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Outline (Abstract) 2

We consider the problem of estimating and testing a
general linear hypothesis in a general multivariate linear
model, the so called Growth Curve Model, when the p×N
observation matrix is normally distributed with an
unknown covariance matrix.

The maximum likelihood estimator (MLE) for the mean is
a weighted estimator with the inverse of the sample
covariance matrix which is unstable for large p close to N
and singular for p larger than N .

We modify the MLE to an unweighted estimator and
propose a new test which we compare with the previous
likelihood ratio test (LRT) based on the weighted
estimator, i.e., the MLE.
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Outline (Abstract), cont. 3

We show that the performance of the LRT and the new
test based on the unweighted estimator are similar.

For the high-dimensional case, when p is larger than N , we
construct two new tests based on the trace of the variation
matrices due to the hypothesis (between sum of squares)
and the error (within sum of squares).

To compare the performance of these four tests we compute
the attained significance level and the empirical power.
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Introduction – Two sample tests 4

Let xij be independent and identically distributed vectors with
p-variate normal distribution Np(µi,Σi), where i = 1, 2 and
j = 1, ..., Ni.

The sample mean vectors are, respectively, given by

x̄i =
1

Ni

Ni∑
j=1

xij , i = 1, 2,

and the sample covariance matrices are, respectively, given by

Si =
1

ni
X(I − 1(1′1)−11′)X ′, ni = Ni − 1, i = 1, 2.

When Σ1 = Σ2 = Σ, an unbiased estimator of Σ is given by

S =
n1S1 + n2S2

n
, n = n1 + n2 = N1 +N2 − 2.
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Dempster’s test 5

A test if two mean vectors are equal, H : µ1 = µ2 has been
proposed by Dempster (1958), under the assumption that the
two distributions have the same covariance matrix.

Dempster’s test statistic is given by

TD =

(
1

N1
+

1

N2

)−1 (x̄1 − x̄2)
′(x̄1 − x̄2)

trS

If Σ = γ2Ip one can show that under the null hypothesis

TD ∼ F (p, np).

It may be noted that when Σ = γ2Ip, and under the
assumption of normality Dempster’s test TD is uniformly most
powerful among all tests whose power depends on µ′µ/γ2.
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6

For a general Σ, under the assumption of normality and
assuming

(?) 0 < limp→∞ ai <∞, i = 1, ..., 4, where ai =
trΣi

p

one can show that, under the null hypothesis,

TD ≈ F ([r̂], [nr̂]),

where [a] denotes the largest integer value ≤ a, r̂ = pb̂, b̂ =
â21
â2
,

â1 =
trS

p
, and â2 =

1

p

(
trS2 − 1

n
(trS)2

)
.

Muni S. Srivastava LinStat2014



Bai and Saranadasa’s test 7

Bai and Saranadasa (1996) proposed another asymptotically
equivalent test which does not require the assumption of norm-
ality but have asymptotically the same power as the one pro-
posed by Dempster (1958).

The statistic testing equal means given by Bai and Saranadasa
is

TBS =

(
1
N1

+ 1
N2

)−1
(x̄1 − x̄2)

′(x̄1 − x̄2)− trS√
2
(
trS2 − 1

n(trS)2
)

Bai and Saranadasa also showed that under the null hypothesis
TBS is normally distributed with mean 0 and variance 1 for a
general model that includes the normal model as a special case.
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Srivastavas’ test 8

Srivastava (2007) proposed a Hotelling’s T 2 type test, by using
Moore-Penrose inverse of the sample covariance matrix S+

instead of the inverse when N is smaller than p.

The test statistic given by Srivastava (2007) is

T+2
=

(
1

N1
+

1

N2

)−1
(x̄1 − x̄2)

′S+(x̄1 − x̄2)

and the asymptotic distribution, assuming (?), is proved to be

b̂p

n
T+2 ≈ χ2(n).
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Srivastava and Du’s test 9

It may be noted that all the above discussed tests are invariant
under the group of orthogonal matrices.

A test that is invariant under the group of non-singular
diagonal matrices has recently been proposed by Srivastava and
Du (2008) under the normal distribution and Srivastava (2009)
under non-normality.

It may be noted that this test is not invariant under the
transformation by orthogonal matrices.
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The test statistic given by Srivastava and Du is

TSD =

(
1
N1

+ 1
N2

)−1
(x̄1 − x̄2)

′D−1S (x̄1 − x̄2)− p√
2
(

trR̂
2
− p2

n

)
Cp,n

where R̂ = D
−1/2
S SD

−1/2
S , DS = diag(s11, ..., spp), S = (sij)

and

Cp,n = 1 +
trR̂

2

p3/2
p→ 1 as (n, p)→∞.

Assuming some conditions, similar to (?) on the correlation
matrix R, and under the hypothesis of equality of two mean
vectors, TSD has asymptotically standard normal distribution.
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Introduction – Multivariate Linear model 11

Definition

Let X = ξA+ ε, where ξ : p×m unknown parameter matrix,
A : m×N known design matrix such that r = rank(A) and
r + p ≤ N . The Multivariate Linear Model is given by

X = ξA+ ε,

where the columns of ε are assumed to be independently
p−variate normally distributed with mean zero and an
unknown positive definite covariance matrix Σ, i.e.,

ε ∼ Np,N (0,Σ, IN ) .
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By the notation of the matrix normal distribution

ε ∼ Np,N (0,Σ, IN )

we just mean that the vectorization of the matrix is
multivariate normal distributes as

vec ε ∼ NpN (0, IN ⊗Σ) ,

where ε = (ε1, ..., εN ) : p×N and vec ε = (ε′1, ..., ε
′
N )′ : pN × 1.
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Multivariate Linear model – MLEs 13

If A has full rank, the MLEs for the multivariate linear model is
given by

ξ̂ = XA′(AA′)−1,

NΣ̂ = X (IN − PA′)X
′ = R̂R̂

′
= V ,

where PA′ = A′(AA′)−1A.
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The general linear hypothesis 14

The general linear hypothesis is expressed as H : Cξ′ = 0,
where C is a known q ×m matrix of rank q ≤ m.

Let the error sum of squares and products be given by the
matrix

V = X (IN − PA′)X
′ and S =

1

n
V , n = N −m,

and the sum of squares and products due to regression under
the hypothesis H is

W = ξ̂C ′(C(AA′)−1C ′)−1Cξ̂
′
.
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Tets given by Fujikoshi et al. 15

Fujikoshi et al. (2004) generalize the two-sample test given by
Dempster (1958) to the MANOVA problem, under the
assumption that (p/n)→ c ∈ (0,∞). The statistic given by
Fujikoshi et al. is

T̃D =
√
p

(
trW

trS
− q
)

and

T̃D
σ̂D
→ N(0, 1),

where σ̂D = 2q
â2
â1

,

â1 =
trS

p
, and â2 =

1

p

(
trS2 − 1

n
(trS)2

)
.
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Srivastava and Fujikoshi’s test 16

Other tests that do not require the assumption

(p/n)→ c ∈ (0,∞)

have been proposed by Srivastava and Fujikoshi (2006) with the
test statistic

TSF =

√
p(trW − qtrS)
√

2qâ2
.

Under the general linear hypothesis the asymptotic distribution
of TSF is normal with mean 0 and variance 1.

Schott (2007) proposed the same test as proposed by Srivastava
and Fujikoshi (2006) but required the assumption above to
obtain the asymptotic distribution of the test statistic. This is a
severe restriction.
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Yamada and Srivastava’s test 17

The above tests are, however, not invariant under the trans-
formation by non-singular diagonal matrices. A test that has
this property for the MANOVA problem has been recently
proposed by Yamada and Srivastava (2012) under normality.

The test statistic given by Yamada and Srivastava (2012) is

TY S =
trWD−1S −

n
n−2pq√

2q
(

trR̂
2
− p2

n

)
Cp,n

where R̂ = D
−1/2
S SD

−1/2
S and Cp,n = 1 +

trR̂
2

p3/2

Assuming certain conditions on the correlation matrix R the
asymptotic distribution under the null hypothesis is standard
normal.
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Introduction – Growth Curve Model 18

The Growth Curve model was first proposed by Potthoff and
Roy (1964) and is defined as follows.

Definition

Let X : p×N and ξ : q ×m be the observation and parameter
matrices, respectively, and let B : p× q and A : m×N be the
within and between individual design matrices, respectively.
Suppose that q ≤ p and r + p ≤ N , where r = rank(A). The
Growth Curve model is given by

X = BξA+ ε,

where

ε ∼ Np,N (0,Σ, IN ) .
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Growth Curve Mode – MLEs 19

If B and A has full rank, the MLEs for the Growth Curve
model is given by

ξ̂MLE =
(
B′V −1B

)−1
B′V −1XA′

(
AA′

)−1
, i.e.,

Bξ̂MLEA = P V
BXPA′ ,

NΣ̂MLE =
(
X −Bξ̂MLEA

)()′
=
(
X(I − PA′) +XPA′ −Bξ̂MLEA

)()′
= V + R̂1R̂

′
1,

where

R̂1 = XA′(AA′)−1A−Bξ̂MLEA =
(
Ip − P V

B

)
XPA′ ,

V = X (IN − PA′)X
′,

V 1 = XA′(AA′)−1AX ′ and

P V
B = B

(
B′V −1B

)−1
B′V −1.
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The mean and covariance matrix for the estimator ξ̂MLE are
given in Kollo and von Rosen (2005) as

E
(
ξ̂MLE

)
= ξ,

cov
(
ξ̂MLE

)
=

n− 1

n− 1− (p− q)
(AA′)−1 ⊗ (B′Σ−1B)−1,

if n− 1− (p− q) > 0, where n = N −m.

Since q ≤ p we have
n− 1

n− 1− (p− q)
≥ 1.
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Unweighted estimator of ξ 21

A natural alternative to the MLE would be an unweighted
estimator of ξ given by

ξ̂ = (B′B)−1B′XA′(AA′)−1.

This estimator is simpler than the MLE, since we do not need
to calculate the inverse of the sum of squares matrix V −1.

This unweighted estimator is obtained by considering

XA′(AA′)−1 = Bξ + η,

η = εA′(AA′)−1 ∼ Np,m

(
0,Σ, (AA′)−1

)
.
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The distribution of the estimator is given by

ξ̂ ∼ Nq,m(ξ, (B′B)−1B′ΣB(B′B)−1, (AA′)−1),

i.e., we have

E
(
ξ̂
)

= ξ,

cov
(
ξ̂
)

= (AA′)−1 ⊗ (B′B)−1B′ΣB(B′B)−1.

Note that with PB = B (B′B)
−1
B′ we have(

X −Bξ̂MLEA
)(
X −Bξ̂MLEA

)′
=
(
X −Bξ̂MLEA

)()′
=
(
X(I − PA′) +XPA′ −Bξ̂MLEA

)()′
= X(I − PA′)X

′ + (I − PB)XPA′X
′(I − PB)

= V + (I − PB)XPA′X
′(I − PB).
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An unbiased and consistent estimator of the covariance matrix
Σ is given by

nΣ̂ = V ∼Wp(Σ, n),

where n = N −m, irrespective of which estimator of ξ is used.
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Compare the estimators ξ̂MLE and ξ̂ 24

Both ξ̂MLE and ξ̂ are unbiased.

The covariances for ξ̂MLE and ξ̂ respectively are given by

cov
(
ξ̂MLE

)
=

n− 1

n− 1− (p− q)
(AA′)−1 ⊗ (B′Σ−1B)−1,

cov
(
ξ̂
)

= (AA′)−1 ⊗ (B′B)−1B′ΣB(B′B)−1.

To compare the two estimators we want to compare their
covariances, i.e., we want to compare

(B′Σ−1B)−1 and (B′B)−1B′ΣB(B′B)−1.
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Following Rao (1967) (Lemma 2.c) one can show that

(B′Σ−1B)−1 ≤ (B′B)−1B′ΣB(B′B)−1

with equality if and only if C(Σ−1B) = C(B). The inequality is
with respect to the Loewner partial ordering, i.e.,

(B′B)−1B′ΣB(B′B)−1 − (B′Σ−1B)−1

is nonnegative definite.

Hence, for large n, the unweighted unbiased estimator of ξ has
a larger covariance than the weighted one, as expected since the
weighted estimator is the MLE.
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But, when also p is large, but still less than n, the factor

(n− 1)/(n− 1− (p− q))

can be much greater than one and the covariance for the
weighted estimator can actually be larger than the covariance
for the unweighted estimator.
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Two different likelihood ratio tests 27

The general problem of testing the hypothesis

H : LξM = 0 vs. A : LξM 6= 0

is equivalent testing the hypothesis

H : ξ = L1δM1 vs. A : ξ 6= L1δM1,

for some L1 and M1 depending on L and M and their
dimension. Since L1 and M1 can be combined with B and A,
without loss of generality, we shall consider only the hypothesis

H : ξ = 0 vs. A : ξ 6= 0.
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LRT T1 based on MLEs 28

Given the MLEs the LRT is given as as

λ
2/N
MLE =

|V + R̂1R̂
′
1|

|V + V 1|

where R̂1, V and V 1 are given above. Using Box’s method for
approximate the distribution of

T1 = −r log λ
2/N
MLE ,

one can show that for large N ,

P0 (T1 > c) = P
(
χ2
f > c

)
,

where r = n− p+ q − (q −m+ 1)/2 and f = qm.

See Srivastava and Khatri (1979) for more details.
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Equivalently testing the hypothesis H : ξ = 0 one can test the
hypothesis

H : η = 0 vs. A : η 6= 0,

where η = (B′B)1/2ξ(AA′)1/2.

Using the unweighted estimator ξ̂ given above the distribution
of η̂ = (B′B)1/2ξ̂(AA′)1/2 is

η̂ = (B′B)1/2ξ̂(AA′)1/2 ∼ Nq,m(η,∆, Im),

where

∆ = G1ΣG
′
1,

G1 = (B′B)−1/2B′.
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Furthermore, we estimate ∆ with ∆̂ = 1
nV
∗ which is

distributed as

V ∗ = G1V G
′
1 ∼Wq(∆, n),

where n = N −m. Also, η̂ and V (or V ∗) are independently
distributed.

The likelihood function of η and ∆ is given by

c|∆|−N/2|V ∗|(n−q−1)/2etr

{
1

2
∆−1(V ∗ +N(η̂ − η)()′

}
,

where c is a constant. Thus, another LRT is given by

λ2/N =
|V ∗|

|V ∗ + η̂η̂′|
.
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LRT T2 31

Again using Box’s method to approximate the distribution, one
can shown that for large N the distribution of

T2 = −r log λ2/N

is given by

P0 (T2 > c) = P
(
χ2
f > c

)
,

where r = n− (q −m+ 1)/2 and f = qm.

See Srivastava and Khatri (1979) for more details.
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Large p and small N 32

For high dimensions, when N −m < p, then V is singular and
none of the tests given in above are applicable.

We will propose two new tests.

First, let

H1 = A′(AA′)−1/2 : N ×m,
H = H1H

′
1 : N ×N

and

G1 = (B′B)−1/2B′ : q × p,
G = G′1G1 : p× p.
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Now consider the variable

(B′B)1/2ξ̂(AA′)1/2

= G1XH1 ∼ Nq,m

(
(B′B)1/2ξ(AA′)1/2,∆, Im

)
,

where ∆ = G1ΣG
′
1.

Under the hypothesis H : ξ = 0 we have

W = G1XHX
′G′1 ∼Wq(∆,m).

We see that W and Σ̂ are independently distributed.
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Test statistic based on trW 34

The mean and variance of the statistic trW , under the
hypothesis H : ξ = 0, are given by

E(trW ) = m tr∆,

var(trW ) = 2m tr∆2.

Under the assumption of normality, unbiased and consistent
estimators of tr∆ and tr∆2 are given by

t̂r∆ =
1

n
trV ∗,

t̂r∆2 =
1

(n− 1)(n+ 2)

(
trV ∗2 − 1

n
(trV ∗)2

)
,

respectively. See Srivastava (2005) for details.
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Test statistic T3 35

Furthermore, we know that under the hypothesis H : ξ = 0,

T̃3 =
1√
m

trW −m tr∆√
2 tr∆2

→ N(0, 1).

Substituting unbiased and consistent estimators of tr∆ and
tr∆2 we get a test statistic, proposed by Srivastava and
Fujikoshi (2006) and Srivastava (2007), which is given by

T3 =
trW − m

n
trV ∗√

2m

(n− 1)(n+ 2)

(
trV ∗2 − 1

n
(trV ∗)2

) → N(0, 1).
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The test statistic T3 is invariant under the group of orthogonal
transformations, but not invariant under the units of measure-
ments, which is an undesirable feature.

That is, the test is not invariant under a diagonal
transformation and the test statistic T3 changes.

We will now propose a test that is invariant under diagonal
transformation.

We will also show that this new test performs better than the
test above.
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Test statistic based on trWD−1

∆̂
37

The test statistic will be based on the quantity trWD−1
∆̂

, where

D
∆̂

= diag(∆̂), the diagonal matrix with the diagonal elements

of ∆̂.

More precise the test statistic is based on tr(WD−1V ∗) and given
as

T4 =
ntr(WD−1V ∗)− nqm/(n− 2)√

2m(trR2 − q2/n)cq,n

,

where R = D
−1/2
V ∗ V

∗D
−1/2
V ∗ and cq,n = 1 + trR2/q3/2 is an

adjustment factor converging to 1 in probability as (n, q)→∞,
n = O(qδ), δ > 1/2 proposed by Srivastava and Du (2008).
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Test statistic T4 38

Define the population correlation matrix as

R = D
−1/2
∆ ∆D

−1/2
∆ .

It has been shown by Srivastava and Du (2008) that a
consistent estimator of trR2/q is given by

1

q

(
trR2 − q2

n

)
.

Hence, for large n and q we have

T4
d
=

(ntr(WD−1V ∗)− qm)/
√
q√

2mtrR2/q
.
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We will give the asymptotic distribution of the test statistic T4
under the following assumptions

A0: n = O(qδ), δ > 1/2,

A1: 1
q trR2 = O(1) as q →∞,

A2: 1
q2

trR4 = o(1) as q →∞.

Theorem

Suppose that the assumptions A0-A2 hold. Then under the null
hypothesis H : ξ = 0 the following is true

lim
(n,q)→∞

P (T4 ≤ x) = Φ(x),

where Φ(·) denotes the cumulative standard normal distribution
function.
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Compare the performance – ASL and power 40

To compare the three tests we can compute the attained
significance level (ASL) and the empirical power.

Let c be the critical value from the distribution considered for
the test statistics. With 1000 simulated replications under the
null hypothesis, the ASL is computed as

α̂ =
(# of tH ≥ c)

(# simulated replications)
,

where tH is the values of the test statistics derived from the
simulated data under the null hypothesis.

We set the nominal significance level to α = 0.05.
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For the simulations let

B = (bij), bij ∼ U(0, 1), i = 1, ..., p, j = 1, ..., q

and A =

(
1′N1

0′N2

0′N1
1′N2

)
,

i.e., with m = 2.

For simplicity we will put N1 = N2 = N/2.

Furthermore, N , p and q will vary depending on which
asymptotic is considered.
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Since the covariances for the estimators depending on Σ, we will
use three different covariance matrices for the simulation study.

The first one is identity, i.e., Σ1 = Ip.

Furthermore, let Dj = diag(σ
(j)
1 , . . . , σ

(j)
p ), for j = 2, 3, be two

different diagonal matrices. Define σ
(2)
i = 2 + (p− i+ 1)/p, for

i = 1, . . . , p, and σ
(3)
i , for i = 1, . . . , p, are independent observ-

ations from
√
U [0, 2], respectively.

Also, let R = (ρij), where ρij = (−1)i+jr|i−j|
f
.

The other two covariance matrices that we will use are given as

Σj = DjRDj , with r = 0.2, f = 0.1, for j = 2, 3.
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We can compute the empirical power using two different critical
values.

We can either use the critical value c from the asymptotic
distribution, or we can use the estimated critical value ĉ
calculated from the simulated data under the null hypothesis,
i.e., the critical value calculated from the empirical null
distribution.

We will use the estimated critical value since the ASL is greatly
affected for some tests.

Muni S. Srivastava LinStat2014



44

The empirical power is calculated from 1000 new replications
simulated under the alternative hypothesis when ξ = (ξij) and
ξij ∼ U(−1/5, 1/5) if i+ j is even and zero otherwise.

Let tA be the value of the test statistic derived from the
simulated data under the alternative hypothesis.

The empirical power are given as

β̂ =
(# of tA ≥ ĉ)

(# simulated replications)
.
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ASL Power
q T1 T2 T3 T4 T1 T2 T3 T4

(I) 10 0.058 0.054 0.078 0.063 0.308 0.666 0.746 0.730
14 0.063 0.042 0.063 0.048 0.852 0.997 0.999 0.999
18 0.063 0.049 0.063 0.058 0.319 0.551 0.709 0.675
22 0.094 0.073 0.068 0.058 0.284 0.413 0.640 0.605
26 0.110 0.094 0.061 0.054 0.838 0.948 0.999 0.999
30 0.132 0.132 0.064 0.061 0.852 0.852 0.999 0.998

(II) 10 0.054 0.057 0.079 0.061 0.236 0.312 0.243 0.286
14 0.062 0.060 0.077 0.057 0.669 0.925 0.895 0.920
18 0.062 0.068 0.065 0.053 0.182 0.226 0.286 0.250
22 0.088 0.065 0.065 0.037 0.129 0.201 0.159 0.186
26 0.108 0.097 0.084 0.074 0.574 0.638 0.643 0.663
30 0.115 0.115 0.065 0.053 0.614 0.614 0.656 0.710

(III) 10 0.055 0.048 0.073 0.058 0.446 0.811 0.730 0.760
14 0.061 0.056 0.066 0.047 0.962 0.999 1.000 1.000
18 0.077 0.055 0.067 0.050 0.413 0.613 0.660 0.641
22 0.102 0.078 0.073 0.059 0.370 0.523 0.423 0.441
26 0.103 0.099 0.067 0.049 0.957 0.984 0.998 0.998
30 0.128 0.128 0.080 0.064 0.936 0.936 0.996 0.998

Table : p = 30, N = 50

Muni S. Srivastava LinStat2014



46

From the table above we see that for large q, the significance
level of all the tests except T4 are greatly affected.

From the simulated power we see that it seems like T2, T3 and
T4 perform equally well and better than T1, which is based the
MLE.

Thus, T4 should be preferred for large q.

In the next comparisons we choose smaller q, namely

q = 5 and q = 10.
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ASL Power
p N T1 T2 T3 T4 T1 T2 T3 T4

(I) 10 30 0.056 0.056 0.076 0.060 0.115 0.125 0.140 0.143
10 50 0.041 0.059 0.082 0.066 0.246 0.238 0.261 0.256
10 100 0.043 0.056 0.080 0.050 0.505 0.499 0.519 0.528
30 30 * * 0.065 0.042 * * 0.424 0.410
30 50 0.063 0.063 0.076 0.060 0.212 0.551 0.617 0.594
30 100 0.055 0.045 0.070 0.049 0.813 0.937 0.944 0.947
50 30 * * 0.089 0.071 * * 0.685 0.670
50 50 * * 0.075 0.050 * * 0.944 0.939
50 100 0.043 0.047 0.064 0.044 0.940 0.999 1.000 0.999

(II) 10 30 0.045 0.048 0.086 0.064 0.095 0.114 0.070 0.083
10 50 0.057 0.053 0.084 0.054 0.125 0.141 0.099 0.115
10 100 0.049 0.054 0.075 0.047 0.277 0.272 0.169 0.202
30 30 * * 0.094 0.069 * * 0.102 0.115
30 50 0.048 0.055 0.076 0.054 0.175 0.304 0.243 0.263
30 100 0.048 0.042 0.069 0.041 0.576 0.695 0.511 0.584
50 30 * * 0.078 0.062 * * 0.312 0.372
50 50 * * 0.069 0.050 * * 0.537 0.630
50 100 0.044 0.053 0.050 0.035 0.807 0.943 0.932 0.959

(III) 10 30 0.053 0.050 0.078 0.059 0.139 0.183 0.108 0.111
10 50 0.047 0.048 0.102 0.065 0.260 0.304 0.161 0.201
10 100 0.049 0.046 0.070 0.041 0.612 0.641 0.444 0.497
30 30 * * 0.089 0.067 * * 0.342 0.300
30 50 0.053 0.044 0.073 0.060 0.342 0.698 0.633 0.593
30 100 0.044 0.044 0.061 0.040 0.920 0.972 0.968 0.954
50 30 * * 0.091 0.063 * * 0.642 0.704
50 50 * * 0.075 0.051 * * 0.937 0.952
50 100 0.044 0.060 0.080 0.063 0.988 1.000 1.000 1.000

Table : q = 5, * means not available
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ASL Power
p N T1 T2 T3 T4 T1 T2 T3 T4

(I) 10 30 0.057 0.057 0.065 0.056 0.187 0.187 0.233 0.234
10 50 0.052 0.052 0.065 0.049 0.329 0.329 0.421 0.409
10 100 0.039 0.039 0.061 0.040 0.765 0.765 0.797 0.801
30 30 * * 0.057 0.048 * * 0.692 0.670
30 50 0.049 0.058 0.070 0.053 0.480 0.822 0.922 0.923
30 100 0.051 0.039 0.051 0.037 0.991 1.000 1.000 1.000
50 30 * * 0.068 0.060 * * 0.967 0.960
50 50 * * 0.065 0.049 * * 1.000 1.000
50 100 0.046 0.037 0.058 0.044 1.000 1.000 1.000 1.000

(II) 10 30 0.060 0.060 0.076 0.066 0.108 0.108 0.072 0.096
10 50 0.057 0.057 0.072 0.057 0.195 0.195 0.114 0.140
10 100 0.062 0.062 0.065 0.038 0.478 0.478 0.248 0.341
30 30 * * 0.086 0.077 * * 0.228 0.209
30 50 0.052 0.058 0.086 0.065 0.292 0.441 0.405 0.442
30 100 0.053 0.053 0.070 0.042 0.835 0.889 0.858 0.869
50 30 * * 0.076 0.056 * * 0.442 0.497
50 50 * * 0.081 0.062 * * 0.714 0.771
50 100 0.065 0.042 0.072 0.049 0.947 1.000 0.995 0.999

(III) 10 30 0.061 0.061 0.064 0.057 0.214 0.214 0.236 0.260
10 50 0.055 0.055 0.081 0.064 0.448 0.448 0.325 0.450
10 100 0.050 0.050 0.071 0.052 0.881 0.881 0.761 0.848
30 30 * * 0.079 0.068 * * 0.661 0.625
30 50 0.050 0.045 0.073 0.053 0.640 0.915 0.938 0.926
30 100 0.052 0.060 0.071 0.046 1.000 0.999 1.000 0.999
50 30 * * 0.074 0.065 * * 0.964 0.970
50 50 * * 0.081 0.067 * * 0.999 0.999
50 100 0.051 0.055 0.064 0.051 1.000 1.000 1.000 1.000

Table : q = 10, * means not available
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For q = 5 one can see in the table above that the significance
level of test T3 is affected, while the other tests seems to attain
the significance level.

For q = 10 all test are good in terms of ASL.

Test T4 seems to have similar or greater power than then the
other test, even for small p and large N , for q = 5 and q = 10.

Note, that for small p and large N test T1, based on the MLE,
should perform good.
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Non-normality 50

We will also see the test statistics T3 and T4 are robust under
non-normality. Assume data is generated from the model

X = BξA+ Σ−1Z,

where the elements Z = (zij) are independently distributed as
either of the following three distributions

(i) zij ∼ N(0, 1) (as above),

(ii) zij ∼
χ2(2)− 2

2
,

(iii) zij ∼
χ2(8)− 8

4
.

Observe that the skewness and kurtosis of χ2(m) is, respect-
ively,

√
8/m and 3 + 12/m. Hence, χ2(2) has higher skewness

and kurtosis, 2 and 9 respectively, compare to χ2(8) with 1 and
4.5, respectively.
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Normal χ2(2) χ2(8)
p N T3 T4 T3 T4 T3 T4

(I) 10 30 0.094 0.072 0.076 0.065 0.070 0.057
10 50 0.073 0.058 0.055 0.045 0.071 0.058
10 100 0.061 0.042 0.056 0.045 0.056 0.037
30 30 0.086 0.073 0.070 0.059 0.078 0.066
30 50 0.076 0.054 0.071 0.053 0.066 0.047
30 100 0.068 0.053 0.082 0.058 0.055 0.032
50 30 0.073 0.062 0.061 0.054 0.086 0.073
50 50 0.074 0.064 0.072 0.059 0.069 0.056
50 100 0.073 0.050 0.047 0.034 0.067 0.054

(II) 10 30 0.072 0.058 0.079 0.060 0.078 0.056
10 50 0.064 0.046 0.073 0.050 0.057 0.046
10 100 0.082 0.060 0.060 0.043 0.071 0.053
30 30 0.074 0.065 0.068 0.067 0.078 0.062
30 50 0.055 0.043 0.060 0.040 0.069 0.047
30 100 0.060 0.041 0.053 0.050 0.074 0.048
50 30 0.082 0.061 0.071 0.056 0.087 0.069
50 50 0.067 0.054 0.068 0.049 0.061 0.036
50 100 0.079 0.058 0.063 0.050 0.068 0.051

(III) 10 30 0.085 0.074 0.068 0.056 0.068 0.052
10 50 0.077 0.052 0.062 0.051 0.073 0.052
10 100 0.058 0.045 0.071 0.045 0.062 0.041
30 30 0.077 0.059 0.091 0.078 0.078 0.062
30 50 0.067 0.055 0.070 0.052 0.062 0.052
30 100 0.055 0.044 0.062 0.049 0.061 0.044
50 30 0.068 0.048 0.084 0.073 0.079 0.068
50 50 0.065 0.053 0.083 0.065 0.067 0.048
50 100 0.066 0.047 0.089 0.067 0.062 0.047

Table : Attained significance level, q = 10
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Normal χ2(2) χ2(8)
p N T3 T4 T3 T4 T3 T4

(I) 10 30 0.383 0.336 0.386 0.373 0.400 0.389
10 50 0.696 0.661 0.692 0.670 0.641 0.633
10 100 0.979 0.976 0.969 0.969 0.973 0.973
30 30 0.946 0.931 0.954 0.949 0.945 0.946
30 50 1.000 1.000 0.998 0.997 0.999 0.999
30 100 1.000 1.000 1.000 1.000 1.000 1.000
50 30 0.990 0.983 0.983 0.981 0.983 0.977
50 50 1.000 1.000 1.000 1.000 1.000 1.000
50 100 1.000 1.000 1.000 1.000 1.000 1.000

(II) 10 30 0.121 0.164 0.123 0.155 0.121 0.145
10 50 0.204 0.246 0.220 0.252 0.235 0.267
10 100 0.423 0.499 0.474 0.536 0.478 0.515
30 30 0.519 0.482 0.539 0.513 0.541 0.525
30 50 0.888 0.896 0.864 0.855 0.848 0.855
30 100 0.998 0.999 0.997 0.997 0.998 0.997
50 30 0.663 0.683 0.681 0.683 0.622 0.640
50 50 0.952 0.956 0.935 0.954 0.936 0.948
50 100 1.000 1.000 0.999 1.000 1.000 1.000

(III) 10 30 0.288 0.290 0.298 0.328 0.314 0.353
10 50 0.553 0.602 0.562 0.603 0.565 0.606
10 100 0.958 0.968 0.935 0.965 0.944 0.966
30 30 0.955 0.949 0.940 0.942 0.946 0.933
30 50 1.000 1.000 0.999 0.999 1.000 0.999
30 100 1.000 1.000 1.000 1.000 1.000 1.000
50 30 0.994 0.992 0.988 0.991 0.989 0.984
50 50 1.000 1.000 1.000 1.000 1.000 1.000
50 100 1.000 1.000 1.000 1.000 1.000 1.000

Table : Power, q = 10
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The MLE for the mean for a Growth Curve model is a
weighted estimator with the inverse of the sample covari-
ance matrix, which is very unstable for p close to N and
singular for N less than p. This fact makes the MLE not
suitable for ’large p and small N ’.

We have modified the MLE to an unbiased and unweighted
estimator, just by removing the inverse of the sample
covariance matrix.

We have proposed three new test statistic, T2 which is
based on the unweighted estimator and T3 and T4 which
can handle the high-dimensional case, when p > N .

The test statistic T3 is invariant under the group of
orthogonal transformations, but not invariant under a
diagonal transformation, which is an undesirable feature.

Test statistic T4 has the benefit of being invariant under
diagonal transformations.
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Concluding Remarks, cont. 54

We compare the LRT T1, based on the MLE, with the
three new tests proposed in this paper.

For ’large p and small N ’ the attained significance levels
(ASL) are better and controlled for test statistic T4.

We have also shown that the power for T4 seems to be
similar or greater than the other tests, even for ’small p
and large N ’.
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