LinStat 2014

New results on the Choquet integral based distributions

Vicenç Torra IIIA, Artificial Intelligence Research Institute Bellaterra, Catalonia, Spain

August, 2014

From November: University of Skövde, Sweden

Basics and objectives:

• Distribution based on the Choquet integral (for non-additive measures)

Motivation:

- Theory: Mathematical properties
- Methodology: different ways to express interactions
- Application: statistical disclosure control (data privacy)

1. Preliminaries

- 2. Choquet integral based distribution
- 3. Choquet-Mahalanobis based distribution
- 4. Summary

Preliminaries Non-additive measures and the Choquet integral

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) for every countable sequence A_i (i ≥ 1) of A that is pairwise disjoint (i.e,. A_i ∩ A_j = Ø when i ≠ j)

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) for every countable sequence A_i (i ≥ 1) of A that is pairwise disjoint (i.e,. A_i ∩ A_j = Ø when i ≠ j)

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

Finite case: $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, B

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) for every countable sequence A_i (i ≥ 1) of A that is pairwise disjoint (i.e,. A_i ∩ A_j = Ø when i ≠ j)

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

Finite case: $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, B• Probability: $\mu(X) = 1$

Non-additive measures.

(X, A) a measurable space, a non-additive measure μ on (X, A) is a set function μ : A → [0, 1] satisfying the following axioms:
(i) μ(Ø) = 0, μ(X) = 1 (boundary conditions)
(ii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity)

Non-additive measures. Examples. Distorted Lebesgue

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; λ be the Lebesgue measure. The following set function μ_m is a non-additive measure:

$$\mu_m(A) = m(\lambda(A)) \tag{1}$$

Non-additive measures. Examples. Distorted Lebesgue

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; λ be the Lebesgue measure. The following set function μ_m is a non-additive measure:

$$\mu_m(A) = m(\lambda(A)) \tag{1}$$

- If $m(x) = x^2$, then $\mu_m(A) = (\lambda(A))^2$
- If $m(x) = x^p$, then $\mu_m(A) = (\lambda(A))^p$

Non-additive measures. Examples. Distorted probabilities

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; P be a probability. The following set function μ_m is a non-additive measure:

$$\mu_{m,P}(A) = m(P(A)) \tag{2}$$

Non-additive measures. Examples. Distorted probabilities

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; P be a probability. The following set function μ_m is a non-additive measure:

$$u_{m,P}(A) = m(P(A)) \tag{2}$$

Applications.

• To represent interactions

Choquet integral (Choquet, 1954):

• μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(C)\int gd\mu := \int_0^\infty \mu_g(r)dr.$$
 (3)

Choquet integral (Choquet, 1954):

• μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(C)\int gd\mu := \int_0^\infty \mu_g(r)dr.$$
 (3)

• When the measure is additive, this is the Lebesgue integral

Choquet integral (Choquet, 1954):

• μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(C)\int gd\mu := \int_0^\infty \mu_g(r)dr.$$
 (3)

• When the measure is additive, this is the Lebesgue integral

Choquet integral. Discrete version

• μ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. $\mu,$

$$(C)\int fd\mu = \sum_{i=1}^{N} [f(x_{s(i)}) - f(x_{s(i-1)})]\mu(A_{s(i)}),$$

where $f(x_{s(i)})$ indicates that the indices have been permuted so that $0 \leq f(x_{s(1)}) \leq \cdots \leq f(x_{s(N)}) \leq 1$, and where $f(x_{s(0)}) = 0$ and $A_{s(i)} = \{x_{s(i)}, \dots, x_{s(N)}\}.$

Choquet integral: Example:

• $m: \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function s.t. m(0) = 0, m(1) = 1; P a probability distribution. μ_m , a non-additive measure:

$$\mu_m(A) = m(P(A)) \tag{4}$$

(c)

• $CI_{\mu_m}(f)$ (a) \rightarrow max, (b) \rightarrow median, (c) \rightarrow min, (d) \rightarrow mean

(b)

(a)

(d)

Choquet integral based distribution

Definition:

- $Y = \{Y_1, \ldots, Y_n\}$ random variables; $\mu : 2^Y \to [0, 1]$ a non-additive measure and **m** a vector in \mathbb{R}^n .
- The exponential family of Choquet integral based class-conditional probability-density functions is defined by:

$$PC_{\mathbf{m},\mu}(\mathbf{x}) = \frac{1}{K} e^{-\frac{1}{2}CI_{\mu}((\mathbf{x}-\mathbf{m})\circ(\mathbf{x}-\mathbf{m}))}$$

where K is a constant that is defined so that the function is a probability, and where $\mathbf{v} \circ \mathbf{w}$ denotes the Hadamard or Schur (elementwise) product of vectors \mathbf{v} and \mathbf{w} (i.e., $(\mathbf{v} \circ \mathbf{w}) = (v_1w_1 \dots v_nw_n)$).

Notation:

• We denote it by $C(\mathbf{m}, \mu)$.

Outline

(a) $\mu_A(\{x\}) = 0.1$ and $\mu_A(\{y\}) = 0.1$, (b) $\mu_B(\{x\}) = 0.9$ and $\mu_B(\{y\}) = 0.9$, (c) $\mu_C(\{x\}) = 0.2$ and $\mu_C(\{y\}) = 0.8$, and (d) $\mu_D(\{x\}) = 0.4$ and $\mu_D(\{y\}) = 0.9$.

Choquet integral based distribution: Properties

Property:

• The family of distributions $N(\mathbf{m}, \mathbf{\Sigma})$ in \mathbb{R}^n with a diagonal matrix Σ of rank n, and the family of distributions $C(\mathbf{m}, \mu)$ with an additive measure μ with all $\mu(\{x_i\}) \neq 0$ are equivalent.

 $(\mu(X) \text{ is not necessarily here 1})$

Choquet integral based distribution: Properties

Property:

• The family of distributions $N(\mathbf{m}, \mathbf{\Sigma})$ in \mathbb{R}^n with a diagonal matrix Σ of rank n, and the family of distributions $C(\mathbf{m}, \mu)$ with an additive measure μ with all $\mu(\{x_i\}) \neq 0$ are equivalent.

($\mu(X)$ is not necessarily here 1)

Corollary:

• The distribution $N(\mathbf{0}, \mathbb{I})$ corresponds to $C(\mathbf{0}, \mu^1)$ where μ^1 is the additive measure defined as $\mu^1(A) = |A|$ for all $A \subseteq X$.

Choquet integral based distribution: $N \ {\rm vs.} \ C$

Properties:

- In general, the two families of distributions $N({\bf m}, {\bf \Sigma})$ and $C({\bf m}, \mu)$ are different.
- $C(\mathbf{m},\mu)$ always symmetric w.r.t. Y_1 and Y_2 axis.

- A generalization of both: Choquet-Mahalanobis based distribution.
 - Mahalanobis: $\boldsymbol{\Sigma}$ represents some interactions
 - Choquet (measure): μ represents some interactions

Choquet-Mahalanobis based distribution

Definition:

- $Y = \{Y_1, \ldots, Y_n\}$ random variables, $\mu : 2^Y \to [0, 1]$ a measure, **m** a vector in \mathbb{R}^n , and Q a positive-definite matrix.
- The exponential family of Choquet-Mahalanobis integral based classconditional probability-density functions is defined by:

$$PCM_{\mathbf{m},\mu,\mathbf{Q}}(x) = \frac{1}{K} e^{-\frac{1}{2}CI_{\mu}(\mathbf{v} \circ \mathbf{w})}$$

where K is a constant that is defined so that the function is a probability, where $\mathbf{L}\mathbf{L}^T = \mathbf{Q}$ is the Cholesky decomposition of the matrix \mathbf{Q} , $\mathbf{v} = (\mathbf{x} - \mathbf{m})^T \mathbf{L}$, $w = \mathbf{L}^T (\mathbf{x} - \mathbf{m})$, and where $\mathbf{v} \circ \mathbf{w}$ denotes the elementwise product of vectors \mathbf{v} and \mathbf{w} .

Notation:

• We denote it by $CMI(\mathbf{m}, \mu, \mathbf{Q})$.

Property:

- The distribution $CMI(\mathbf{m},\mu,\mathbf{Q})$ generalizes the multivariate normal distributions and the Choquet integral based distribution. In addition
 - A $CMI(\mathbf{m}, \mu, \mathbf{Q})$ with $\mu = \mu^1$ corresponds to multivariate normal distributions,
 - A $CMI(\mathbf{m}, \mu, \mathbf{Q})$ with $Q = \mathbb{I}$ corresponds to a $CI(\mathbf{m}, \mu)$.

Choquet integral based distribution: Properties

Graphically:

• Choquet-integral (CI distribution) and Mahalobis distance (multivariate normal distribution) and a generalization

Choquet integral based distribution: Examples

1st Example: Interactions only expressed in terms of a measure.

- No correlation exists between the variables.
- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.0$, $\mu_x = 0.01$, $\mu_y = 0.01$.

Choquet integral based distribution: Examples

- **2nd Example:** Interactions only expressed in terms of the covariance matrix.
 - CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.10$, $\mu_y = 0.90$.

Outline

Choquet integral based distribution: Examples

- **3rd Example:** Interactions expressed in both terms: covariance matrix and measure.
 - CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.01$, $\mu_y = 0.01$.

More properties: (comparison with spherical and elliptical distributions)

• In general, neither $CMI(\mathbf{m}, \mu, \mathbf{Q})$ is more general than spherical / elliptical distributions, nor spherical / elliptical distributions are more general than $CMI(\mathbf{m}, \mu, \mathbf{Q})$.

Example:

- For non-additive measures, $CMI(\mathbf{m}, \mu, \mathbf{Q})$ cannot be expressed as spherical or elliptical distributions.
- The following spherical distribution cannot be represented with CMI: Spherical distribution with density

$$f(r) = (1/K)e^{-\left(\frac{r-r_0}{\sigma}\right)^2},$$

where r_0 is a radius over which the density is maximum, σ is a variance, and K is the normalization constant.

Outline

Choquet integral based distribution: Properties

More properties:

 \bullet When ${\bf Q}$ is not diagonal, we may have

 $Cov[X_i, X_j] \neq Q(X_i, X_j).$

Normality test CI-based distribution:

Mardia's test based on skewness and kurtosis

- Skewness test is passed.
- Almost all distributions (in \mathbb{R}^2) pass kurtosis test in experiments:
 - Choquet-integral distributions with $\mu(\{x\}) = i/10$ and $\mu(\{y\}) = i/10$ for i = 1, 2, ..., 9. Test only fails in (i) $\mu(\{x\}) = 0.1$ and $\mu(\{y\}) = 0.1$, (ii) $\mu(\{x\}) = 0.2$ and $\mu(\{y\}) = 0.1$.

Summary

Summary:

- Definition of distributions based on the Choquet integral Integral for non-additive measures
- Relationship with multivariate normal and spherical distributions

Thank you