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Fixed effects Gauss-Markov model

“Full model”:

(Y, XB,0%),

e X =(1,X1): known n x (p + 1)-model matrix;
e 3 = (Bo,B7)" unknown fixed p + 1-vector;
e o2 > 0: unknown variance parameter;

Y = YB = Px Y : orthogonal projection of Y onto R(X);

. 1 — _
0% = m(Y = XB)(Y = XB).



Fixed effects Gauss-Markov model

“Null model” — intercept only model:

(Yaﬁ01a02|)7
Yo=PBol=Y1
2 = T (Y ~Y1)(Y - V1)



R?2 in Gauss-Markov model

...measure of proportion of variability explained by the model,
...measure of goodness of fit;
(Y =Y)(Y -V)

RZ=1- - —
(Y = Yo) (Y —Yo)

Extension for
cov(Y) = o2V, V known p.d. matrix,
transform Y — V ~1/2Y the rest follows...



Linear fixed effects model

General form of R2:

vy -1 Y,
RZ_1_ (Y Y)V (Y Y) _q

(Y = Yo)V-L(Y — Yo) (Y = Yo)V-L(Y = Yo)/n’



Linear fixed effects model

General form of R2:

(Y =Y)YVLYY —Y)

R2=1- . Lo=1- . . .
(Y =Yo)V-LY —Yo) (Y =Yo)V7LY —Yg)/n
Rz _q_ (Y- Y)VHY = Y)/(n —r(X))
« (Y = VoyV-1(Y —Yo)/(n—1) |



Linear fixed effects model

General form of R2:

vy -1 Y,
RZ_1_ (Y Y)V (Y Y) _q

(Y = Yo)V-L(Y — Yo) (Y = Yo)V-L(Y = Yo)/n’

(Y = Y)VHY = Y)/(n = (X))

R =1- ? & .
(Y =Yo)V=HY —Yo)/(n - 1)

Willett-Singer (1988), consider Euclidean distance:

(Y -=Y)(Y-Y)
(Y = Yo) (Y — Yo)’

RZeudo = 1 —

pseudo



Add:
Y ~ Np(XB3,02V),

If Fp is the F-statistic testing Hp : 81 = Op,

2 Fop/(n—1(X))
L+ Fop/(n— (X))




Add:
Y ~ Np(XB3,02V),

If Fp is the F-statistic testing Hp : 81 = Op,

2 Fop/(n—1(X))
L+ Fop/(n— (X))

Alternatively,
A 2/n
r2 1 _ [ LolPo,65)
L(3,62) )

L(.,..) - denotes the likelihood under the full, and Ly(., ..) under
the null model.



Linear mixed model: “full” model

Desire to extend the definition of R? using the same principle -
a measure of distance in the sample space;

— assess a model fit to data;
— express proportion of variability?
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Linear mixed model: “full” mode

Desire to extend the definition of R? using the same principle -
a measure of distance in the sample space;

— assess a model fit to data;

— express proportion of variability?

Notation:

N sampling units, n; observations on each, n = ZiN:l ni;

Yi =XiB+Zivi + €, =1,2,...N;

(2) -t ((8): (%67 5 )



Combine all vectors stacking them one below the other,
combine the corresponding matrices appropriately:

Y, X, Z, ~, €

T =(75,7);

3(r) =cov(Y) = Diag{ZiZ,,(1)Z] + Z (1)}



R in mixed models
A lot of good suggestions...

e Snijders and Bosker (1994), express the proportion of
“modeled variance” as opposed to “explained”:

3 (1e) = leni;
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R in mixed models
A lot of good suggestions...

e Snijders and Bosker (1994), express the proportion of
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R in mixed models
A lot of good suggestions...

e Snijders and Bosker (1994), express the proportion of
“modeled variance” as opposed to “explained”:

Ye(re) = leni;
Null model:

Yizﬁolni‘f"YiOlni"‘eia |:177Nv

covo(Yi) = Tyoln 1y + 02l
... R? defined, based on comparison of
cov (Yi — X;B) in full model and cov (Y; — Boln,) in null model,

averaged across observations on the sampling unit.



e Vonesh and Chinchilli (1997):

) (Y =Y)YVLY —-Y)
RVc =1~ 0 5\’
(Y = Yo)V-L(Y —Yp)

Yo: predicted Y under null model;
V some p.d. matrix;
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e Vonesh and Chinchilli (1997):

(Y =Y)YVLY —-Y)

R2.=1-— . L
ve (Y — Yo)'V-L(Y — Yo)

Yo: predicted Y under null model;
V some p.d. matrix;
e What to choose for V?
oV =1?
o V =3(7)?
e V =Diag {3 (7)}?
e What to use for Y ?
e “Conditional model”; Y =
e “Marginal model”: Y = X 3.

—

B+2Z%;



e Vonesh and Chinchilli (1997):

(Y =Y)YVLY —-Y)
(Y = Yo)'V-L(Y = Vo)’

R\Z/czl—

Yo: predicted Y under null model;
V some p.d. matrix;
e What to choose for V?
o V=17
o V =X(7)?
e V = Diag{X. (f)}?
e What to use for Y ?

“Conditional model”: Y = YB +27%;
“Marginal model”: Y =X8.
e Null model:
Y = 5ol + ¢

o If V = Diag{X, (%)}, R identical to R? suggested by
Kramer (2005).



e Xu (2003): proportional reduction in conditional residual
variance explained by the model;

Diag{zei (Te)} = UZI;

Null models considered
e Y = 1l + € — the same as Vonesh and Chinchilli (1997);
e Y = ol + Diag {1, }Col {~io} + € — the same as Snijders
and Bosker (1994);
Compares conditional variances
var (Yjj|X, ) and var (Yj) (or var (Yj|7io))-



e Edwards et al. (2008): Null model differs from full only in
fixed effects:

Y =60l +Z~ + €,

~ A1—1 A
Fp = ;CB’ [co\/c,e} CA,

the basis for the approximate F-test of Hy;



e Edwards et al. (2008): Null model differs from full only in
fixed effects:

Y =Bol+Zv +e,
1 . A1-1 .
Fp = BCB’ [co\/c,e} CA,
the basis for the approximate F-test of Hy; Extension from

linear fixed effects model R?:

R = _PIFo
E T 14+p/vFy

v: denominator degrees of freedom (Satterthwaite,
Kenward-Roger, etc.).



Property:
0<RZ2<1;
But - v depends on estimated variance components.

Several others:

e Gelman and Pardoe (2006): Bayesian R?;

» Magee (1990): R? based on log-likelihood, null model
contains only fixed intercept;

e Zheng (2000) for generalized linear models based on
proportions of deviances;

e etc.



Augmented linear model

Hodges (1998), Vaida and Blanchard (2005), Arendacka and
Puntanen (2014):

Assume:
o X (1) = leni, i=1,...,N;
o 3. (14) = 02Gj, G; known p.d. matrix.



Augmented linear model

Hodges (1998), Vaida and Blanchard (2005), Arendacka and
Puntanen (2014):

Assume:

o X (1) = leni, i=1,...,N;
o 3. (14) = 02Gj, G; known p.d. matrix.

Augmented model:

r=(5)=(6 w)(5)+(5),



€ _2 Ino .
o () =or (5 2.

diag{Gi} =G = (A’A) L.
Let



R? in augmented model

Following Hodges (1998), Vaida and Blanchard (2005),
Arendacké and Puntanen (2014):

« _ux_ [ X Z B3 €
v (g W) (5) (%)
cov < AW):azl.

LS solutions result in X 3 (BLUE) and Z4 (BLUP) (in the sense
of Harville (1977));

Null model:

Y <O 0 0><7>+e, cov (€*) = o°l;



Define Rgug as in a fixed effects model:

N

Rz _q_ (Y =XB-ZA)(Y —XB -

aud (Y =VY1)(Y —



Define Rgug as in a fixed effects model:

Rz _q_ (Y =XB-ZH)(Y —XB-7%)+4'G 4
g (Y =Y1)(Y —Y1) '
Properties

e Under normality, with estimated G coincides with RZin
Zheng (2000);

e 0<RZ <1:

aug
. Rgug is increasing when adding columns into X or Z
matrices;



Define Rgug as in a fixed effects model:

Rz _q_ (Y =XB-ZH)(Y —XB-7%)+4'G 4
g (Y =Y1)(Y —Y1) '
Properties

e Under normality, with estimated G coincides with RZin
Zheng (2000);

e 0<RZ <1:

aug
. Rgug is increasing when adding columns into X or Z
matrices;

Question: is Raug for estimated G also monotone set function?



Fixed effects only
Alternative choice of null model:

Y*:<(1) 8 _ZA)<5>+E*, cov (€*) = o°l.

Suggested:

(Y —XB-Z4)(Y —XB-Z4)+4G 4

R2 1-— . - .
(Y =150 — ZA0)'(Y — 150 — Z%) + 5G40

aug2 —

Monotone set function in X;

0 < Rgugz < 1;

Takes into consideration dependencies between
observations also in the null model;

For unknown G, we recommend the estimated

variance-covariance components from the full model in
both, numerator and denominator.



Model fit assessment — Small simulation study

Orelien and Edwards (2008): compare model fit for fixed effects
only - only models and sub-models compared;



Model fit assessment — Small simulation study

Orelien and Edwards (2008): compare model fit for fixed effects
only - only models and sub-models compared;

Goal 1:
e Investigate monotonicity of R? with increasing number of
fixed effects;
e Among models with 2 fixed effect variables, identify the
“true” model (with the highest R?);
Setting:
Data generated from:
e balanced design with respect to sample 2 groups (“trt™);
e unequal number of time points per sampling unit (from 2 up
to 8);
e random “intercept” and “time” coefficients model;
¢ “trt” additional dichotomous fixed effects variable;



n=64,0°c {3,6,9,12,15,45};

G matrix unstructured;

REML used to estimate G and ¢ in full and null models;
10000 simulations for different configurations;

Important: in all 120000 cases convergence was achieved
and the estimated G was n.n.d.

SAS version 9.4 used for all calculations.



Variables unrelated to the response: “genr” (dichotomous), Xs,
and xg (transformed uniform);

Compared models:
Differ in fixed effects only:

o “full”: time, trt, genr, Xs, Xg
e “true”: time, trt;

e “genr”: time, genr;

e “Xg": time, Xs;

e “Xg": time, Xg;
e “reduced”; time;



Compared R?s:

e “VC”: Vonesh and Chinchilli (1997), Y = @ + Z%,;
e “YCm" the same but Y = X 3;

o “RZ,," (same as Zheng (2000)): Y = X8 + Z4;

° “Rgugm”: Y = @;

° “Rgugzn;

° “Rgume";



Results — fixed effects — monotonicity

R? 0°=3 ¢°=12 o°=45
“VC” 0.003 0.12 0.19
“WvCm”  0.86 0.92 0.91
“Ri,y" 050 0.64 0.59
“‘Ra,gm”  0.87 0.93 0.94
“R2 " 0.40 0.34 0.40

. 2augz )
RZgm” 0.76 0.59 0.63

Table : Proportion of R? from “full” higher than all others



Results — fixed effects — true model identification

Correct model: proportion of times the R? for the correct model
is the highest among all (except full);

R2 02=3 02=12 o2=145
“vC” 0.002 0.11 0.34
“VCm” 1.00 1.00 1.00
“Riug” 0.48 0.61 0.69
“R2 m”  1.00 1.00 1.00

aug

‘Rig." 085 0.67 0.72

“‘RZ,,M 100 090  0.90

Table : Proportion of R? from “true” higher than all others (except
“full”)



Goal 2:

e Among models with varying random effects identify the
“true” model (with the highest R?);

Data generated from:

e The same G; balanced treatment groups, generated
unequal time points as above;

e ‘“intercept” and “time” fixed effects,
e random coefficients “intercept” and of “time”;



Compared models:
Differ in random effects only:
e “true™ int, t;
e “Iint”: int;
o “t27int, t?;
Compared R?s:
o "VC: Y = XB + Z%;
o “VCM™" Y = @;
o “R2,,": (same as Zheng (2000)): ¥ = X8 + Z4;
° “Rgugm": Y = @;



Results — random effects — true model identification

R? 02=3 0°=12 o0°=145
“vVC” 1.00 0.83 0.51
“VCm” 0.30 0.30 0.27
“Rgug" 1.00 0.75 0.52
“Rgugm” 0.32 0.42 0.32

Table : Proportion of R? from “true” higher than all others (except
“full”)



Results — random effects — true model identification

R? 02 =3 ¢2=12 o2=45
“C” 1.00 0.83 0.51
“vCm”  0.30 0.30 0.27

‘Ra,y"  1.00 0.75 0.52
“Ri,gm”  0.32 0.42 0.32

“AlC” 0.76 0.55 0.32

Table : Proportion of R? from “true” higher than all others (except
“full”)



Conclusions

¢ For identifying model fit in models differing in fixed effects
only, “VCmu", “R3,gmu”, and “RZ,.," performed better than

uvcn and uRZ ”.

aug
e On the other hand, to identify model fit with respect to

random effects, “VC” and “Razug” had higher proportion of
correct picks;

e In models in which XB coincides between models, R2 with
Y = Xﬁ instead of Y = Xﬁ + Z4 does not differentiate
models.



Still a lot has to be investigated ...



Still a lot has to be investigated ...

Thank you for your attention!



