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Fixed effects Gauss-Markov model

“Full model”:

(Y ,Xβ, σ2I),

• X = (1,X1): known n × (p + 1)-model matrix;

• β = (β0,β
′

1)
′ unknown fixed p + 1-vector;

• σ2 > 0: unknown variance parameter;

Ŷ = X̂β = PX Y : orthogonal projection of Y onto R(X );

σ̂2 =
1

n − r(X )
(Y − X̂β)′(Y − X̂β).
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Fixed effects Gauss-Markov model

“Null model” – intercept only model:

(Y , β01, σ2I),

Ŷ0 = β̂01 = Ȳ 1;

σ̂2
0 =

1
n − 1

(Y − Ȳ 1)′(Y − Ȳ 1).
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R2 in Gauss-Markov model

...measure of proportion of variability explained by the model;

...measure of goodness of fit;

R2 = 1 −
(Y − Ŷ )′(Y − Ŷ )

(Y − Ŷ0)′(Y − Ŷ0)
.

Extension for

cov (Y ) = σ2V , V known p.d. matrix,

transform Y → V−1/2Y the rest follows...
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Linear fixed effects model

General form of R2:

R2 = 1 −
(Y − Ŷ )′V−1(Y − Ŷ )

(Y − Ŷ0)′V−1(Y − Ŷ0)
= 1 −

(Y − Ŷ )′V−1(Y − Ŷ )/n

(Y − Ŷ0)′V−1(Y − Ŷ0)/n
.
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(Y − Ŷ0)′V−1(Y − Ŷ0)
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Linear fixed effects model

General form of R2:

R2 = 1 −
(Y − Ŷ )′V−1(Y − Ŷ )

(Y − Ŷ0)′V−1(Y − Ŷ0)
= 1 −

(Y − Ŷ )′V−1(Y − Ŷ )/n

(Y − Ŷ0)′V−1(Y − Ŷ0)/n
.

R2
adj = 1 −

(Y − Ŷ )′V−1(Y − Ŷ )/(n − r(X ))

(Y − Ŷ0)′V−1(Y − Ŷ0)/(n − 1)
.

Willett-Singer (1988), consider Euclidean distance:

R2
pseudo = 1 −

(Y − Ŷ )′(Y − Ŷ )

(Y − Ŷ0)′(Y − Ŷ0)
;
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Add:

Y ∼ Nn(Xβ, σ2V ),

If Fp is the F -statistic testing H0 : β1 = 0p,

R2 =
Fpp/(n − r(X ))

1 + Fpp/(n − r(X ))
.
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Add:

Y ∼ Nn(Xβ, σ2V ),

If Fp is the F -statistic testing H0 : β1 = 0p,

R2 =
Fpp/(n − r(X ))

1 + Fpp/(n − r(X ))
.

Alternatively,

R2 = 1 −

(
L0(β̂0, σ̂

2
0)

L(β̂, σ̂2)

)2/n

,

L(., ..) - denotes the likelihood under the full, and L0(., ..) under
the null model.
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Linear mixed model: “full” model

Desire to extend the definition of R2 using the same principle -
a measure of distance in the sample space;

– assess a model fit to data;

– express proportion of variability?
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Linear mixed model: “full” model

Desire to extend the definition of R2 using the same principle -
a measure of distance in the sample space;

– assess a model fit to data;

– express proportion of variability?

Notation:

N sampling units, ni observations on each, n =
∑N

i=1 ni ;

Yi = Xiβ + Ziγi + ǫi , i = 1, 2, . . . ,N;

(
γi

ǫi

)
∼ Nm+ni

((
0
0

)
,

(
Σγi (τγ) 0

0 Σǫi (τǫ)

))
,
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Combine all vectors stacking them one below the other,

combine the corresponding matrices appropriately:

Y , X , Z , γ, ǫ;

τ = (τ ′
γ
, τ ′

ǫ
)′;

Σ(τ) ≡ cov (Y ) = Diag {ZiΣγi (τ)Z
′

i +Σǫi (τ)}.
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R@ in mixed models

A lot of good suggestions...

• Snijders and Bosker (1994), express the proportion of
“modeled variance” as opposed to “explained”:

Σǫi (τǫ) = σ2Ini ;
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R@ in mixed models

A lot of good suggestions...

• Snijders and Bosker (1994), express the proportion of
“modeled variance” as opposed to “explained”:

Σǫi (τǫ) = σ2Ini ;

Null model:

Yi = β01ni + γi01ni + ǫi , i = 1, . . . ,N;

cov 0(Yi) = τγi01ni 1
′

ni
+ σ2Ini .

... R2 defined, based on comparison of

ˆcov (Yi −Xiβ) in full model and ˆcov (Yi −β01ni ) in null model,

averaged across observations on the sampling unit.
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• Vonesh and Chinchilli (1997):

R2
VC = 1 −

(Y − Ŷ )′V−1(Y − Ŷ )

(Y − Ŷ0)′V−1(Y − Ŷ0)
,

Ŷ0: predicted Y under null model;
V some p.d. matrix;
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• Vonesh and Chinchilli (1997):

R2
VC = 1 −

(Y − Ŷ )′V−1(Y − Ŷ )

(Y − Ŷ0)′V−1(Y − Ŷ0)
,

Ŷ0: predicted Y under null model;
V some p.d. matrix;

• What to choose for V?
• V = I?
• V = Σ(τ̂)?
• V = Diag {Σǫi (τ̂ǫ)}?

• What to use for Ŷ ?
• “Conditional model”: Ŷ = X̂β + Z γ̂;
• “Marginal model”: Ŷ = X̂β.

• Null model:

Y = β01 + ǫ;

• If V = Diag {Σǫi (τ̂ǫ)}, R2
VC identical to R2 suggested by

Kramer (2005).
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• Xu (2003): proportional reduction in conditional residual
variance explained by the model;

Diag {Σǫi (τǫ)} = σ2I;

Null models considered
• Y = β01 + ǫ – the same as Vonesh and Chinchilli (1997);
• Y = β01 + Diag {1ni}Col {γi0}+ ǫ – the same as Snijders

and Bosker (1994);

Compares conditional variances
var (Yij |X ,γ) and var (Yij) (or var (Yij |γi0)).



12/30

• Edwards et al. (2008): Null model differs from full only in
fixed effects:

Y = β01 + Zγ + ǫ,

Let C = (0p, Ip), H0 : Cβ ≡ β1 = 0p.

Fp =
1
p

Cβ̂′

[
ˆcov Cβ̂

]
−1

Cβ̂,

the basis for the approximate F -test of H0;
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• Edwards et al. (2008): Null model differs from full only in
fixed effects:

Y = β01 + Zγ + ǫ,

Let C = (0p, Ip), H0 : Cβ ≡ β1 = 0p.

Fp =
1
p

Cβ̂′

[
ˆcov Cβ̂

]
−1

Cβ̂,

the basis for the approximate F -test of H0; Extension from
linear fixed effects model R2:

R2
E =

p/νFp

1 + p/νFp
.

ν: denominator degrees of freedom (Satterthwaite,
Kenward-Roger, etc.).



13/30

Property:

0 ≤ R2
E ≤ 1;

But - ν depends on estimated variance components.

Several others:

• Gelman and Pardoe (2006): Bayesian R2;

• Magee (1990): R2 based on log-likelihood, null model
contains only fixed intercept;

• Zheng (2000) for generalized linear models based on
proportions of deviances;

• etc.
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Augmented linear model

Hodges (1998), Vaida and Blanchard (2005), Arendacká and
Puntanen (2014):

Assume:

• Σǫi (τǫ) = σ2Ini , i = 1, . . . ,N;

• Σγi (τγ) = σ2Gi , Gi known p.d. matrix.
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Augmented linear model

Hodges (1998), Vaida and Blanchard (2005), Arendacká and
Puntanen (2014):

Assume:

• Σǫi (τǫ) = σ2Ini , i = 1, . . . ,N;

• Σγi (τγ) = σ2Gi , Gi known p.d. matrix.

Augmented model:

Y ∗ ≡

(
Y
0

)
=

(
X Z
0 −INm

)(
β

γ

)
+

(
ǫ

γ

)
,
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cov

(
ǫ

γ

)
= σ2

(
In 0
0 G

)
;

diag {Gi} = G = (∆′∆)−1.

Let

Γ =

(
In 0
0 ∆

)
.
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R2 in augmented model

Following Hodges (1998), Vaida and Blanchard (2005),
Arendacká and Puntanen (2014):

ΓY ∗ = Y ∗ =

(
X Z
0 −∆

)(
β

γ

)
+

(
ǫ

∆γ

)
,

cov

(
ǫ

∆γ

)
= σ2I.

LS solutions result in X β̂ (BLUE) and Z γ̂ (BLUP) (in the sense
of Harville (1977));

Null model:

Y ∗ =

(
1 0 0
0 0 0

)(
β

γ

)
+ ǫ∗, cov (ǫ∗) = σ2I;
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Define R2
aug as in a fixed effects model:

R2
aug = 1 −

(Y − X β̂ − Z γ̂)′(Y − X β̂ − Z γ̂) + γ̂ ′G−1γ̂

(Y − Ȳ 1)′(Y − Ȳ 1)
.
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Properties

• Under normality, with estimated G coincides with R2 in
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• 0 ≤ R2
aug ≤ 1 ;

• R2
aug is increasing when adding columns into X or Z

matrices;



17/30

Define R2
aug as in a fixed effects model:

R2
aug = 1 −

(Y − X β̂ − Z γ̂)′(Y − X β̂ − Z γ̂) + γ̂ ′G−1γ̂

(Y − Ȳ 1)′(Y − Ȳ 1)
.

Properties

• Under normality, with estimated G coincides with R2 in
Zheng (2000);

• 0 ≤ R2
aug ≤ 1 ;

• R2
aug is increasing when adding columns into X or Z

matrices;

Question: is R2
aug for estimated G also monotone set function?
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Fixed effects only

Alternative choice of null model:

Y ∗ =

(
1 0 Z
0 0 −∆

)(
β

γ

)
+ ǫ∗, cov (ǫ∗) = σ2I.

Suggested:

R2
aug2 = 1 −

(Y − X β̂ − Z γ̂)′(Y − X β̂ − Z γ̂) + γ̂ ′G−1γ̂

(Y − 1β̂0 − Z γ̂0)′(Y − 1β̂0 − Z γ̂0) + γ̂ ′

0G−1γ̂0
.

• Monotone set function in X ;
• 0 ≤ R2

aug2 ≤ 1;
• Takes into consideration dependencies between

observations also in the null model;
• For unknown G, we recommend the estimated

variance-covariance components from the full model in
both, numerator and denominator.
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Model fit assessment – Small simulation study

Orelien and Edwards (2008): compare model fit for fixed effects
only - only models and sub-models compared;



19/30

Model fit assessment – Small simulation study

Orelien and Edwards (2008): compare model fit for fixed effects
only - only models and sub-models compared;

Goal 1:

• Investigate monotonicity of R2 with increasing number of
fixed effects;

• Among models with 2 fixed effect variables, identify the
“true” model (with the highest R2);

Setting:

Data generated from:

• balanced design with respect to sample 2 groups (“trt”);

• unequal number of time points per sampling unit (from 2 up
to 8);

• random “intercept” and “time” coefficients model;

• “trt” additional dichotomous fixed effects variable;
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• n = 64, σ2 ∈ {3, 6, 9, 12, 15, 45};

• G matrix unstructured;

• REML used to estimate G and σ2 in full and null models;

• 10000 simulations for different configurations;

• Important: in all 10000 cases convergence was achieved
and the estimated G was n.n.d.

• SAS version 9.4 used for all calculations.
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Variables unrelated to the response: “genr” (dichotomous), x5,
and x6 (transformed uniform);

Compared models:

Differ in fixed effects only:

• “full”: time, trt, genr, x5, x6

• “true”: time, trt;

• “genr”: time, genr;

• “x5”: time, x5;

• “x6”: time, x6;

• “reduced”: time;
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Compared R2s:

• “VC”: Vonesh and Chinchilli (1997), Ŷ = X̂β + Z γ̂;

• “VCm”: the same but Ŷ = X̂β;

• “R2
aug”: (same as Zheng (2000)): Ŷ = X̂β + Z γ̂;

• “R2
augm”: Ŷ = X̂β;

• “R2
aug2”;

• “R2
aug2m”;



23/30

Results – fixed effects – monotonicity

R2 σ2 = 3 σ2 = 12 σ2 = 45

“VC” 0.003 0.12 0.19
“VCm” 0.86 0.92 0.91
“R2

aug” 0.50 0.64 0.59
“R2

augm” 0.87 0.93 0.94
“R2

aug2” 0.40 0.34 0.40
“R2

aug2m” 0.76 0.59 0.63

Table : Proportion of R2 from “full” higher than all others
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Results – fixed effects – true model identification

Correct model: proportion of times the R2 for the correct model
is the highest among all (except full);

R2 σ2 = 3 σ2 = 12 σ2 = 45

“VC” 0.002 0.11 0.34
“VCm” 1.00 1.00 1.00
“R2

aug” 0.48 0.61 0.69
“R2

augm” 1.00 1.00 1.00
“R2

aug2” 0.85 0.67 0.72
“R2

aug2m” 1.00 0.90 0.90

Table : Proportion of R2 from “true” higher than all others (except
“full”)
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Goal 2:

• Among models with varying random effects identify the
“true” model (with the highest R2);

Data generated from:

• The same G; balanced treatment groups, generated
unequal time points as above;

• “intercept” and “time” fixed effects,

• random coefficients “intercept” and of “time”;
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Compared models:

Differ in random effects only:

• “true”: int, t ;

• “int”: int;

• “t2”: int, t2;

Compared R2s:

• “VC”: Ŷ = X̂β + Z γ̂;

• “VCm”: Ŷ = X̂β;

• “R2
aug”: (same as Zheng (2000)): Ŷ = X̂β + Z γ̂;

• “R2
augm”: Ŷ = X̂β;
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Results – random effects – true model identification

R2 σ2 = 3 σ2 = 12 σ2 = 45

“VC” 1.00 0.83 0.51
“VCm” 0.30 0.30 0.27
“R2

aug” 1.00 0.75 0.52
“R2

augm” 0.32 0.42 0.32

Table : Proportion of R2 from “true” higher than all others (except
“full”)
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Results – random effects – true model identification

R2 σ2 = 3 σ2 = 12 σ2 = 45

“VC” 1.00 0.83 0.51
“VCm” 0.30 0.30 0.27
“R2

aug” 1.00 0.75 0.52
“R2

augm” 0.32 0.42 0.32
“AIC” 0.76 0.55 0.32

Table : Proportion of R2 from “true” higher than all others (except
“full”)
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Conclusions

• For identifying model fit in models differing in fixed effects
only, “VCmu”, “R2

augmu”, and “R2
aug2” performed better than

“VC” and “R2
aug”;

• On the other hand, to identify model fit with respect to
random effects, “VC” and “R2

aug” had higher proportion of
correct picks;

• In models in which X̂β coincides between models, R2 with
Ŷ = X̂β instead of Ŷ = X̂β + Z γ̂ does not differentiate
models.
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Still a lot has to be investigated ...
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Still a lot has to be investigated ...

Thank you for your attention!


