application and Results	Conclusions

Standard deviation of PPS and π PS

f = Sampling fraction

ъ.

Important:

Note the gain in efficiency compared to Simple random sampling (SI). For SI $\hat{\sigma} = 188$ for f = 0.10.

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
	000000000		
Bias-correction			

- Unbiasedness for our Survey sampling estimators is on the logaritmic scale.
- PMCMC requires unbiasedness in the ordinary scale.
- Need to bias-correct $\hat{L}(\theta) = \exp(\hat{l}(\theta))$.
- Bias-correction can be avoided using Generalized Poisson Estimator (Estimates $L(\theta)$ directly). Needs an extra Monte Carlo step $+ \hat{L}(\theta) > 0$.
- In the paper a bias-correction based on asymptotics of $\hat{l}(\theta)$ is proposed. Fast and effective in practice.

◆□> ◆□> ◆三> ◆三> ・三> のへの

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
	00000000		
Constructing efficient sar	mpling weights		

- **Recall:** Requirement $\frac{l_k(\theta)}{w_k} \approx c$
- Many models have **surrogate/approximate** models for inference use this as w_k . **Exact inference** with a **minimum of density evaluations**.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	00000000	000	00
Constructing efficient sar	npling weights		

• **Recall:** Requirement
$$\frac{l_k(\theta)}{w_k} \approx c$$

- Many models have **surrogate/approximate** models for inference use this as w_k . **Exact inference** with a **minimum of density evaluations**.
- Wanted: An approximation of the log-likelihood contribution $I(\theta; d)$ for any data point d = (y, x) and parameter vector θ . Surface estimation.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	00000000	000	00
Constructing efficient sampling weights			

• **Recall:** Requirement
$$\frac{l_k(\theta)}{w_k} \approx c$$

- Many models have **surrogate/approximate** models for inference use this as w_k . **Exact inference** with a **minimum of density evaluations**.
- Wanted: An approximation of the log-likelihood contribution $I(\theta; d)$ for any data point d = (y, x) and parameter vector θ . Surface estimation.
- "Predicting machine": Noise free Gaussian Process (GP) or Regularized thin-plate splines (TPS).
- Usage: Train using a small fixed set of training points V. In each iteration: Compute $I_V(\theta)$. Predict $I_k(\theta)$ for the rest.

• Fast. Only matrix-vector multiplications.

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
0000000	00000000	000	00
Evaluating the PMCMC	algorithm		

- We evaluate the algorithm on a data set containing half a million observations.
- Model: Bivariate probit with endogenous treatment effect

$$\begin{aligned} y_1^* &= \beta_{10} + \beta_{11} \cdot x_1 + \beta_{12} \cdot x_2 + \alpha \cdot y_2 + \varepsilon_1 \\ y_2^* &= \beta_{20} + \beta_{21} \cdot x_1 + \beta_{22} \cdot x_3 + \beta_{23} \cdot x_4 + \varepsilon_2 \\ y_1 &= I(y_1^* > 0) \\ y_2 &= I(y_2^* > 0) \end{aligned}$$

where ε_1 and ε_2 are standard Gaussian with correlation ρ .

Variables:

- $y_1 = \text{Bankrupt}, y_2 = \text{Excess cash}$
- x_1 = Earnings, x_2 = Leverage, x_3 = Fixed assets, x_4 = Firm size.
- Time-consuming likelihood (bivariate normal integral).
- **PMCMC implemented** with TPS. 5% of the data to train TPS. 8% data on average to estimate likelihood.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
		000	
Evaluating the PMCMC	algorithm, cont		

• Measure efficiency through Inefficiency Factor (IF)

$$IF = 1 + 2\sum_{l=1}^{\infty} \rho_l$$

where ρ_l is the correlation at the *l*th lag of the (P)MCMC chain

• Compare the Efficient Draws Per Minute (EDPM)

$$EDPM = \frac{N}{IF \times t}$$

• Relative EDPM (REDPM)

$$REDPM = \frac{EDPM^{PMCMC}}{EDPM^{MCMC}}$$

• Evaluate using two proposals: Independent Metropolis Hastings (IMH, efficient). Random Walk Metropolis (RWM, inefficient)

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
0000000	00000000	000	00
Comparing Relative	Efficient Draws Per I	Minute for different pro	nosals

・ロト ・日・ ・ヨ・ ・ヨ・ うへの

Some marginal postariors: BMCMC vs MCMC				
000000	00000000	000	00	
Introduction and background	Speeding up MCMC	Application and Results	Conclusions	

Some marginal posteriors: PMCMC vs MCMC

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
			•0
Conclusions			

• We have proposed a general framework for Pseudo-marginal MCMC based on efficient data subsampling.

• Gaussian Process or Regularized thin-plate splines to construct efficient PPS-weights.

 More efficient draws per minute in firm data application. Biggest gain for weaker proposals - consistent with theoretical results in Doucet et al. (2012).

Introduction and background	Speeding up MCMC	Application and Results	Conclusions
000000	00000000	000	00
The End			

Thank you for listening!

References

Andrieu, C. and Roberts, G. O. (2009) The pseudo-marginal approach for efficient Monte Carlo computations. *The Annals of Statistics*, pages 697-725.

Doucet, A., Pitt, M. and Kohn, R (2012). Efficient implementation of Markov Chain Monte Carlo when using an unbiased likelihood estimator. *arXiv preprint arXiv:1210.1871*.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Särndal C.-E., Swensson B., and Wretman, J. (2003). Model assisted survey sampling.