Introduction Estimation Conclusion

000 [e] [e]e]e}
[e]e]e} (e]e]
0000

Semiparametric Regression with Errors in Variables

Secil YALAZ TOPRAK!, Mujgan TEZ?,
H.llhan TUTALAR3

Ibicle University Department of Mathematics, Turkey, secilyalaz@gmail.com
2Marmara University Department of Statistics, Turkey, mujgantez@gmail.com

3Dicle University Department of Mathematics, Turkey, tutalarhi@gmail.com

International Conference on Trends and Perspectives
in Linear Statistical Inference (LinStat2014)
24-28 August 2014
Linkdping, SWEDEN



Introduction Estimation Conclusion

000

Overview

Introduction
Motivation
Backround

Estimation
Assumptions
Theorem
Example

Conclusion
Further Studies



Introduction
@00

Introduction

Measurement error in predictors causes loss of information and
biases and even misleading conclusions for inference.



Introduction
@00

Introduction

Measurement error in predictors causes loss of information and
biases and even misleading conclusions for inference.

Three main effects of measurement error are:



Introduction
@00

Introduction

Measurement error in predictors causes loss of information and
biases and even misleading conclusions for inference.

Three main effects of measurement error are:

e |t causes bias in parameter estimation for statistical models.



Introduction
@00

Introduction

Measurement error in predictors causes loss of information and
biases and even misleading conclusions for inference.

Three main effects of measurement error are:
e |t causes bias in parameter estimation for statistical models.

e It leads to a loss of power, sometimes profound, for detecting
interesting relationship among variables.



Introduction

@00

Introduction

Measurement error in predictors causes loss of information and
biases and even misleading conclusions for inference.

Three main effects of measurement error are:
e |t causes bias in parameter estimation for statistical models.

e It leads to a loss of power, sometimes profound, for detecting
interesting relationship among variables.

e It masks the features of the data, making graphical model
analysis difficult.
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Introduction

The bias resulting from the presence of measurement error in the
explanatory variables is a common problem in regression analysis.

Although numerous solutions to this problem have been derived for
parametric and nonparametric regression models, the corresponding
problem in semiparametric specifications has remained relatively
unexplored.
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Motivation

In literature, semiparametric partially linear model has been mostly
studied in case of the measurement error has a known distribution
[1, 2].

This study presents more detailed answer to the question that how
the predictions of regression functions and densities can be
obtained if the measurement error has an unknown distribution in a
semiparametric regression model.

The identification of the density of an unobserved random variable
is possible when the joint density of two error-contaminated
measurements of that variable is known [5].
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Backround

Yi = X,'T(/)) + g(X,-*) + Ay;
X =x"+Ax

Denote the densities of x and x* by f,(.) and f+(.), respectively.
Then estimation of f«(.) is

with Kn(x*) = 2= fjo(f exp(—ist)#s)hn)ds.
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Denote wpi(.) = K,,(%nx’)/ ZJ- Kn(%an) d:ef %/,nKn(;f')/ﬁ()

If 5 is known then the estimator of g(.) is

gn(x*) = 2771 wni(x*)(Yi — X/T‘j)[l]-
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Backround

Denote wp(.) = Kn(%z(’)/ ZJ- Kn(%) dZEf ,,L/,HKn(;:f')/fn()

If 5 is known then the estimator of g(.) is

[1]

The generalized least squares estimator B, of B can be indicated as

where Y denotes (Yi, ..., Y,) with Y; = Y; — Z}'Zl wpj(xi)Y; and
)~< denotes ()?1, ...,)N(n) with )~<,' =X — Zle wnj(x,')Xj [2]
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Backround

How can the predictions of
regression functions and
densities be obtained if the
measurement error has an
unknown distribution in a
semiparametric regression
model?
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Estimation

The availability of two repeated measurements of x*

X =x"+Ax
z=x"4+ Az

provides enough information to identify any moment of the form
Elu(y*, x*)] for any function u(y*, x*) [5].
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Estimation
Y - XT3, = g(x*)+ Ay
~——

y

where E[Ay |x*] =0

Aok py AL YK —%Y)  E[y* Kn(x* —£*)]
8% h) = =S K ) = ElRle )

Kn(x*) = K(XT)
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Y- X5, = g(x*)+ Ay
—

y

where E[Ay |x*] =0

B(%*, h) = TR YK R Ely Kyl <))

n13 0l Kn(xf=%*)  — E[Kh(x*—%*)]
40) = BKC5)

Then a similar technique can be applied here, setting
u(y*, x*) = y**Kp(x* — %), for k =0, 1.
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1. E[Ay | x*,Az] =0
E[Ax | x*,Az] =0

Az and x*are mutually independent.
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Assumptions

1. E[Ay | x*,Az] =0
E[Ax | x*,Az] =0
Az and x*are mutually independent.

2. E[|x*|], E[|Ax|] and E[|y*|] are finite.

3. E[y**h 1K(h~}(x* — ¥*))] < oo for all %*, any h > 0, and
k=0,1.
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Theorem

Under Assumptions 1 — 3, and provided |E[e’¢z]| > 0 for any finite
&, the function

ALk Ely* Kp(x*—x*
g% h) = ey

for X* € R and h > 0, can be expressed solely in terms of moments
that involve the observable variables y*, x and z:

Theorem (Fourier representation of the numerator and the

denominator of the Nadaraya-Watson estimator)

E(X",h) = i)

where, for k = 0,1,
Mi(%*, h) = & [ K(h€)ér(€)exp(—itx*)dE
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Theorem

and where ¢, (£) = E[y**exp(i¢x*)] is given by

P0(&) = exp( ff I,r:f(g) ),

41(6) = do(O) 1S,

where i = v/—1 and k(&) is the Fourier transform of the kernel
K(x*) and m,(&) = E[aexp(i{z)] for a =1, x, y*.
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Example

The semiparametric binary offset model for these data
log(yield;) = p1PL; + f(density;) + €;

pL. 0 if ith measurement is from Virginia,
" |1 if ith measurement is from Purnong Landing.



Estimation

[e]e] o]

Example

Fourier N-W  No M.Error
Bias Squared 1.1740 4.0640 3.4985
Variance 0.7475  0.0372 0.0413
Mean Square Error 1.3243  0.3042 0.3495

Tablo: Onions Data Results

Table compares the bias squared, the variance, and the mean
square error of the three estimators considered. We choose

bandwidth as h = 1.
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Example

In comparison with the Nadaraya-Watson estimator, our estimator
is clearly very effective at reducing the bias.

Of course, because the variance of our estimator is larger than the
Nadaraya-Watson estimator, and the resulting bias, is slightly larger
than in the error-free case.

The bias reduction made possible by the proposed estimator comes
at the expense of an increased variance relative to the
Nadaraya-Watson estimator. However, the decrease in the bias
more than offsets the increase in the variance, so that the mean
square error we obtain is still better than for the Nadaraya-Watson
estimator.
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Conclusion

This study presents a new kernel-based semiparametric estimator
that extends the conventional Nadaraya-Watson kernel estimator to
cover the case of an error ridden regressor. Identification is
achievable when one repeated measurement of the
error-contaminated regressor is available.

One remarkable property of our estimator is that it requires no
knowledge of the distribution of the measurement error, contrary to
the popular kernel deconvolution estimator.
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Further Studies

Asymptotic Properties

We are going to compose the analysis of the asymptotic properties
of the proposed estimator g(X*, h). With this approach we will try
to enable the derivation of the convergence rate and to establish
the asymptotic normality of the estimator.

Simulation Study

We are going to add a simulation study to investigate the
finite-sample properties of the proposed estimator through various
Monte Carlo simulations.
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