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Problem statement and idea

Problem: Markov Chain Monte Carlo algorithms (MCMC) are very costly for
complex models and/or Big Data. Can we do something about it?

Objective: Generic MCMC algorithm being able to handle large data sets.

Achieved so far: Speeding up MCMC for complex models. Good insight of the
challenges with Big Data for ”non-complex” models.

Big Data: Tall data. Many observations, not necessary many variables.
Example: Microeconomic data.

The main idea: Combine MCMC and Survey sampling.
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MCMC

Notation:
Parameters θ = (θ1, . . . θp)T

Data y = (y1, . . . , yn)T .

Data distribution p(yk |θ)

Likelihood p(y |θ) =
(∏n

k=1 p(yk |θ)
)

posterior p(θ|y) ∝
(∏n

k=1 p(yk |θ)
)

p(θ)

MCMC:
In general: MCMC gives N draws {xj}N

j=1 from any p(x).

For Bayesians: p(x) = p(θ|y).

Idea: Construct a Markov Chain {θj}N
j=1 which admits p(θ|y) as invariant distribution.
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MCMC, cont

Metropolis Hastings (M-H) algorithm:
set θc = guess
let θ1 = θc

for j = 2:N

θp ∼ q(θp |θc ) (proposal distribution)

α = min
(

1,
p(θp |y)/q(θp |θc )

p(θc |y)/q(θc |θp )

)
accept θj = θp with probability α. If rejected set θj = θc

set θc = θj

endfor

Output: {θj}N
j=1 draws from p(θ|y) (after discarding burn-in period)

Why is MCMC expensive?: Need to evaluate p(θp |y) ∝
(∏n

k=1 p(yk |θp)
)

p(θp).
Massive product for large datasets. Complex p(yk |θp).

Matias Quiroz, Mattias Villani and Robert Kohn Speeding up MCMC



Introduction and background Speeding up MCMC Application and Results Conclusions

Survey sampling and MCMC

Survey sampling: Area of statistics which deals with estimation when the
population is finite.
Problem: What is the total sales of all Swedish firms?
Key: Which firms to include in the sample to answer this accurately?

Total sales = (finite) population total.

Analogy: In any given MCMC iteration the full data log-likelihood is a
population total

l(θ) = log p(y |θ) =
n∑

k=1

log p(yk |θ).

In MCMC: Subsample data and estimate l(θ) using Survey sampling. Plug in
the estimated likelihood in the acceptance probability.

The estimated likelihood is noisy - standard MCMC theory does not apply.
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MCMC with analytically intractable p(y |θ)

Forget data subsampling. Consider situations when p(y |θ) is analytically
intractable.

MCMC with estimation of the likelihood: Use particles u to construct an
estimator p̂(y |θ, u) of p(y |θ). Pseudo-marginal MCMC (PMCMC).

PMCMC samples from p(θ, u|y) by constructing a Markov chain

{θj , uj}N
j=1

and accepting with

α = min

(
1,

p̂(y |θp , up)p(θp)/q(θp |θc )

p̂(y |θc , uc )p(θc )/q(θc |θp)

)
.

Note: We have replaced the true likelihood with an estimate.

Andrieu and Roberts (2009): The marginal distribution of θ admits p(θ|y) as
invariant distribution, regardless of the variance!

Requirement: unbiased likelihood estimator

p(y |θ) =

∫
p̂(y |θ, u)p(u)du.
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MCMC with analytically intractable p(y |θ), cont

In practice: Efficiency and computing time depends on the variance.

Low variance: Gives efficient draws but expensive to compute the estimator
(more particles required)

High variance: Less efficient draws but faster to compute (less particles
required)

Trade-off between computing time and efficiency. Doucet et al (2012) finds that
an estimator with standard deviation around 1 is optimal.
Main message: Choose the number of particles so that this is fulfilled.
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MCMC with data subsampling

... Back to data subsampling.

Constructing an unbiased estimator of the likelihood using subsampling of data
fits the framework in PMCMC.

The particles u become the selection indicators for which observations to include
for estimating the likelihood.

Key point: We can obtain the exact same result by only using a small fraction of
the data instead of the full data. Speeds up our computations.

This was also noted by Korattikara et al (2013) but quickly dismissed. Why?

The variance of the estimator becomes too large for PMCMC to be useful (the
chain gets stuck)...

... but these conclusion are based on a Simple random sampling design.

Our main contribution: Design efficient sampling schemes to make PMCMC
useful.
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Notations

Let n be the size of the population and let m be the sample size.

Notations: Let y be the response and x the covariates

Lk (θ) = p(yk |θ, xk )

L(θ) =
n∏

k=1

Lk (θ)

lk (θ) = log p(yk |θ, xk )

l(θ) =
n∑

k=1

lk (θ)

Goal: Sample m observations and construct l̂(θ) such that E [̂l(θ)] = l(θ) and

std[̂l(θ)] ≈ 1 (Doucet et al, 2012).

Matias Quiroz, Mattias Villani and Robert Kohn Speeding up MCMC



Introduction and background Speeding up MCMC Application and Results Conclusions

Estimating a population total using Simple random sampling

Survey sampling literature (Särndal et al, 2003)

Unbiased estimation using Simple random sampling (SI) without replacement:

l̂(θ) =
n

m

∑
k∈S(u)

lk (θ) =
n

m

n∑
k=1

lk (θ)uk

S(u) - the index-set of sampled observations. |S(u)| = m.
u = (u1, . . . , un)T binary selection indicators.
All observations equally probable to be selected: πk = P(uk = 1) = m/n.

Unbiased variance estimator

V̂ [̂l(θ)] = n2 (1− f )

m
s2

S

where f = m
n

is the sampling fraction and s2
S = 1

m−1

∑
k∈S (lk (θ)− l̄S (θ))2
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Simple random sampling does not work

100

101

102

103

104

σ̂
z

188
67

23

6

n=10,000

0.10

0.50

0.90

0.99

100

101

102

103

104

σ̂
z

675
223

74

22

n=100,000

0.10

0.50

0.90

0.99

Matias Quiroz, Mattias Villani and Robert Kohn Speeding up MCMC



Introduction and background Speeding up MCMC Application and Results Conclusions

Estimating a population total using Probability proportional-to-size

SI does not work because it treats all log p(yk |θ, xk ) symmetrically
(πk = P(uk = 1) = m/n). Proportional-to-size sampling a better idea.

Unbiased estimation using general πk : Horvitz-Thompson estimator for the
population total:

l̂(θ) =
∑

k∈S(u)

lk (θ)

πk

Unbiased variance estimator

V̂ [̂l(θ)] =
∑
k∈S

∑
l∈S

(
1−

πkπl

πkl

)
lk (θ)

πk

ll (θ)

πl

πkl = P(uk = 1, ul = 1)

How to choose πk ?
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Estimating a population total using Probability proportional-to-size, cont

Assume we choose πk ∝ lk (θ), i.e. lk (θ)
πk

= c

Then

l̂(θ) =
∑

k∈S(u)

lk (θ)

πk
= mc

is constant so V [̂l(θ)] = 0.

Ideal estimator. Requires lk (θ) for k = 1, . . . , n. l(θ) is exactly known in this
case. No point in subsampling.

Assume we can construct wk > 0 such that lk (θ)
wk
≈ c for all k.

Set
πk =

wk∑n
k=1 wk

then lk (θ)
πk

is approximately constant and V [̂l(θ)] small.

wk needs to be a good proxy of lk (θ). More on this later.
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Estimating a population total using Probability proportional-to-size, cont

This Probability proportional-to-size without replacement is known as πPS
sampling. Without replacement makes πPS computationally intractable for large
n.

PPS-sampling is the equivalent when sampling is done with replacement.

PPS has slightly higher variance but is much faster. PPS is our final choice.
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Standard deviation of PPS and πPS
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Important:
Note the gain in efficiency compared to Simple random sampling (SI).
For SI σ̂ = 188 for f = 0.10.
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Bias-correction

Unbiasedness for our Survey sampling estimators is on the logaritmic scale.

PMCMC requires unbiasedness in the ordinary scale.

Need to bias-correct L̂(θ) = exp
(

l̂(θ)
)

.

Bias-correction can be avoided using Generalized Poisson Estimator (Estimates

L(θ) directly). Needs an extra Monte Carlo step + L̂(θ) > 0.

In the paper a bias-correction based on asymptotics of l̂(θ) is proposed. Fast
and effective in practice.
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Constructing efficient sampling weights

Recall: Requirement lk (θ)
wk
≈ c

Many models have surrogate/approximate models for inference - use this as wk .
Exact inference with a minimum of density evaluations.

Wanted: An approximation of the log-likelihood contribution l(θ; d) for any
data point d = (y , x) and parameter vector θ. Surface estimation.

”Predicting machine”: Noise free Gaussian Process (GP) or Regularized
thin-plate splines (TPS).

Usage: Train using a small fixed set of training points V . In each iteration:
Compute lV (θ). Predict lk (θ) for the rest.

Fast. Only matrix-vector multiplications.
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Evaluating the PMCMC algorithm

We evaluate the algorithm on a data set containing half a million observations.

Model: Bivariate probit with endogenous treatment effect

y∗1 = β10 + β11 · x1 + β12 · x2 + α · y2 + ε1

y∗2 = β20 + β21 · x1 + β22 · x3 + β23 · x4 + ε2

y1 = I (y∗1 > 0)

y2 = I (y∗2 > 0)

where ε1 and ε2 are standard Gaussian with correlation ρ.

Variables:
y1 = Bankrupt, y2 = Excess cash
x1 = Earnings, x2 = Leverage, x3 = Fixed assets, x4 = Firm size.

Time-consuming likelihood (bivariate normal integral).

PMCMC implemented with TPS. 5% of the data to train TPS. 8% data on
average to estimate likelihood.
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Evaluating the PMCMC algorithm, cont

Measure efficiency through Inefficiency Factor (IF)

IF = 1 + 2
∞∑
l=1

ρl

where ρl is the correlation at the lth lag of the (P)MCMC chain

Compare the Efficient Draws Per Minute (EDPM)

EDPM =
N

IF × t

Relative EDPM (REDPM)

REDPM =
EDPMPMCMC

EDPMMCMC

Evaluate using two proposals: Independent Metropolis Hastings (IMH, efficient).
Random Walk Metropolis (RWM, inefficient)
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Comparing Relative Efficient Draws Per Minute for different proposals
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Some marginal posteriors: PMCMC vs MCMC
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Conclusions

We have proposed a general framework for Pseudo-marginal MCMC based on
efficient data subsampling.

Gaussian Process or Regularized thin-plate splines to construct efficient
PPS-weights.

More efficient draws per minute in firm data application. Biggest gain for
weaker proposals - consistent with theoretical results in Doucet et al. (2012).
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The End

Thank you for listening!
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