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Birnbaum-Saunders distribution:

Probability distributions that are common in data analysis and in design against fatigue-life
include the lognormal distribution, inverse Gaussian distribution, Weibull distribution and
the BS distribution. In 1969 Birnbaum and Saunders derived an univariate two-
parameter family of life distributions for the failure time of a material due to fatigue
based on an idealized model of the number of cycles necessary to force a fatigue crack to grow
past a critical value.

The BS distribution which is commonly known as the fatigue life distribution is based on
certain assumptions to model the mode in which the failure occurs by the initiation, expansion
and then eventual extension of a dominant crack past some critical threshold ω for the first time.

This presentation introduces an extension of the Birnbaum–Saunders (BS) distribution which
is motivated by the thermo-mechanical fatigue (TMF) failure of materials with complex het-
erogeneous microstructures such as cast iron.



Why the extension of the Birnbaum-Saunders distribution?

Many mechanical structural components in most fields of engineering are subject to fatigue at
elevated temperatures. Components operating under conditions which involve both thermal
and mechanical loads are frequently subject to TMF. TMF is the fatigue failure of a material
that arises due to thermal related stresses that take place during its normal operating conditions.

A typical example of TMF failure can be found in the cylinder head of truck engines which,
due to their operating conditions, are subject to frequent temperature changes. As soon as
the engine starts up, the temperature increases until it reaches the full operating temperature.
This increase in temperature makes the material to expand. However, due to the constrained
condition found in the cylinder head, compressive stresses developed, that can lead to plastic
deformation of the material.

When the engine is shut down, the temperature decreases and the compressive stresses are
relieved. Nonetheless, due to the plastic deformation in compression, residual tensile stresses
develop. During the engine life this cycle is continuously repeated. The repetition of the
“start up - shut down” cycle in the end could lead to localized cracking of
the truck engine cylinder head.



The extension of the Birnbaum-Saunders distribution?

Taking into account that the inclusion (graphite) volume fraction is known and specified for a
given material, one may assume the number of cracks is a known and fixed number m.

The m microcracks form multiple larger cracks that ultimately lead to failure of the material.

Our new EBS distribution for m number of cracks has parameters A and β as
the shape matrix and the scale vector respectively, as compared to the scalar
quantities α and β as the shape and the scale parameters of the traditional
BS distribution.

We show through many remarks throughout the article that for m = 1 our new EBS distribu-
tion reduces to the conventional BS distribution.

We also show with the help of simulation study that our EBS is a better model than the BS
model in the sense of parameter estimation (more precision and less standard deviation) when
we have multiple crack information in the model.

We develop an extension of the Birnbaum–Saunders distribution under some basic assumptions
to model the fatigue failure time of a material due to the growth of these m cracks.



Genesis of the Birnbaum-Saunders model for multiple cracks:

•We assume that the crack propagation rate is the same for all m cracks.

• The cracks originated in the first cycle have the highest chance to lead to
failure of the material.

• Thus, we assume that the m cracks are initiated from the very first cycle.

• Let yi,j represents the total crack extension for the jth crack (j = 1, . . . ,m)
in the ith cycle.

• Under similar assumption of the Birnbaum-Saunders (1969a) article, but
allowing dependence among the m random cracks in the same cycle, we as-
sume that the vector yi = (yi,1, . . . , yi,m)

′ ∼ Nm (µ,Σ) , where µ = (µ1, . . . , µm)
′
,

with µj > 0, for j = 1, . . . ,m, and Σ, a positive definite matrix, which does
not depend on the cycle under consideration, i.e., it is same for all the
cycles.

•Moreover, vectors yi : i ∈ = are independent.

• For each cycle k we assume that the random vector sk = (sk,1, . . . , sk,m)
′
,

where sk,j =
∑k

i=1 yi,j denotes the size of the jth crack after the kth cycle.

• It is clear that under these assumptions sk =
∑k

i=1 yi ∼ Nm (kµ, kΣ).



Genesis of the Birnbaum-Saunders model for multiple cracks:

• For the smooth functioning of any system the size of the jth crack must
not exceed a fixed threshold, the threshold whose particular value ωj > 0
depends on where this crack is located in the material.

• The system collapses if the size of any of these m cracks is greater than
its threshold for the first time.

• Therefore, the interest is in getting the distribution of the random vari-
able T = min {k : sk,1 > ω1 ∨ . . . ∨ sk,m > ωm} , where the symbol ∨ denotes the
logical disjunction “or”, that is, the probability P [T ≤ n] .

• Noting that the event T > n occurs if and only if the event {sn,1 ≤ ω1 ∧
. . .∧ sn,m ≤ ωm} occurs, where the symbol ∧ denotes the logical conjunction
“and”, it is clear that

P [T ≤ n] = 1− P [sn,1 ≤ ω1 ∧ . . . ∧ sn,m ≤ ωm]

= 1− Φm

(
n−

1
2Σ−

1
2 (ω − nµ)

)
,

where ω = (ω1, . . . , ωm)
′
, and Φm is the m-variate standard multinormal dis-

tribution Nm (0, Im), with Im is the m-dimensional identity matrix.



Genesis of the Birnbaum-Saunders model for multiple cracks:

• Noting that the event T > n occurs if and only if the event {sn,1 ≤ ω1 ∧
. . .∧ sn,m ≤ ωm} occurs, where the symbol ∧ denotes the logical conjunction
“and”, it is clear that

P [T ≤ n] = 1− P [sn,1 ≤ ω1 ∧ . . . ∧ sn,m ≤ ωm]

= 1− Φm

(
n−

1
2Σ−

1
2 (ω − nµ)

)
,

where ω = (ω1, . . . , ωm)
′
, and Φm is the m-variate standard multinormal dis-

tribution Nm (0, Im), with Im is the m-dimensional identity matrix.

• It turns out that

n−
1
2Σ−

1
2 (ω − µ) = A·


√βj

n
−
√
n

βj

m

j=1


′

,

where A = (ajh)
m

j,h=1 = Σ−
1
2diag

(
ω

1
2

)
diag

(
µ

1
2

)
is a positive definite matrix, and βj = ωj

µj
,

for j = 1, . . . ,m.



Definition of Extended Birnbaum-Saunders (EBS) Distribution:

Definition 1. An m×m square matrix A has the “positive persistence” condition (prop-
erty) if and only if ∀ x ∈ <m : x >0 =⇒ A · x > 0.

Definition 2. Given the m-variate vector β = (β1, . . . , βm) with positive real components
βj ∈ <+ for j = 1, . . . ,m, and given the positive definite matrix A = (ajh)

m

j,h=1 having
(satisfying) the positive persistence property, the non negative random variable T has the
extended Birnbaum-Saunders (EBS) distribution with parameters A (shape matrix) and
β (scale vector), denoted by T ∼ EBS (A,β), if its distribution function FT is given by

FT (t) = P [T ≤ t] = 1− Φm (A · r (t)) I<+
(t) ,

where I<+
is the indicator function of the set of the positive real numbers, that is

I<+
(t) =

{
1 if t ∈ <+

0 if t /∈ <+
,

where r : <+ −→ <m, the real vectorial function is given by

r (t) = (r1 (t) , . . . , rm (t))
′
=
( √

β1
t
−
√

t
β1

, . . . ,
√

βm
t
−
√

t
βm

)′
.



Density function of the Extended Birnbaum-Saunders (EBS) Distribution:

The “vector valued real function” u : <+ −→ <m defined by

u (t) = (u1 (t) , . . . , um (t))
′
= A · r (t)

= A· (r1 (t) , . . . , rm (t))
′
= A·


√βj

t
−
√
t

βj

m

j=1


′

,

Now, the density function fT corresponding to the distribution function FT (t) is given by

fT (t) =
d

dt
FT (t) = − [∇Φm (u (t))]

′ · d
dt
u (t) I<+

(t)

= Φm (u)

(
ϕ1 (u1)

Φ1 (u1)
, . . . ,

ϕ1 (um)

Φ1 (um)

)
·A·

( 1

2βj

[(
βj
t

)1
2

+

(
βj
t

)3
2

])m

j=1

′ I<+
(t),

where the gradient vector ∇Φm (u) of Φm applied to u = u (t) is given by ∇Φm (u) =(
∂
∂u1

Φm (u) , . . . , ∂
∂um

Φm (u)
)′

.



Remark:

For m = 1, the above density function fT (t) of the EBS random variable T reduces to

fT (t) = Φ1 (u1)

(
ϕ1 (u1)

Φ1 (u1)

)
· 1

α
· 1

2β1

[(
β1
t

)1
2

+

(
β1
t

)3
2

]
I<+

(t)

= ϕ1 (u1) ·
1

α
· 1

2β1

[(
β1
t

)1
2

+

(
β1
t

)3
2

]
I<+

(t),

where A = 1
α

and u1 = u1 (t) = 1
α

(√
β1
t
−
√

t
β1

)
for m = 1.

Therefore, the above density function becomes

fT (t) =
1

2
√

2παβ1

[(
β1
t

)1
2

+

(
β1
t

)3
2

]
exp

[
− 1

2α2

(
β1
t

+
t

β1
− 2

)]
I<+

(t), (1)

which is the density function of the BS random variable with parameters α and β1.



Hazard function of the EBS distribution:

The hazard function h : <+ −→ <+ corresponding to the random variable T ∼ EBS (A,β)
is given by

h (t) =
fT (t)

1− FT (t)
=
− [∇Φm (u (t))]

′ · d
dt
u (t) I<+

(t)

Φm (u (t))

=

[(
ϕ1 (uj)

Φ1 (uj)

)m
j=1

]
·
[

m∑
i=1

aji
2t

{(
βi
t

)1
2

+

(
t

βi

)1
2

}]′
I<+

(t)

=
m∑
j=1

hj
(
t;β, aj·

)
, (2)

where

hj
(
t;β, aj·

)
=
ϕ1 (uj)

Φ1 (uj)

m∑
i=1

aji
2t

[(
βi
t

)1
2

+

(
t

βi

)1
2

]
. (3)

We thus see from (2) that the hazard function h (t) of the EBS distribution can be written as
a sum of m component functions hj

(
t;β, aj·

)
, j = 1, . . . ,m. It can be shown that each of

these component functions hj
(
t;β, aj·

)
is the hazard function of some distribution function

Fj
(
t;β, aj·

)
for j = 1, . . . ,m.

For this we need to define m distribution functions Fj
(
t;β, aj·

)
, j = 1, . . . ,m, and then derive

the corresponding density functions and the hazard functions.



Proposition:

The hazard function hj : <+ −→ < for j = 1, . . . ,m given by

hj
(
t;β, aj·

)
=

d

dt

[
−uj

(
t;β, aj·

)] ϕ1

(
uj
(
t;β, aj·

))
Φ1

(
uj
(
t;β, aj·

))
=

ϕ1 (
∑m

k=1 ajkrk (t, βk))

Φ1 (
∑m

k=1 ajkrk (t, βk))

m∑
i=1

aji
2t

[(
βi
t

)1
2

+

(
t

βi

)1
2

]
,

is an upside down function.

Remark:

For m = 1, from (2) we see that the hazard function h (t) of the EBS random variable T
reduces to

h (t) = h1 (t; β1, a11) =
d

dt
[−u1 (t; β1, a11)]

ϕ1 (u1 (t; β1, a11))

Φ1 (u1 (t; β1, a11))
,

which is the hazard function of the Birnbaum-Saunders distribution.



Two special cases of the new EBS distribution:

Case 1:A = κIm, ω = ω1m and β = β1m

In this case the density function fT for t ∈ <+ is given by

fT (t) =
d

dt
FT (t) = −mκϕ1 (κr (t)) [Φ1 (κr (t))]

m−1 dr (t)

dt

=
mκ

2
ϕ1 (κr (t)) [Φ1 (κr (t))]

m−1

{
1

β

[(
β

t

)1
2

+

(
β

t

)3
2

]}
.

This above density function fT is related to the Balakrishnan skew normal (BSN) distribution
(proposed by Balakrishnan as a discussant of Arnold and Beaver, 2002; see also Gupta and
Gupta, 2004), denoted by Y ∼ BSN (λ), which is a generalization of the skew normal distri-
bution proposed by Azzalini (1985). A random variable Y ∼ BSN (λ) has a BSN distribution
if its probability density function is given by

fY (y;λ) = ϕ1 (y) [Φ1 (λy)]
n 1

Cn (λ)
,

where n is a positive integer and the skewness parameter λ ∈ < and Cn (λ) is given by

Cn (λ) =

+∞∫
−∞

ϕ1 (y) [Φ1 (λy)]
n
dy.



The ML estimators κ̂ and β̂ of κ and β:

The ML estimators κ̂ and β̂ of κ and β are obtained by simultaneously and iteratively solving
the following two equations.

0 =
n

κ
− κ

n∑
i=1

[
β

ti
+
ti
β
− 2

]
+ (m− 1)

n∑
i=1

ϕ1 (κr (ti, β))

Φ1 (κr (ti, β))

(
β

1
2

t
1
2

− t
1
2

β
1
2

)
, (4)

and

0 =
κ

2β

{
−βκ

n∑
i=1

1

ti
+
κ

β

n∑
i=1

ti + (m− 1)
n∑
i=1

ϕ1 (κr (ti, β))

Φ1 (κr (ti, β))

(
β

1
2

t
1
2

+
t
1
2

β
1
2

)
− n

κ
+

2β

k

n∑
i=1

1

ti + β

}
.

(5)

Remark:
We have observed when m = 1 the equation (4) reduces to

1

κ2
=
β

g
+
s

β
− 2, (6)

where

g =

(
1

n

n∑
i=1

1

ti

)−1
, (7)

and

s =
1

n

n∑
i=1

ti. (8)



Remark Continued:

Birnbaum and Saunders (1969b) also showed that the MLE of α in terms of MLE of β can be
written as equation (6), where α = 1

κ
. Now, for m = 1 the equation (5) reduces to

1

g
− s

β2
+

1

βκ2
− 2

κ2K (β)
= 0, (9)

where

K (β) =

[
1

n

n∑
i=1

1

ti + β

]−1
. (10)

Substituting the value of 1
κ2

from (6) in the equation (9) and simplifying we get

β2 − [K (β) + 2g] β + [K (β) + s] g = 0. (11)

That is, for m = 1 the the MLE of β can be obtained as the positive root of the above equation
(11). Once the MLE of β is obtained, the MLE of κ can be obtained as an exact solution of
the equation (6). Birnbaum and Saunders (1969b) also obtained the same nonlinear equation
(11), which they tried to solve by two iterative methods, but they noticed that their methods
did not work well for all values of α. The same equations (6) and (11) were also obtained by
Lemonte, Cribari-Neto and Vasconcellos (2007), in which they proposed to find the MLEs of
α and β by maximizing the log-likelihood function using the BFSG quasi-Newton nonlinear
optimization method with analytical first derivatives, which is generally regarded as the most
reliable nonlinear optimization algorithm (Mittelhammer et al., 2000, p. 199).



Case 2: A = (1− ρ) Im + ρJm and β = β1m:

we assume that A is an equicorrelated matrix A = (1− ρ) Im + ρJm with

δ = 1− ρ > 0 and θ = 1 + (m− 1) ρ > 0.

These parameters restrictions ensure that the matrix A is a positive definite matrix. These
conditions with the additional assumptions that the random variables measuring the increase
in the crack sizes have same mean and same variance, and have the same tolerance thresh-
old to thermo-mechanical fatigue (TMF) cycle for all the cracks, impose these variables are
equicorrelated.
That is, the random variables measuring the crack sizes have the same common variance υ0
and any two of them have also the same covariance υ1, or in others words, these variables are
equicorrelated.



Case 2 Continued:

The MLEs ρ̂ and β̂ of ρ and β are obtained by simultaneously and iteratively solving the
following two equations.

0 =
1

θ
− θβ

g
− θs

β
+ 2θ + (m− 1)

1

n

n∑
i=1

ϕ1 (θr (ti, β))

Φ1 (θr (ti, β))
r (ti, β), (12)

and 0 = −θ
2β

g
+
θ2s

β
+

(m− 1) θ

n

n∑
i=1

ϕ1 (θr (ti, β))

Φ1 (θr (ti, β))

β 1
2

t
1
2
i

+
t
1
2
i

β
1
2

− 1 +
2β

K (β)
, (13)

where g, s and K (β) are defined in (7), (8) and (10) respectively. It must be pointed out that

in this equicorrelated case 0 < ρ < 1 and β > 0. Still, ρ̂ and β̂ may fall at the boundary,
in which case standard asymptotic theory may not be directly applicable. See Self and Liang
(1987) for more details on this scenario. So, while solving the above two equations (12) and (13)

simultaneously and iteratively, one needs to make sure that 0 < ρ̂ < 1 and β̂ > 0. Truncate ρ̂
to 0 or 1, if it is outside this range, as well as truncate β̂ to 0 if it is below 0.



Remark:

Note that for m = 1, T ∼ EBS (A,β) with A = (1− ρ) Im + ρJm and β = β1m, reduces
to T ∼ BS (α, β) with 1

α
= θ = 1 + (m− 1) ρ = 1. That is, for m = 1, T ∼ EBS (A,β)

reduces to a one parameter BS distribution, T ∼ BS (β). Now, when m = 1 the equation (13)
reduces to

1

g
− s

β2
+

1

β
− 2

K (β)
= 0,

or,
[K (β)− 2g] β2 + gK (β) β − gsK (β) = 0. (14)

MLE of β can be obtained by solving the above quadratic equation (14). This is the same
equation obtained by equating the partial derivative of the log likelihood function of a BS
random variable having α = 1 with respect to β to zero.



Monte Carlo simulation study for Case 2:

Table 1: Means of ρ̂ and β̂ based on Monte Carlo simulation (β = 1.0)

ρ n m = 2 m = 3 m = 4 m = 5 m = 10

ρ̂ β̂ ρ̂ β̂ ρ̂ β̂ ρ̂ β̂ ρ̂ β̂
0.3 5 0.5821 0.9889 0.5317 0.9581 0.4966 0.9513 0.4923 0.9427 0.4535 0.9459

10 0.4630 0.9947 0.4229 0.9787 0.3953 0.9772 0.3905 0.9706 0.3663 0.9730
20 0.3863 0.9949 0.3621 0.9875 0.3453 0.9855 0.3394 0.9852 0.3289 0.9876
50 0.3337 0.9966 0.3196 0.9973 0.3153 0.9953 0.3146 0.9929 0.3100 0.9946

100 0.3167 0.9971 0.3098 0.9978 0.3073 0.9978 0.3070 0.9967 0.3045 0.9980
200 0.3061 0.9984 0.3039 0.9997 0.3041 0.9981 0.3032 0.9989 0.3021 0.9993

0.5 5 0.7196 0.9986 0.6933 0.9746 0.6966 0.9579 0.6852 0.9595 0.6724 0.9657
10 0.6450 0.9947 0.6234 0.9836 0.6155 0.9781 0.5997 0.9815 0.5873 0.9825
20 0.5862 0.9943 0.5638 0.9908 0.5506 0.9909 0.5504 0.9880 0.5416 0.9911
50 0.5399 0.9981 0.5245 0.9967 0.5218 0.9962 0.5203 0.9940 0.5143 0.9970

100 0.5182 0.9985 0.5111 0.9974 0.5100 0.9980 0.5095 0.9972 0.5059 0.9988
200 0.5098 1.0001 0.5062 0.9985 0.5053 0.9985 0.5044 0.9991 0.5032 0.9991

0.7 5 0.8142 1.0122 0.8200 0.9895 0.8278 0.9803 0.8216 0.9822 0.8237 0.9821
10 0.7837 1.0035 0.7805 0.9947 0.7879 0.9873 0.7822 0.9893 0.7819 0.9883
20 0.7638 0.9972 0.7532 0.9959 0.7563 0.9918 0.7514 0.9919 0.7506 0.9931
50 0.7342 0.9964 0.7283 0.9958 0.7266 0.9964 0.7206 0.9969 0.7186 0.9981

100 0.7183 0.9993 0.7152 0.9974 0.7132 0.9984 0.7106 0.9981 0.7100 0.9987
200 0.7075 1.0003 0.7077 0.9981 0.7064 0.9989 0.7057 0.9987 0.7056 0.9990



Monte Carlo simulation study for Case 2 Continuation::

Table 2: S.D. of ρ̂ and β̂ based on Monte Carlo simulation (β = 1.0)

ρ n m = 2 m = 3 m = 4 m = 5 m = 10

ρ̂ β̂ ρ̂ β̂ ρ̂ β̂ ρ̂ β̂ ρ̂ β̂
0.3 5 0.3720 0.2767 0.3138 0.2269 0.2831 0.2077 0.2662 0.1840 0.2262 0.1271

10 0.3169 0.2001 0.2349 0.1715 0.1946 0.1523 0.1757 0.1371 0.1342 0.0931
20 0.2368 0.1440 0.1564 0.1233 0.1236 0.1082 0.1081 0.0982 0.0807 0.0675
50 0.1426 0.0930 0.0912 0.0809 0.0717 0.0691 0.0631 0.0632 0.0458 0.0424

100 0.0979 0.0646 0.0623 0.0562 0.0489 0.0490 0.0427 0.0447 0.0316 0.0306
200 0.0694 0.0472 0.0431 0.0404 0.0355 0.0353 0.0298 0.0316 0.0226 0.0217

0.5 5 0.3205 0.2414 0.2808 0.1834 0.2591 0.1439 0.2503 0.1307 0.2308 0.0795
10 0.2941 0.1740 0.2392 0.1353 0.2139 0.1137 0.2004 0.0996 0.1732 0.0624
20 0.2410 0.1260 0.1807 0.0982 0.1549 0.0815 0.1410 0.0704 0.1149 0.0445
50 0.1626 0.0825 0.1099 0.0633 0.0926 0.0534 0.0842 0.0463 0.0657 0.0284

100 0.1126 0.0568 0.0774 0.0445 0.0647 0.0393 0.0576 0.0318 0.0453 0.0200
200 0.0795 0.0410 0.0531 0.0317 0.0457 0.0272 0.0402 0.0233 0.0329 0.0147

0.7 5 0.2675 0.2168 0.2271 0.1479 0.2083 0.1126 0.2054 0.0949 0.1889 0.0540
10 0.2465 0.1536 0.2072 0.1103 0.1888 0.0857 0.1845 0.0737 0.1656 0.0425
20 0.2129 0.1098 0.1724 0.0803 0.1589 0.0635 0.1499 0.0541 0.1340 0.0321
50 0.1658 0.0720 0.1254 0.0520 0.1122 0.0422 0.1030 0.0364 0.0876 0.0217

100 0.1228 0.0509 0.0902 0.0366 0.0780 0.0305 0.0711 0.0253 0.0611 0.0153
200 0.0891 0.0368 0.0639 0.0270 0.0543 0.0214 0.0512 0.0183 0.0426 0.0109



Hazard function: Cases 1 and 2:

The distribution function FT in Case 1 is given by

FT (t) = {1− [Φ1 (κr (t))]
m} I<+

(t),

and its density function fT for t ∈ <+ is given by

fT (t) =
d

dt
FT (t) = −mκϕ1 (κr (t)) [Φ1 (κr (t))]

m−1 dr (t)

dt
,

The distribution function FT in Case 2 is given by

FT (t) = {1− [Φ1 (θr (t))]
m} I<+

(t),

and its density function fT for t ∈ <+ is given by

fT (t) = −mθϕ1 (θr (t)) [Φ1 (θr (t))]
m−1 dr (t)

dt
.

In the first case κ is any (fixed constant) positive real number, while in the second case θ =
1 + (m− 1) ρ, with 0 < ρ < 1.
Due to the similarities in functional forms between the distribution functions of Cases 1 and 2,
and between their corresponding density functions, we confine ourselves to obtain the hazard
function h corresponding to Case 2 only. Now, the hazard function h corresponding to Case 2
is

h (t) =
fT (t)

1− FT (t)
= −mθdr (t)

dt

ϕ1 (θr (t))

Φ1 (θr (t))
. (15)



Hazard function: Cases 1 and 2 Continued:

Except for the constant m, the expression of the above hazard function (15) is similar to the
hazard function of a BS random variable (16) with parameters α > 0 and β > 0, because its
distribution function is

FT (t) =

{
1−

[
Φ1

(
1

α
r (t)

)]}
I<+

(t),

and its density function is

fT (t) = − 1

α
ϕ1

(
1

α
r (t)

)
dr (t)

dt
,

and so the hazard function h of a BS random variable with parameters α > 0 and β > 0 is

h (t) =
fT (t)

1− FT (t)
= − 1

α

dr (t)

dt

ϕ1

(
1
α
r (t)

)
Φ1

(
1
α
r (t)

). (16)

The above hazard function of a BS random variable (16) with parameters α > 0 and β > 0
is identical to the hazard function of an EBS random variable (15) with parameters A =
(1− ρ) Im + ρJm and β = β1m, for m = 1 and θ = 1

α
.



Remark:

Therefore, all the inferences inferred in Kundu et al. (2008) for the BS hazard function are
valid for our EBS hazard functions for Cases 1 and 2. That is, the hazard functions of the EBS
distributions corresponding to Cases 1 and 2 are unimodal (of upside down form). The change
point, the point where the monotonicity of the hazard function changes from increasing to
decreasing, in our EBS hazard functions can be obtained as a solution of a similar non-linear
equation as described in Kundu et al. (2008).

Moreover, the different methods proposed by them for estimating the change point will also
work for our EBS hazard functions for Cases 1 and 2. As recommended by them the bias-
corrected modified moment estimators (BCMME) and approximate BCMME (ABCMME) will
perform well, and since ABCMME is a simple explicit estimator, we also suggest its usage for
the estimation of change point for our EBS hazard functions for Cases 1 and 2. The derived
asymptotic distributions of all the estimators in Kundu et al. (2008) will also work out for our
EBS hazard functions for Cases 1 and 2.



Concluding remarks

Thus, with the majority of the remarks in this article we see that our new EBS distribution
indeed extends or generalizes the commonly used BS distribution, to model the more typical
circumstances of multiple cracks in the fatigue life prediction.

This is the first study of the Birnbaum-Saunders life distribution on multiple cracks, however
there is more (yet) to come out on different parameter structures of the EBS distribution. We
are currently working on various structures of the shape matrices and the scale vectors of the
EBS distribution, and will publish it in a future correspondence.

One can study the model when the number of cracks could vary from individual sample to
sample. To accomplish this one has to find the MLE not from a random sample, but from
independent EBS random variables each with possible different mi values. We are currently
working on this problem too and will publish it in a future correspondence.
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