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Statement of the problem

Let X1, X2, . . . be a sequence of i.i.d. r.v.’s with a continuous
CDF F on R, and let Fn(t) = n−1

∑n
i=1 I(Xi ≤ t), t ∈ R, be

the EDF based on X1, . . . , Xn. Consider the problem of
testing the hypothesis of goodness-of-fit

H0 : F = F0

against either a two-tailed alternative H1 : F 6= F0 or an
upper-tailed alternative H ′

1 : F > F0, using the test statistics

Tn(q) = sup
0<F0(t)<1

√
n|Fn(t)− F0(t)|

q(F0(t))
,

T+
n (q) = sup

0<F0(t)<1

√
n (Fn(t)− F0(t))

q(F0(t))
,

where function q belongs to some family of weight functions.
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The family of EFKP upper-class functions

Definition 1 : Let q be any strictly positive function defined
on (0, 1) with the property q(u) = q(1− u) for u ∈ (0, 1/2),
which is nondecreasing in a neighborhood of zero and
nonincreasing in a neighborhood of one. Such a function
will be called an Erdős–Feller–Kolmogorov–Petrovski
(EFKP) upper-class function of a Brownian bridge
{B(u), 0 ≤ u ≤ 1}, if there exists a constant 0 ≤ b < ∞ such
that

lim sup
u→0

|B(u)|/q(u) a.s.
= b. (1)

An EFKP upper-class function q of a Brownian bridge is
called a Chibisov–O’Reilly function if b = 0 in (1).
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The family of EFKP upper-class functions (cont-d)

An important example of an EFKP upper-class function with
0 < b < ∞ in (1) is the function

q(u) =
√

u(1− u) log log(1/(u(1− u))). (2)

Such a choice of q stems from Khinchine’s local law of the
iterated logarithm, which implies, via the representation of a
Brownian bridge in terms of a standard Wiener process,
that

lim sup
u→0

|B(u)|
√

u(1− u) log log(1/u(1− u))

a.s.
=

√
2.

In applications, we recommend to use the weight function
as in (2) since, unlike the Chibisov–O’Reilly function
q(u) = (u(1− u))1/2−ν, 0 < ν < 1/2, it does not involve any
parameter that has to be chosen by the experimenter.
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The family of regularly varying functions

Definition 2 : Let q be any strictly positive function defined
on (0, 1) with the property q(u) = q(1− u) for u ∈ (0, 1/2),
which is nondecreasing in a neighborhood of zero and non-
increasing in a neighborhood of one. Such a weight func-
tion will be called regularly varying with power τ ∈ (0, 1/2]
if for any b > 0

lim
t→0

q(bt)/q(t) = bτ .

The so-called standard deviation proportional (SDP)
weight function

q(t) =
√

t(1− t)

is regularly varying with power τ = 1/2, whereas the
Chibisov–O’Reilly function q(t) = (t(1− t))1/2−ν, ν ∈ (0, 1/2),
is regularly varying with power τ = 1/2− ν.
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Generalizations of the CsCsHM statistics

The two-sided statistic Tn(q) with an EFKP upper-class fun-
ction q appeared for the first time in the paper of M. Csörgő,
S. Csörgő, Horváth, and Mason (1986). Therefore we call
the statistics Tn(q) and T+

n (q) two-sided and one-sided
Csörg ő-Csörg ő-Horváth-Mason (CsCsHM) statistics ,
respectively. The following generalizations of the CsCsHM
statistics are also of interest. For 0 ≤ a < b ≤ 1, let I = (a, b)
and define the statistics

Tn(q, I) = sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(F0(t))
,

T+
n (q, I) = sup

a<F0(t)<b

√
n(Fn(t)− F0(t))

q(F0(t))
,

which, for each n, have the same null distributions as
supu∈I

√
n|Un(u)− u|/q(u) and supu∈I

√
n(Un(u)− u)/q(u).
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Connection to the higher criticism approach

The EDF-based tests standardized by the SDP weight
function δ(t) =

√

t(1− t) have been extensively studied in
the literature. If under H0 the iid observations are U(0, 1), a
popular statistic of this kind is the higher criticism statistic

HCn = sup
0<u<α0

√
n(Un(u)− u)
√

u(1− u)
, 0 < α0 < 1.

The statistic HCn was introduced by Donoho & Jin (2004)
for multiple testing situations where most of the component
problems correspond to the null hypothesis and there may
be a small fraction of component problems that correspond
to non-null hypotheses.

A new class of goodness-of-fit tests with applications to the problem of detecting sparse heterogeneous mixtures



Connection to the higher criticism approach (cont-d)

The test statistic HCn is derived from the random variable

max
0<α≤α0

√
n (Mn/n− α)
√

α(1− α)
,

where Mn is the number of hypotheses among n indepen-
dently tested hypotheses H0i, i = 1, . . . , n, that are rejected
at level α, which measures the maximum deviation of the
observed proportion of rejections from what one would
expect it to be purely by chance as the Type I error level
changes from zero to α0. Two modifications of HCn due to
Donoho & Jin (2004) and Jager & Wellner (2007) are:

HC+
n = sup

1/n<u<α0

√
n(Un(u)− u)
√

u(1− u)
, HC∗

n = sup
U(1)<u<U([α0n])

√
n(Un(u)− u)
√

u(1− u)
.
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Convergence in distribution of the HC statistic

Proposition 1. For any 0 < α0 < 1 and any x ∈ R,

lim
n→∞

P

(

an sup
0<u<α0

√
n|Un(u)− u|
√

u(1− u)
− bn ≤ x

)

= e−e−x

,

lim
n→∞

P

(

an sup
0<u<α0

√
n(Un(u)− u)
√

u(1− u)
− bn ≤ x

)

= e−
1
2
e−x

,

where

an =
√

2 log log n, bn = 2 log log n+
1

2
log log log n− 1

2
log(4π).

Thus, regardless of a particular value of 0 < α0 < 1, one
always has the same extreme value distribution. Proposi-
tion 1 continues to hold for HC+

n and HC∗
n.
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Motivation

In the sup-norm scenario, when normalizing the process√
n(Un(u)− u) by

√

u(1− u), one arrives at the situation
where “all the action takes place in the tails” . This
observation together with the fact that, under the null hypo-
thesis, the statistics HCn, HC+

n , and HC∗
n tend to ∞ in pro-

bability (see Prop. 1), as well as almost surely (see Ch. 16
in Shorack and Wellner (1986)), motivated us to search for
a better weighed analog of the higher criticism statistic, for
which the “action is moved away from the tails” and
whose limit distribution is sensitive to the choice of α0.

With this in mind, we propose the CsCsHM test statistics as
competitors to HCn and its modifications. Unlike the test
procedures based on latter, in order to perform well, the test
procedures based on the former do not require a very large
sample size of n = 106 and work well even for n = 102.
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Convergence in distribution of the CsCsHM statistics

The following extension of Theorem 4.2.3 in Csörgő et al.
(1986) holds true.

Proposition 2. Let q be an EFKP upper-class function of a
Brownian bridge {B(u), 0 ≤ u ≤ 1}. Then, under H0, for any
numbers 0 ≤ a < b ≤ 1, as n → ∞,

sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(F0(t))

D→ sup
a<u<b

|B(u)|
q(u)

,

sup
a<F0(t)<b

√
n(Fn(t)− F0(t))

q(F0(t))

D→ sup
a<u<b

B(u)

q(u)
.

In particular, for the competitor of HCn we have

sup
0<F0(t)<α0

√
n(Fn(t)− F0(t))

q(F0(t))

D→ sup
0<u<α0

B(u)

q(u)
.
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Test procedures based on the CsCsHM-type statistics

The tests based on Tn(q) and T+
n (q) are consistent against

the alternatives H1 : F 6= F0 and H ′
1 : F > F0, respectively.

The main advantage of using the family of the CsCsHM test
statistics over the higher criticism statistics is the identifica-
tion of the proper limit distribution under the null hypo-
thesis . The above convergence in distribution results sug-
gest the following test procedures of asymptotic level α. Set

T (q) := sup
0<u<1

|B(u)|/q(u), T+(q) := sup
0<u<1

B(u)/q(u).

Then, one would reject H0 in favor of H1 when Tn(q) > tα(q),
where tα(q) is chosen to have P (T (q) ≥ tα(q)) = α; and one
would reject H0 in favour of H ′

1 whenever T+
n (q) > t+α (q),

where t+α (q) is determined by P (T+(q) ≥ t+α (q)) = α.
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Confidence band based on the CsCsHM statistic

Proposition 2 continues to hold for the statistics

sup
a<F0(t)<b

√
n|Fn(t)− F0(t)|

q(Fn(t))
, sup

a<F0(t)<b

√
n(Fn(t)− F0(t))

q(Fn(t))
,

where
√
n|Fn(t)− F0(t)|/q(Fn(t)) = 0 for Fn(t) ∈ {0, 1}. This

result makes it possible to construct an asymptotically cor-
rect 100(1− α)% confidence band [Ln(t), Un(t)] for F (t) on
the interval t ∈ [X(1), X(n)), where

Ln(t) = max{0,Fn(t)−
cα√
n
q(Fn(t))},

Un(t) = min{1,Fn(t) +
cα√
n
q(Fn(t))},

and cα = H−1(1− α) with H(t) = P

(

sup
0<u<1

|B(u)|/q(u) ≤ t

)

.
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Numerical comparison of confidence bands

The three graphs below depict confidence bands for simu-
lated data. The solid line is the true CDF. The solid lines
above and below the middle line are a 95 percent CsCsHM
confidence band. The red dashed lines are a 95 percent
Kolmogorov–Smirnov confidence band. The blue dotted
lines are a 95 percent Eicker–Jaeschke confidence band.

The Kolmogorov–Smirnov confidence band is derived from

PF

(√
n sup

−∞<t<∞

|Fn(t)− F (t)| ≤ x

)

→ K(x),

where K(x) is the Kolmogorov CDF. The Eicker–Jaeschke
confidence band is obtained from teh relation

lim
n→∞

PF

(

an sup
0<F (t)<1

√
n|Fn(t)− F (t)|

√

Fn(t)(1− Fn(t))
− bn ≤ x

)

= e−4e−x

.
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Numerical comparison of confidence bands (cont-d)
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Numerical comparison of confidence bands (cont-d)
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Numerical comparison of confidence bands (cont-d)
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Summary of the numerical comparison of
confidence bands

Numerical simulations show that, even for moderate sample
sizes, when compared to the Kolmogorov–Smirnov
confidence band, the CsCsHM confidence band is of the
same length “in the middle” and is shorter on the tails. The
new CsCsHM confidence band outperforms the
Eicker–Jaeschke confidence band “in the middle” and does
a similar job on the tails.
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Conjecture

It is known that, as n → ∞ (see Gnedenko et al. (1960)),

sup
−∞<x<∞

∣

∣

∣

∣

PF

(√
n sup

−∞<t<∞

|Fn(t)− F (t)| ≤ x

)

− PF

(

sup
0<F (t)<1

|B(F (t)| ≤ x

)∣

∣

∣

∣

∣

= O
(

n−1/2
)

, (3)

where {B(u), 0 ≤ u ≤ 1} is a Brownian bridge. That is,
under H0, the CDF of the two-sided Kolmogorov–Smirnov
statistic converges to the Kolmogorov CDF K(x), uniformly
in x ∈ R, at the rate of O(n−1/2). The results of numerical
experiments suggest that the rate of convergence of the
CDF’s of the CsCsHM statistics Tn(q) and T+

n (q) to their
respective limit CDF’s may be as good as that in (3). A
theoretical justification of this claim is an open problem.
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Tabulation of the the distribution of supa<u<bB(u)/q(u)

1. Choose a large positive integer n. Generate n indepen-
dent normal N(0, 1) random variables.

2. Choose a large positive integer M . Repeat step 1 M

times, and for m = 1, . . . ,M , let X(m)
1 , . . . , X

(m)
n denote

the data obtained on the mth iteration.

3. For each m = 1, . . . ,M , calculate the partial sums

S
(m)
k =

∑k
i=1X

(m)
i , k = 1, . . . , n.

4. For each m = 1, . . . ,M , find the value of

T
(m)
n = max

k:k/n∈(a,b)

S
(m)
k − (k/n)S

(m)
n

q(k/n)n1/2
.

5. Use Gn,M (x) = M−1
∑M

m=1 I

(

T
(m)
n ≤ x

)

to approximate

the limit CDF G(x) = P (supa<u<bB(u)/q(u) ≤ x), x ∈ R.
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Detection of sparse heterogeneous mixtures

An important particular case of a goodness-of-fit testing
problem in high dimensions is that of detecting sparse
heterogeneous mixtures. The latter problem has been
extensively studied after the publications of Ingster (1997,
1999). First, consider testing the null hypothesis

H0 : X1, . . . , Xn
iid∼ N(0, 1),

i.e., the specified CDF F0 in the hypothesis of goodness-
of-fit is the standard normal CDF, against a sequence of
alternatives

H1,n : X1, . . . , Xn
iid∼ (1− εn)N(0, 1) + εnN(µn, 1),

where εn ∼ n−β for some sparsity index β ∈ (1/2, 1) and
µn =

√
2r log n with 0 < r < 1. The parameters β and r are

assumed unknown, and n → ∞.
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Detection of sparse heterogeneous mixtures (cont-d)

In order to apply the previously developed theory to the
problem of testing H0 versus H1,n, we transform the initial
observations. Namely, let Yi = 1−Φ(Xi) and let G(u) denote
a common CDF of the Yi’s taking values in [0, 1]. Then the
problem of testing H0 versus H1,n transforms to testing

H0 : G(u) = F0(u), the uniform U(0, 1) CDF

against a sequence of alternatives

H1,n : G(u) = F0(u)+εn
(

(1− u)− Φ
(

Φ−1(1− u)− µn
))

> F0(u).

The one-sided CsCsHM test statistic takes the form

T+
n (q) = sup0<u<1

√
n(Gn(u)− u)/q(u),

where Gn(u) = n−1
∑n

i=1 I(Yi ≤ u).
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Detection of sparse heterogeneous mixtures (cont-d)

Another model of interest, which was found to be useful in
various classification problems (see, e.g., Pavlenko et al.
(2012)) has the form:

H ′
0 : X1, . . . , Xn

iid∼ χ2
ν(0),

H ′
1,n : X1, . . . , Xn

iid∼ (1− εn)χ
2
ν(0) + εnχ

2
ν(δn),

where χ2
ν(δ) denotes the noncentral chi-square distribution

with ν degrees of freedom and noncentrality parameter δ,
εn ∼ n−β for some β ∈ (1/2, 1), and δn = 2r log n for some
0 < r < 1. For ν = 2 this model connects to the problem of
detecting covert communications (see Donoho & Jin
(2004)). The parameters β and r are assumed unknown,
and n → ∞.
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Detection of sparse heterogeneous mixtures (cont-d)

Now, let Si = 1−Hν,0(Xi), where Hν,δ is the CDF of a χ2
ν(δ)

distribution, and let H(u) denote a common CDF of the Si’s.
Then the problem of testing H ′

0 versus H ′
1,n transforms to

testing

H′
0 : H(u) = F0(u), the uniform U(0, 1) CDF

against a sequence of alternatives

H′
1,n : H(u) = F0(u)+εn

(

(1− u)−Hν,δn

(

H−1
ν,0 (1− u)

))

> F0(u).

The test statistic becomes

T+
n (q) = sup0<u<1

√
n(Hn(u)− u)/q(u),

where Hn(u) = n−1
∑n

i=1 I(Si ≤ u).
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Attainment of the Ingster optimal detection boundary

Next two theorems show that if the parameter r exceeds the
detection boundary ρ(β) obtained by Ingster (1997), which
is defined by

ρ(β) =







β − 1/2, 1/2 < β < 3/4,

(1−
√
1− β)2, 3/4 ≤ β < 1,

then the test procedure based on the one-sided CsCsHM
statistic T+

n (q) distinguishes between H0 and H1,n, and
between H′

0 and H′
1,n. Since T+

n (q) does not require the
knowledge of β and r, following Donoho & Jin (2004), we
will call such a test procedure optimally adaptive.
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Attainment of the Ingster optimal detection boundary

Theorem 1. Consider the test of asymptotic level α that
rejects H0 when

T+
n (q) ≥ t+α (q),

where the critical value t+α (q) is chosen to have
P
(

sup0<u<1B(u)/q(u) ≥ t+α (q)
)

= α. For every alternative
H1,n with r exceeding the detection boundary ρ(β), the
asymptotic level α test based on T+

n (q) has a full power, i.e.,

PH1,n
(T+

n (q) ≥ t+α (q)) → 1, n → ∞.

In words, when distinguishing between the null and alter-
native hypotheses, the test procedure based on T+

n (q)
perform optimally adaptively to unknown sparsity and
size of non-null effects .
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Attainment of the Ingster optimal detection boundary

Theorem 2. Consider the test of asymptotic level α that
rejects H′

0 when
T+
n (q) ≥ t+α (q),

where the critical value t+α (q) is as in Theorem 1. For every
alternative H′

1,n with r exceeding the detection boundary
ρ(β), the asymptotic level α test based on T+

n (q) has a full
power, that is,

PH′

1,n
(T+

n (q) ≥ t+α (q)) → 1, n → ∞.

∗ ∗ ∗
Theorems 1 and 2 say that if r > ρ(β), then asymptotically
our test procedure based on T+

n (q) distinguishes between
H0 and H1,n, as well as between H′

0 and H′
1,n.
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Remark to Theorems 1 and 2

Results similar to Theorems 1 and 2 hold true for the whole
class of statistics T+

n (q, I) indexed by a subinterval
I = (a, b) ⊆ (0, 1), in which case the critical region takes the
form

T+
n (q, I) ≥ t+α (q, I),

where t+α (q, I) is determined by

P( sup
a<u<b

B(u)/q(u) ≥ t+α (q, I)) = α.

In particular, this applies to our competitor of HCn given by

T+
n (q, (0, α0)) = sup

0<F0(t)<α0

√
n(Fn(t)− F0(t))

q(F0(t))
, 0 < α0 < 1,

which is, thus, also optimally adaptive.
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Concluding remarks

We study a new family of goodness-of-fit test statistics that
have the form of the empirical process in weighted sup-
norm metrics with EKFP weight functions q. These
statistics, which we call the CsCsHM statistics, may be
viewed as competitors to the higher criticism statistic of
Donoho & Jin. An immediate advantage of our approach is
the identification of the proper limit distributions of the
CsCsHM test statistics under the null hypothesis. These
limit distributions are easily tabulated.

When compared to the higher criticism statistic HC+
n , the

one-sided CsCsHM test statistic provides a right solution in
the sense that it does correctly the job that the former was
intended to do without requiring a large sample size like
n = 106 that, in case of the former, only indicated explosion
to infinity instead of slow convergence.
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