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Introduction

Measurement error in predictors causes loss of information and
biases and even misleading conclusions for inference.

Three main e�ects of measurement error are:

• It causes bias in parameter estimation for statistical models.

• It leads to a loss of power, sometimes profound, for detecting
interesting relationship among variables.

• It masks the features of the data, making graphical model
analysis di�cult.
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Introduction

The bias resulting from the presence of measurement error in the
explanatory variables is a common problem in regression analysis.

Although numerous solutions to this problem have been derived for
parametric and nonparametric regression models, the corresponding
problem in semiparametric speci�cations has remained relatively
unexplored.



Introduction Estimation Conclusion

Motivation

In literature, semiparametric partially linear model has been mostly
studied in case of the measurement error has a known distribution
[1, 2].

This study presents more detailed answer to the question that how
the predictions of regression functions and densities can be
obtained if the measurement error has an unknown distribution in a
semiparametric regression model.

The identi�cation of the density of an unobserved random variable
is possible when the joint density of two error-contaminated
measurements of that variable is known [5].
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Backround

Yi = XT
i β + g(x∗i ) + ∆yi
χ = x∗ + ∆χ

Denote the densities of χ and x∗ by fχ(.) and fx∗(.), respectively.
Then estimation of fx∗(.) is

f̂n(x∗) = 1
nhn

∑n
j=1 Kn(

x∗−χj

hn
)

with Kn(x∗) = 1
2π

∫ +∞
−∞ exp(−ist) φK (s)

φ∆χ(s/hn)ds.
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Backround

Denote ωni (.) = Kn( .−χi
hn

)/
∑

j Kn(
.−χj

hn
)
def
= 1

nhn
Kn( .−χi

hn
)/f̂n(.).

If β is known then the estimator of g(.) is

gn(x∗) =
∑n

i=1 ωni (x
∗)(Yi − XT

i β)[1].

The generalized least squares estimator β̂n of β can be indicated as

β̂n = (X̃T X̃ )−1(X̃T Ỹ )

where Ỹ denotes (Ỹ1, ..., Ỹn) with Ỹi = Yi −
∑n

j=1 ωnj(χi )Yj and

X̃ denotes (X̃1, ..., X̃n) with X̃i = Xi −
∑n

j=1 ωnj(χi )Xj [2].
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Backround

How can the predictions of
regression functions and
densities be obtained if the
measurement error has an
unknown distribution in a
semiparametric regression
model?
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Estimation

The availability of two repeated measurements of x∗

χ = x∗ + ∆χ
z = x∗ + ∆z

provides enough information to identify any moment of the form
E [u(y∗, x∗)] for any function u(y∗, x∗) [5].
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Estimation

Y − XT β̂n︸ ︷︷ ︸ = g(x∗) + ∆y

y∗

where E [∆y |x∗] = 0

ĝ(x̃∗, h) =
n−1

∑n
l=1 y

∗
l Kh(x∗l −x̃

∗)

n−1
∑n

l=1 Kh(x∗l −x̃∗)
= E [y∗Kh(x∗−x̃∗)]

E [Kh(x∗−x̃∗)]

Kh(x∗) = 1
hK ( x

∗

h )

Then a similar technique can be applied here, setting

u(y∗, x∗) = y∗kKh(x∗ − x̃∗), for k = 0, 1.
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Assumptions

1. E [∆y | x∗,∆z ] = 0

E [∆χ | x∗,∆z ] = 0

∆z and x∗are mutually independent.

2. E [|x∗|],E [|∆χ|] and E [|y∗|] are �nite.

3. E [y∗kh−1K (h−1(x∗ − x̃∗))] <∞ for all x̃∗, any h > 0, and
k = 0, 1.
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Theorem

Under Assumptions 1− 3, and provided
∣∣E [e iξz ]

∣∣ > 0 for any �nite
ξ, the function

ĝ(x̃∗, h) = E [y∗Kh(x∗−x̃∗)]
E [Kh(x∗−x̃∗)]

for x̃∗ ∈ R and h ≥ 0, can be expressed solely in terms of moments
that involve the observable variables y∗, χ and z :

Theorem (Fourier representation of the numerator and the
denominator of the Nadaraya-Watson estimator)

ĝ(x̃∗, h) = M1(x̃∗,h)
M0(x̃∗,h)

where, for k = 0, 1,

Mk(x̃∗, h) = 1
2π

∫
κ(hξ)φk(ξ)exp(−iξx∗)dξ
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Theorem

and where φk(ξ) ≡ E [y∗kexp(iξx∗)] is given by

φ0(ξ) = exp(
∫ ξ
0

imχ(ζ)
m1(ζ) ),

φ1(ξ) = φ0(ξ)
m∗

y (ξ)

m1(ξ) ,

where i =
√
−1 and κ(ξ) is the Fourier transform of the kernel

K (x∗) and ma(ξ) = E [aexp(iξz)] for a = 1, χ, y∗.
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Example

Scatterplot of the
density and log.yield
for the onions data.
The plotting
symbols indicate the
two locations where
the onions were
cultivated [3].
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Example

The semiparametric binary o�set model for these data

log(yieldi ) = β1PLi + f (densityi ) + εi

PLi =

{
0 if ith measurement is from Virginia,
1 if ith measurement is from Purnong Landing.
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Example

Fourier N-W No M.Error

Bias Squared 1.1740 4.0640 3.4985
Variance 0.7475 0.0372 0.0413
Mean Square Error 1.3243 0.3042 0.3495

Tablo: Onions Data Results

Table compares the bias squared, the variance, and the mean
square error of the three estimators considered. We choose
bandwidth as h = 1.
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Example

In comparison with the Nadaraya-Watson estimator, our estimator
is clearly very e�ective at reducing the bias.
Of course, because the variance of our estimator is larger than the
Nadaraya-Watson estimator, and the resulting bias, is slightly larger
than in the error-free case.

The bias reduction made possible by the proposed estimator comes
at the expense of an increased variance relative to the
Nadaraya-Watson estimator. However, the decrease in the bias
more than o�sets the increase in the variance, so that the mean
square error we obtain is still better than for the Nadaraya-Watson
estimator.
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Conclusion

This study presents a new kernel-based semiparametric estimator
that extends the conventional Nadaraya-Watson kernel estimator to
cover the case of an error ridden regressor. Identi�cation is
achievable when one repeated measurement of the
error-contaminated regressor is available.

One remarkable property of our estimator is that it requires no
knowledge of the distribution of the measurement error, contrary to
the popular kernel deconvolution estimator.
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Further Studies

Asymptotic Properties

We are going to compose the analysis of the asymptotic properties
of the proposed estimator ĝ(x̃∗, h). With this approach we will try
to enable the derivation of the convergence rate and to establish
the asymptotic normality of the estimator.

Simulation Study

We are going to add a simulation study to investigate the
�nite-sample properties of the proposed estimator through various
Monte Carlo simulations.
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