LinStat 2014

New results on the Choquet integral based distributions

Vicenç Torra
IIIA, Artificial Intelligence Research Institute
Bellaterra, Catalonia, Spain

August, 2014

From November: University of Skövde, Sweden

Overview

Basics and objectives:

- Distribution based on the Choquet integral (for non-additive measures)

Motivation:

- Theory: Mathematical properties
- Methodology: different ways to express interactions
- Application: statistical disclosure control (data privacy)

Outline

1. Preliminaries
2. Choquet integral based distribution
3. Choquet-Mahalanobis based distribution
4. Summary

Preliminaries
 Non-additive measures and the Choquet integral

Definitions: measures

Additive measures.

- (X, \mathcal{A}) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) $\mu(A) \geq 0$ for all $A \in \mathcal{A}$,
(ii) $\mu(X) \leq \infty$
(iii) for every countable sequence $A_{i}(i \geq 1)$ of \mathcal{A} that is pairwise disjoint (i.e,. $A_{i} \cap A_{j}=\emptyset$ when $i \neq j$)

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Definitions: measures

Additive measures.

- (X, \mathcal{A}) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) $\mu(A) \geq 0$ for all $A \in \mathcal{A}$,
(ii) $\mu(X) \leq \infty$
(iii) for every countable sequence $A_{i}(i \geq 1)$ of \mathcal{A} that is pairwise disjoint (i.e,. $A_{i} \cap A_{j}=\emptyset$ when $i \neq j$)

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Finite case: $\mu(A \cup B)=\mu(A)+\mu(B)$ for disjoint A, B

Definitions: measures

Additive measures.

- (X, \mathcal{A}) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) $\mu(A) \geq 0$ for all $A \in \mathcal{A}$,
(ii) $\mu(X) \leq \infty$
(iii) for every countable sequence $A_{i}(i \geq 1)$ of \mathcal{A} that is pairwise disjoint (i.e,. $A_{i} \cap A_{j}=\emptyset$ when $i \neq j$)

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Finite case: $\mu(A \cup B)=\mu(A)+\mu(B)$ for disjoint A, B

- Probability: $\mu(X)=1$

Definitions: measures

Non-additive measures.

- (X, \mathcal{A}) a measurable space, a non-additive measure μ on (X, \mathcal{A}) is a set function $\mu: \mathcal{A} \rightarrow[0,1]$ satisfying the following axioms:
(i) $\mu(\emptyset)=0, \mu(X)=1$ (boundary conditions)
(ii) $A \subseteq B$ implies $\mu(A) \leq \mu(B)$ (monotonicity)

Definitions: measures

Non-additive measures. Examples. Distorted Lebesgue

- $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$a continuous and increasing function such that $m(0)=0 ; \lambda$ be the Lebesgue measure.
The following set function μ_{m} is a non-additive measure:

$$
\begin{equation*}
\mu_{m}(A)=m(\lambda(A)) \tag{1}
\end{equation*}
$$

Definitions: measures

Non-additive measures. Examples. Distorted Lebesgue

- $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$a continuous and increasing function such that $m(0)=0 ; \lambda$ be the Lebesgue measure.
The following set function μ_{m} is a non-additive measure:

$$
\begin{equation*}
\mu_{m}(A)=m(\lambda(A)) \tag{1}
\end{equation*}
$$

- If $m(x)=x^{2}$, then $\mu_{m}(A)=(\lambda(A))^{2}$
- If $m(x)=x^{p}$, then $\mu_{m}(A)=(\lambda(A))^{p}$

(a)

(b)

(c)

(d)

Definitions: measures

Non-additive measures. Examples. Distorted probabilities

- $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$a continuous and increasing function such that $m(0)=0 ; P$ be a probability.
The following set function μ_{m} is a non-additive measure:

$$
\begin{equation*}
\mu_{m, P}(A)=m(P(A)) \tag{2}
\end{equation*}
$$

Definitions: measures

Non-additive measures. Examples. Distorted probabilities

- $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$a continuous and increasing function such that $m(0)=0 ; P$ be a probability.
The following set function μ_{m} is a non-additive measure:

$$
\begin{equation*}
\mu_{m, P}(A)=m(P(A)) \tag{2}
\end{equation*}
$$

Applications.

- To represent interactions

Definitions: integrals

Choquet integral (Choquet, 1954):

- μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ, where $\mu_{g}(r):=\mu(\{x \mid g(x)>r\})$:

$$
\begin{equation*}
(C) \int g d \mu:=\int_{0}^{\infty} \mu_{g}(r) d r . \tag{3}
\end{equation*}
$$

Definitions: integrals

Choquet integral (Choquet, 1954):

- μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ, where $\mu_{g}(r):=\mu(\{x \mid g(x)>r\})$:

$$
\begin{equation*}
\text { (C) } \int g d \mu:=\int_{0}^{\infty} \mu_{g}(r) d r . \tag{3}
\end{equation*}
$$

- When the measure is additive, this is the Lebesgue integral

Definitions: integrals

Choquet integral (Choquet, 1954):

- μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ, where $\mu_{g}(r):=\mu(\{x \mid g(x)>r\})$:

$$
\begin{equation*}
(C) \int g d \mu:=\int_{0}^{\infty} \mu_{g}(r) d r . \tag{3}
\end{equation*}
$$

- When the measure is additive, this is the Lebesgue integral

Definitions: integrals

Choquet integral. Discrete version

- μ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. μ,

$$
(C) \int f d \mu=\sum_{i=1}^{N}\left[f\left(x_{s(i)}\right)-f\left(x_{s(i-1)}\right)\right] \mu\left(A_{s(i)}\right)
$$

where $f\left(x_{s(i)}\right)$ indicates that the indices have been permuted so that $0 \leq f\left(x_{s(1)}\right) \leq \cdots \leq f\left(x_{s(N)}\right) \leq 1$, and where $f\left(x_{s(0)}\right)=0$ and $A_{s(i)}=\left\{x_{s(i)}, \ldots, x_{s(N)}\right\}$.

Definitions: measures

Choquet integral: Example:

- $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$a continuous and increasing function s.t. $m(0)=0, m(1)=1 ; P$ a probability distribution.
μ_{m}, a non-additive measure:

$$
\begin{equation*}
\mu_{m}(A)=m(P(A)) \tag{4}
\end{equation*}
$$

- $C I_{\mu_{m}}(f)$ $(a) \rightarrow$ max, $(b) \rightarrow$ median, $(c) \rightarrow \min ,(d) \rightarrow$ mean

(a)

(b)

(c)

(d)

Choquet integral based distribution

Choquet integral based distribution: Definition

Definition:

- $Y=\left\{Y_{1}, \ldots, Y_{n}\right\}$ random variables; $\mu: 2^{Y} \rightarrow[0,1]$ a non-additive measure and \mathbf{m} a vector in \mathbb{R}^{n}.
- The exponential family of Choquet integral based class-conditional probability-density functions is defined by:

$$
P C_{\mathbf{m}, \mu}(\mathbf{x})=\frac{1}{K} e^{-\frac{1}{2} C I_{\mu}((\mathbf{x}-\mathbf{m}) \circ(\mathbf{x}-\mathbf{m}))}
$$

where K is a constant that is defined so that the function is a probability, and where $\mathbf{v} \circ \mathbf{w}$ denotes the Hadamard or Schur (elementwise) product of vectors \mathbf{v} and \mathbf{w} (i.e., $(\mathbf{v} \circ \mathbf{w})=$ $\left.\left(v_{1} w_{1} \ldots v_{n} w_{n}\right)\right)$.

Notation:

- We denote it by $C(\mathbf{m}, \mu)$.

Choquet integral based distribution: Examples

- Shapes (level curves)

(a) $\mu_{A}(\{x\})=0.1$ and $\mu_{A}(\{y\})=0.1$, (b) $\mu_{B}(\{x\})=0.9$ and $\mu_{B}(\{y\})=0.9$,
(c) $\mu_{C}(\{x\})=0.2$ and $\mu_{C}(\{y\})=0.8$, and (d) $\mu_{D}(\{x\})=0.4$ and $\mu_{D}(\{y\})=0.9$.

Choquet integral based distribution: Properties

Property:

- The family of distributions $N(\mathbf{m}, \boldsymbol{\Sigma})$ in \mathbb{R}^{n} with a diagonal matrix Σ of rank n, and the family of distributions $C(\mathbf{m}, \mu)$ with an additive measure μ with all $\mu\left(\left\{x_{i}\right\}\right) \neq 0$ are equivalent.
($\mu(X)$ is not necessarily here 1)

Choquet integral based distribution: Properties

Property:

- The family of distributions $N(\mathbf{m}, \boldsymbol{\Sigma})$ in \mathbb{R}^{n} with a diagonal matrix Σ of rank n, and the family of distributions $C(\mathbf{m}, \mu)$ with an additive measure μ with all $\mu\left(\left\{x_{i}\right\}\right) \neq 0$ are equivalent.
($\mu(X)$ is not necessarily here 1)

Corollary:

- The distribution $N(\mathbf{0}, \mathbb{I})$ corresponds to $C\left(\mathbf{0}, \mu^{1}\right)$ where μ^{1} is the additive measure defined as $\mu^{1}(A)=|A|$ for all $A \subseteq X$.

Choquet integral based distribution: N vs. C

Properties:

- In general, the two families of distributions $N(\mathbf{m}, \boldsymbol{\Sigma})$ and $C(\mathbf{m}, \mu)$ are different.
- $C(\mathbf{m}, \mu)$ always symmetric w.r.t. Y_{1} and Y_{2} axis.

- A generalization of both: Choquet-Mahalanobis based distribution.
- Mahalanobis: Σ represents some interactions
- Choquet (measure): μ represents some interactions

Choquet-Mahalanobis based distribution

Choquet integral based distribution: Definition

Definition:

- $Y=\left\{Y_{1}, \ldots, Y_{n}\right\}$ random variables, $\mu: 2^{Y} \rightarrow[0,1]$ a measure, m a vector in \mathbb{R}^{n}, and Q a positive-definite matrix.
- The exponential family of Choquet-Mahalanobis integral based classconditional probability-density functions is defined by:

$$
P C M_{\mathbf{m}, \mu, \mathbf{Q}}(x)=\frac{1}{K} e^{-\frac{1}{2} C I_{\mu}(\mathrm{vow})}
$$

where K is a constant that is defined so that the function is a probability, where $\mathbf{L L}^{T}=\mathbf{Q}$ is the Cholesky decomposition of the matrix $\mathbf{Q}, \mathbf{v}=(\mathbf{x}-\mathbf{m})^{T} \mathbf{L}, w=\mathbf{L}^{T}(\mathbf{x}-\mathbf{m})$, and where $\mathbf{v} \circ \mathbf{w}$ denotes the elementwise product of vectors \mathbf{v} and \mathbf{w}.

Notation:

- We denote it by $C M I(\mathbf{m}, \mu, \mathbf{Q})$.

Choquet integral based distribution: Properties

Property:

- The distribution $C M I(\mathbf{m}, \mu, \mathbf{Q})$ generalizes the multivariate normal distributions and the Choquet integral based distribution. In addition - A $C M I(\mathbf{m}, \mu, \mathbf{Q})$ with $\mu=\mu^{1}$ corresponds to multivariate normal distributions,
- A $C M I(\mathbf{m}, \mu, \mathbf{Q})$ with $Q=\mathbb{I}$ corresponds to a $C I(\mathbf{m}, \mu)$.

Choquet integral based distribution: Properties

Graphically:

- Choquet-integral (Cl distribution) and Mahalobis distance (multivariate normal distribution) and a generalization

Choquet integral based distribution: Examples

1st Example: Interactions only expressed in terms of a measure.

- No correlation exists between the variables.
- CMI with $\sigma_{1}=1, \sigma_{2}=1, \rho_{12}=0.0, \mu_{x}=0.01, \mu_{y}=0.01$.

Choquet integral based distribution: Examples

2nd Example: Interactions only expressed in terms of the covariance matrix.

- CMI with $\sigma_{1}=1, \sigma_{2}=1, \rho_{12}=0.9, \mu_{x}=0.10, \mu_{y}=0.90$.

Choquet integral based distribution: Examples

3rd Example: Interactions expressed in both terms: covariance matrix and measure.

- CMI with $\sigma_{1}=1, \sigma_{2}=1, \rho_{12}=0.9, \mu_{x}=0.01, \mu_{y}=0.01$.

Choquet integral based distribution: Properties

More properties: (comparison with spherical and elliptical distributions)

- In general, neither $\operatorname{CMI}(\mathbf{m}, \mu, \mathbf{Q})$ is more general than spherical / elliptical distributions, nor spherical / elliptical distributions are more general than $\operatorname{CMI}(\mathbf{m}, \mu, \mathbf{Q})$.

Example:

- For non-additive measures, $\operatorname{CMI}(\mathbf{m}, \mu, \mathbf{Q})$ cannot be expressed as spherical or elliptical distributions.
- The following spherical distribution cannot be represented with CMI: Spherical distribution with density

$$
f(r)=(1 / K) e^{-\left(\frac{r-r_{0}}{\sigma}\right)^{2}},
$$

where r_{0} is a radius over which the density is maximum, σ is a variance, and K is the normalization constant.

Choquet integral based distribution: Properties

More properties:

- When \mathbf{Q} is not diagonal, we may have

$$
\operatorname{Cov}\left[X_{i}, X_{j}\right] \neq Q\left(X_{i}, X_{j}\right) .
$$

Normality test Cl-based distribution:

Mardia's test based on skewness and kurtosis

- Skewness test is passed.
- Almost all distributions (in \mathbb{R}^{2}) pass kurtosis test in experiments:
- Choquet-integral distributions with $\mu(\{x\})=i / 10$ and $\mu(\{y\})=$ $i / 10$ for $i=1,2, \ldots, 9$.
Test only fails in (i) $\mu(\{x\})=0.1$ and $\mu(\{y\})=0.1$, (ii) $\mu(\{x\})=$ 0.2 and $\mu(\{y\})=0.1$.

Summary

Summary

Summary:

- Definition of distributions based on the Choquet integral Integral for non-additive measures
- Relationship with multivariate normal and spherical distributions

Thank you

