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Outline

• Statistical motivations.

• How to characterize general matrix equalities/inequalities.

• Structures of covariance matrices of estimations (BLUEs).

• Formulas for ranks/inertias of BLUEs’/OLSEs’ covariance
matrices.

• Equalities/inequalities of BLUEs’/OLSEs’ covariance matrices.

• Some applications under two transformed models.
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Backgrounds

Consider a general linear regression model

y = Xβββ + εεε, E (εεε) = 0, Cov(εεε) = ΣΣΣ, (1)

where
y ∈ Rn×1 is an observable random vector,
X ∈ Rn×p is a known matrix of arbitrary rank,
βββ ∈ Rp×1 is a vector of unknown parameters,
εεε ∈ Rn×1 is an unobservable random vector,
ΣΣΣ ∈ Rn×n is a known or unknown nnd matrix.
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Backgrounds

Assume that a linear estimation Gy is given under a general linear
model. Then the covariance matrix of Gy is which is quadratic
matrix function with respect to G. If G is not unique, e.g., it
involves some variable matrix, then

Cov(GY) = GΣΣΣG′

may vary with respect to the choice of G.

Covariance matrices of estimations plays essential roles in
determining properties of estimations. In particular, equalities and
inequalities for covariance matrices can be utilized in the
comparison of optimality of estimations under various assumptions.
Hence, it is desirable to establish as many as possible equalities
and inequalities of covariance matrices of estimations.
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General forms of equalities and inequalities of covariance matrices
of estimations Gy can simply be written as

Cov(Gy) = A,

Cov(Gy) � A (< A, ≺ A, 4 A),

where A is any given symmetric matrix. If for example, Gy is taken
as the best-known BLUE of an estimable Kβββ under linear model,
the above become

Cov [BLUE(Kβββ)] = A,

Cov [BLUE(Kβββ)] � A (< A, ≺ A, 4 A).
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Although the equalities and inequalities are easy to understand,
Cov [BLUE(Kβββ)] in fact involves some complicated matrix
operations of the given matrices and their generalized inverses.

From stat point of view, the above are a really work in stat of
describing properties of estimations.

From math point of view, the above are a really work in math
of solving matrix equations/matrix inequalities for a given matrix
A.

So the work will have contributions in both stat and math
sides.

A useful method for establishing matrix equalities/inequalities
in matrix theory was sufficiently developed, which is based on the
following lemma onranks/inertias of matrices.
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How to characterize matrix equalities/inequalities

Lemma

Let A ∈ Rm×n, or A = A′ ∈ Rm×m. Then by definition the
following hold.

(a) A = 0 iff rank(A) = 0.

(b) A is nonsingular iff rank(A) = m.

(c) A � 0 iff i+(A) = m.

(d) A ≺ 0 iff (i−(A) = m.

(e) A < 0 iff i−(A) = 0.

(f) A < 0 4 0 iff i+(A) = 0).
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Lemma

Let A, B ∈ Rm×n, A = A′, B = B′ ∈ Rm×m. Then the following
hold.

(a) A = B iff r(A− B) = 0.

(b) A− B is nonsingular iff r(A− B) = m.

(c) A � B (A ≺ B) iff i+(A− B) = m (i−(A− B) = m).

(d) A < B (A 4 B) iff i−(A− B) = 0 (i+(A− B) = 0).
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This lemma implies that

If some formulas are established for calculating ranks and inertias
of covariance matrices of estimations under linear models, we can
utilize them to derive equalities and inequalities of the covariance
matrices, and to compare estimations under regression models.

Motivated by this lemma, a group of explicit formulas for
calculating the rank and inertia for the difference

r{A− Cov [BLUE(Kβββ)]},
i±{A− Cov [BLUE(Kβββ)]}

can luckily be established.

Y.Tian Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model



As consequences of these formulas, necessary and sufficient
conditions can be established for the previous equalities and
inequalities to hold, respectively.

Various applications of the equalities/inequalities for the different
choices of the two matrices K and A.

Also recall that the residual vector with respect to BLUE(Xβββ) is

e = y − BLUE(Xβββ),

formulas can be established for calculating

i±[A− Cov(e)],

and identifying conditions for

Cov(e) = A (� A < A, ≺ A, 4 A)

to hold can be derived.
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Old/new rank/inertia formulas

The following are some known results on ranks/inertias of matrices
(Marsaglia & Styan 1974).

Lemma

Let A ∈ Rm×n, B ∈ Rm×k , and C ∈ Rl×n. Then

r [A, B ] = r(A) + r(EAB) = r(B) + r(EBA),

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC),

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC).

Y.Tian Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model



Old/new rank/inertia formulas

The following are some known results on ranks/inertias of matrices
(Marsaglia & Styan 1974).

Lemma

Let A ∈ Rm×n, B ∈ Rm×k , and C ∈ Rl×n. Then

r [A, B ] = r(A) + r(EAB) = r(B) + r(EBA),

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC),

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC).

Y.Tian Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model



Lemma

Let A = A′ ∈ Rm×m, B = B′ ∈ Rn×n, Q ∈ Rm×n, and assume
that P ∈ Rm×m is nonsingular. Then

i±(PAP′) = i±(A),

i±(A+) = i±(A), i±(−A) = i∓(A),

i±

[
A 0
0 B

]
= i±(A) + i±(B),

i+

[
0 Q
Q′ 0

]
= i−

[
0 Q
Q′ 0

]
= r(Q).
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Lemma

(Tian 2010) Let A = A′ ∈ Rm×m, B ∈ Rm×n, and
D = D′ ∈ Rn×n. Then

i±

[
A B
B′ 0

]
= r(B) + i±(EBAEB),

i±

[
A B
B′ D

]
= i±(A) + i±

[
0 EAB

B′EA D− B′A+B

]
.

If A < 0, then

i+

[
A B
B′ 0

]
= r [A, B ], i−

[
A B
B′ 0

]
= r(B).
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Lemma

(Tian 2010) Let A = A′ ∈ Rm×m, B ∈ Rq×n, D = D′ ∈ Rn×n and
P ∈ Rq×m with R(A) ⊆ R(P′), and R(B) ⊆ R(P). Also let

M =

−A P′ 0
P 0 B
0 B′ D

 .
Then

i±[D− B′(P′)+AP+B ] = i±(M)− r(P).

Hence,

B′(P′)+AP+B < D⇔ i+(M) = r(P),

B′(P′)+AP+B 4 D⇔ i−(M) = r(P).

B′(P′)+AP+B = D⇔ r(M) = 2r(P),
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Formulas for BLUEs

The following result was originated from Drygas (1970) and Rao
(1973).

Lemma

L0y = BLUE(Kβββ)⇔ L0[X, ΣΣΣEX ] = [K, 0 ].

This equation is always consistent, that is,

[K, 0 ][X, ΣΣΣEX ]+[X, ΣΣΣEX ] = [K, 0 ],

and its general solution, denoted by PK;X;ΣΣΣ, can be written in the
following parametric form

L0 = PK;X;ΣΣΣ = [K, 0 ][X, ΣΣΣEX ]+ + U( In − [X, ΣΣΣ ][X, ΣΣΣ ]+),

where U ∈ Rk×n is arbitrary.
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Rank and inertia formulas for BLUEs’ covariance matrices

Theorem

Let

M =

ΣΣΣ 0 X
0 −A K
X′ K′ 0

.
Then the following three formulas hold

i+{A− Cov [BLUE(Kβββ)] } = i−(M)− r(X),

i−{A− Cov [BLUE(Kβββ)] } = i+(M)− r [X, ΣΣΣ ],

r{A− Cov [BLUE(Kβββ)] } = r(M)− r [X, ΣΣΣ ]− r(X).
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Theorem

In consequence, the following hold.

(a) Cov [BLUE(Kβββ)] � A ⇔ i+(M) = r [X, ΣΣΣ ] + k.

(b) Cov [BLUE(Kβββ)] ≺ A ⇔ i−(M) = r(X) + k.

(c) Cov [BLUE(Kβββ)] < A ⇔ i−(M) = r(X).

(d) Cov [BLUE(Kβββ)] 4 A ⇔ i+(M) = r [X, ΣΣΣ ].

(e) Cov [BLUE(Kβββ)] = A ⇔ r(M) = r [X, ΣΣΣ ] + r(X).
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Proof.

Note that

Cov [BLUE(Kβββ)] = [K, 0 ][X, ΣΣΣEX ]+ΣΣΣ[X, ΣΣΣEX ]′+[K, 0 ]′.

Hence,

A− Cov [BLUE(Kβββ)]

= A− [K, 0 ][X, ΣΣΣEX ]+ΣΣΣ([X, ΣΣΣEX ]′)+[K, 0 ]′,

and

i±{A− Cov [BLUE(Kβββ)] }
= i±{A− [K, 0 ][X, ΣΣΣEX ]+ΣΣΣ([X, ΣΣΣEX ]′)+[K, 0 ]′}.
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Applying previous formulas and simplifying will finally yields

i+{A− Cov [BLUE(Kβββ)] } = i−(M)− r(X),

i−{A− Cov [BLUE(Kβββ)] } = i+(M)− r [X, ΣΣΣ ].

Adding the two equalities yields the third rank formulas. Setting
the equalities equal to zero yields (a)–(e).
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Special cases

Several special cases, as examples, are presented below for different
choices of K and A in the formulas (home assignments!).

Theorem

Let

M =

ΣΣΣ 0 X
0 −A X
X′ X′ 0

.
Then the following inertia and rank formulas hold

i+{A− Cov [BLUE(Xβββ)] } = i−(M)− r(X),

i−{A− Cov [BLUE(Xβββ)] } = i+(M)− r [X, ΣΣΣ ].
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Theorem

If βββ is estimable, then

i+{A− Cov [BLUE(βββ)] } = i−( ΣΣΣ− XAX′ ),

i−{A− Cov [BLUE(βββ)] } = p + i+( ΣΣΣ− XAX′ )− r [X, ΣΣΣ ].

In consequence, the following hold.

(a) Cov [BLUE(Xβββ)] � A ⇔ i+(M) = r [X, ΣΣΣ ] + n.

(b) Cov [BLUE(Xβββ)] ≺ A ⇔ i−(M) = r(X) + n.

(c) Cov [BLUE(Xβββ)] < A ⇔ i−(M) = r(X).

(d) Cov [BLUE(Xβββ)] 4 A ⇔ i+(M) = r [X, ΣΣΣ ].
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Corollary

Assume that τ2 is positive scalar. Then

i+{ τ2Ik − Cov [BLUE(Kβββ)] } = i−

[
ΣΣΣ τX
τX′ K′K

]
− r(X) + k ,

i−{ τ2Ik − Cov [BLUE(Kβββ)] } = i+

[
ΣΣΣ τX
τX′ K′K

]
− r [X, ΣΣΣ ].

If βββ is estimable, then

i+{ Ip − Cov [BLUE(βββ)] } = i−( ΣΣΣ− XX′ ),

i−{ Ip − Cov [BLUE(βββ)] } = p + i+( ΣΣΣ− XX′ )− r [X, ΣΣΣ ].
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Corollary

Let

M =

ΣΣΣ 0 X
0 −AΣΣΣA′ K
X′ K′ 0

 , N =

ΣΣΣ 0 X
0 −AΣΣΣA′ X
X′ X′ 0

.
Then,

i+{Cov(Ay)− Cov [BLUE(Kβββ)] } = i−(M)− r(X),

i−{Cov(Ay)− Cov [BLUE(Kβββ)] } = i+(M)− r [X, ΣΣΣ ].
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Corollary

i+{Cov(y)− Cov [BLUE(Xβββ)]}
= r{Cov(y)− Cov [BLUE(Xβββ)]} = r [X, ΣΣΣ ]− r(X).

If βββ is estimable, then

i+{Cov(Ay)− Cov [BLUE(βββ)]} = i−( ΣΣΣ− XAΣΣΣA′X′ ),

i−{Cov(Ay)− Cov [BLUE(βββ)]} = p + i+( ΣΣΣ− XAΣΣΣA′X′ )

−r [X, ΣΣΣ ].

If E (Ay) = Kβββ, then

i+{Cov(Ay)− Cov [BLUE(Kβββ)]}
= r{Cov(Ay)− Cov [BLUE(Kβββ)]} = r [ ΣΣΣA′, X ]− r(X).
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Inertia formulas for OLSEs’ covariance matrices

As is well known, the ordinary least square estimator (OLSE)
of an estimable Kβββ (Xβββ) under (1) can be written as

OLSE(Kβββ) = KX+y, OLSE(Xβββ) = XX+y = PXy.

In this case,

E [OLSE(Kβββ)] = Kβββ, Cov [OLSE(Kβββ)] = KX+ΣΣΣ(KX+)′,

E [OLSE(Xβββ)] = Xβββ, Cov [OLSE(Xβββ)] = PXΣΣΣPX.

It is obvious that if ΣΣΣ = σ2In, then
BLUE(Kβββ) = OLSE(Kβββ) = KX+y. Hence, we also have the
following.
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Theorem

Assume that ΣΣΣ = σ2In, Kβββ is estimable. Also let

M =

[
A K
K′ X′X

]
, N =

[
A X
X′ X′X

]
.

Then the following inertia and rank formulas hold

i+{A− Cov [OLSE(Kβββ)] } = i+(M)− r(X),

i−{A− Cov [OLSE(Kβββ)] } = i−(M).

If A = A′ ∈ Rn×n, then

i+{A− Cov [OLSE(Xβββ)] } = i+(N)− r(X),

i−{A− Cov [OLSE(Xβββ)] } = i−(N).
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The difference of OLSE(Kβββ) and BLUE(Kβββ) is

OLSE(Kβββ)− BLUE(Kβββ) = (KX+ − PK;X;ΣΣΣ)y;

the difference of the covariance matrices of OLSE(Kβββ) and
BLUE(Kβββ) is

Cov [OLSE(Kβββ)]−Cov [BLUE(Kβββ)] = KX+ΣΣΣ(KX+)′−PK;X;ΣΣΣΣΣΣP′K;X;ΣΣΣ;

and the covariance matrix of the difference of OLSE(Kβββ) and
BLUE(Kβββ) is

Cov [OLSE(Kβββ)−BLUE(Kβββ) ] = (KX+−PK;X;ΣΣΣ)ΣΣΣ(KX+−PK;X;ΣΣΣ)′.
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Theorem

i+{Cov [OLSE(Kβββ)]− Cov [BLUE(Kβββ)] }
= r{Cov [OLSE(Kβββ)]− Cov [BLUE(Kβββ)] }

= r

[
ΣΣΣX X 0
X′X 0 K′

]
− 2r(X),

i+{Cov [OLSE(Xβββ)]− Cov [BLUE(Xβββ)] }
= r{Cov [OLSE(Xβββ) ]− Cov [BLUE(Xβββ)] }
= r [ ΣΣΣX, X ]− r(X) < n.

If βββ is estimable, then

i+{Cov [OLSE(βββ)]− Cov [BLUE(βββ)] }
= r{Cov [OLSE(βββ)]− Cov [BLUE(βββ)] }
= r [ ΣΣΣX, X ]− p < n.
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Formulas for the covariance matrices of residual vectors

Note that two residual vectors with respect to OLSE(Xβββ) and
BLUE(Xβββ) are given by

ê = y −OLSE(Xβββ) = ( In − PX )y = EXy,

ẽ = y − BLUE(Xβββ) = ( In − PX;ΣΣΣ )y.

Hence, the covariance matrices of ê and ẽ are given by

Cov(ê) = E (êê′) = EXΣΣΣEX,

Cov(ẽ) = E (ẽẽ′) = ΣΣΣ− Cov [BLUE(Xβββ)].
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Theorem

Let

M =

ΣΣΣ 0 X
0 A−ΣΣΣ X
X′ X′ 0


Then

i+[A− Cov(ẽ) ] = i+(M)− r [X, ΣΣΣ ],

i−[A− Cov(ẽ) ] = i−(M)− r(X).
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Theorem

In particular,

i+[ In − Cov(ẽ) ] = i+

[
ΣΣΣ−ΣΣΣ2 X

X′ 0

]
− r [X, ΣΣΣ ] + n,

i−[ In − Cov(ẽ) ] = i−

[
ΣΣΣ−ΣΣΣ2 X

X′ 0

]
− r(X),

i+[ ΣΣΣ− Cov(ẽ) ] = r [ ΣΣΣ− Cov(ẽ) ] = r(ΣΣΣ) + r(X)− r [X, ΣΣΣ ],

i+[Cov(ẽ)] = r [Cov(ẽ)] = r [X, ΣΣΣ ]− r(X).
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Corollary

i+[ Cov(ê)− Cov(ẽ) ] = i−[ Cov(ê)− Cov(ẽ) ] = r [X, ΣΣΣX ]− r(X).

Hence, the following statements are equivalent:

(a) Cov(ê) < Cov(ẽ).

(b) Cov(ê) 4 Cov(ẽ).

(c) Cov(ê) = Cov(ẽ).

(d) r [X, ΣΣΣX ] = r(X).

(e) R(ΣΣΣX) ⊆ R(X).

(f) PXΣΣΣ = ΣΣΣPX.
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Comparison of covariance matrices of estimations under
two models

Assume that two transformed models of the original model are
given as follows

M1 = {Ay, AXβββ, AΣΣΣA′ },
M2 = {By, BXβββ, BΣΣΣB′ },

where A ∈ Rm1×n and B ∈ Rm2×n are two given matrices of
arbitrary rank.
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Theorem

Let

M =


AΣΣΣA′ 0 AX 0 0
0 −BΣΣΣB′ 0 BX 0

X′A′ 0 0 0 K′

0 X′B′ 0 0 K′

0 0 K K 0

 ,

N =

AΣΣΣA′ 0 AX
0 −BΣΣΣB′ BX

X′A′ X′B′ 0

.
Then

i+{Cov [BLUEM1(Kβββ)]− Cov [BLUEM2(Kβββ)] }
= i+(M)− r [AX, AΣΣΣ ]− r(X),

i−{Cov [BLUEM1(Kβββ)]− Cov [BLUEM2(Kβββ)] }
= i−(M)− r [BX, BΣΣΣ ]− r(X).
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In particular, if Xβββ is estimable, then

i+{Cov [BLUEM1(Xβββ)]− Cov [BLUEM2(Xβββ)] } = i+(N)− r [AX, AΣΣΣ ],

i−{Cov [BLUEM1(Xβββ)]− Cov [BLUEM2(Xβββ)] } = i−(N)− r [BX, BΣΣΣ ].

If βββ is estimable, then

i+{Cov [BLUEM1(βββ)]− Cov [BLUEM2(βββ)] } = i+(N)− r [AX, AΣΣΣ ],

i−{Cov [BLUEM1(βββ)]− Cov [BLUEM2(βββ)] } = i−(N)− r [BX, BΣΣΣ ].

Y.Tian Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model



Partition an original model as

M =

{[
y1

y2

]
,

[
X1

X2

]
βββ,

[
ΣΣΣ11 ΣΣΣ12

ΣΣΣ′12 ΣΣΣ22

]}
,

where y1 ∈ Rn1×1, y2 ∈ Rn2×1, X1 ∈ Rn1×p, X2 ∈ Rn2×p,
ΣΣΣ11 ∈ Rn1×n1 , ΣΣΣ12 ∈ Rn1×n2 , ΣΣΣ22 ∈ Rn2×n2 . Then two sum-sample
models are

M1 = { y1, X1βββ, ΣΣΣ11 } = {Ay, AXβββ, AΣΣΣA′ }, A = [ In1 , 0 ],

M2 = { y2, X2βββ, ΣΣΣ22} = {By, BXβββ, BΣΣΣB′ }, B = [ 0, In2 ].
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Theorem

Let

M =


ΣΣΣ11 0 X1 0 0
0 −ΣΣΣ22 0 X2 0
X′1 0 0 0 K′

0 X′2 0 0 K′

0 0 K K 0

 ,

N =

ΣΣΣ11 0 X1

0 −ΣΣΣ22 X2

X′1 X′2 0

.
Then

i+{Cov [BLUEM1(Kβββ)]− Cov [BLUEM2(Kβββ)] }
= i+(M)− r [X1, ΣΣΣ11 ]− r(X2),

i−{Cov [BLUEM1(Kβββ)]− Cov [BLUEM2(Kβββ)] }
= i−(M)− r [X2, ΣΣΣ22 ]− r(X1).
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In particular, if Xβββ is estimable, then

i+{Cov [BLUEM1(Xβββ)]− Cov [BLUEM2(Xβββ)] } = i+(N)− r [X1, ΣΣΣ11 ],

i−{Cov [BLUEM1(Xβββ)]− Cov [BLUEM2(Xβββ)] } = i−(N)− r [X2.ΣΣΣ22 ],

If βββ is estimable, then

i+{Cov [BLUEM1(βββ)]− Cov [BLUEM2(βββ)] } = i+(N)− r [X1, ΣΣΣ11 ],

i−{Cov [BLUEM1(βββ)]− Cov [BLUEM2(βββ)] } = i−(N)− r [X2, ΣΣΣ22 ].
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Further work

Possible equalities/inequalities for estimations can be formulated in
many different forms. For instance, for the covariance matrices of
BLUEs under original and its two sub-sample models, reasonable
equalities/inequalities

Cov [BLUEM (Kβββ)]

= (�, <, ≺, 4)
1

2
Cov [BLUEM1(Kβββ)] +

1

2
Cov [BLUEM2(Kβββ)]

can be proposed, while necessary and sufficient conditions for them
to hold can be established by a similarly approach demonstrated
previously.

All these results can be used to reveal many profound properties
hidden behind estimations.

Y.Tian Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model



A general conclusion

For any two symmetric matrix expressions of the same size

f (A1,A2, . . . , ) and g(B1,B2, . . . , ),

it is always possible to establish certain expansion formulas for
calculating the rank/inertia of

f (A1,A2, . . . , )− g(B1,B2, . . . , ),

and to give identifying conditions for

f (A1,A2, . . . , ) = (�, <, ≺, 4) g(B1,B2, . . . , )

to hold.
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Thank you for your attention!
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