Generalized R² in Linear Mixed Models

Julia Volaufova, Lynn R. LaMotte, and Ondrej Blaha

Biostatistics Program LSU Health New Orleans, Louisiana, USA

LinStat 2014 Linköping, Sweden, August 24 – 28, 2014 "Full model":

 $(\mathbf{Y}, \mathbf{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}),$

- $X = (1, X_1)$: known $n \times (p + 1)$ -model matrix;
- $\beta = (\beta_0, \beta'_1)'$ unknown fixed p + 1-vector;
- $\sigma^2 > 0$: unknown variance parameter;
- $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta} = P_{\mathbf{X}}\mathbf{Y}$: orthogonal projection of \mathbf{Y} onto $R(\mathbf{X})$;

$$\hat{\sigma^2} = \frac{1}{n - r(\boldsymbol{X})} (\boldsymbol{Y} - \widehat{\boldsymbol{X}\beta})' (\boldsymbol{Y} - \widehat{\boldsymbol{X}\beta}).$$

Fixed effects Gauss-Markov model

"Null model" - intercept only model:

 $(\mathbf{Y}, \beta_0 \mathbf{1}, \sigma^2 \mathbf{I}),$ $\hat{\mathbf{Y}}_0 = \hat{\beta}_0 \mathbf{1} = \bar{\mathbf{Y}} \mathbf{1};$ $\hat{\sigma^2}_0 = \frac{1}{n-1} (\mathbf{Y} - \bar{\mathbf{Y}} \mathbf{1})' (\mathbf{Y} - \bar{\mathbf{Y}} \mathbf{1}).$

R² in Gauss-Markov model

...measure of proportion of variability explained by the model; ...measure of goodness of fit;

$$\mathcal{R}^2 = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})'(\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_0)'(\mathbf{Y} - \hat{\mathbf{Y}}_0)}$$

Extension for

 $\cos(\mathbf{Y}) = \sigma^2 \mathbf{V}, \mathbf{V}$ known p.d. matrix,

transform $\mathbf{Y} \rightarrow \mathbf{V}^{-1/2} \, \mathbf{Y}$ the rest follows...

General form of R^2 :

$$R^{2} = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_{0})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_{0})} = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})/n}{(\mathbf{Y} - \hat{\mathbf{Y}}_{0})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_{0})/n}$$

General form of R^2 :

$$R^{2} = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_{0})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_{0})} = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})/n}{(\mathbf{Y} - \hat{\mathbf{Y}}_{0})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_{0})/n}$$

$$R_{adj}^2 = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})/(n - r(\mathbf{X}))}{(\mathbf{Y} - \hat{\mathbf{Y}}_0)' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_0)/(n - 1)}.$$

General form of R²:

$$R^{2} = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_{0})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_{0})} = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})/n}{(\mathbf{Y} - \hat{\mathbf{Y}}_{0})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_{0})/n}$$

$$R_{adj}^2 = 1 - rac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})/(n - r(\mathbf{X}))}{(\mathbf{Y} - \hat{\mathbf{Y}}_0)' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_0)/(n - 1)}.$$

Willett-Singer (1988), consider Euclidean distance:

$$R_{pseudo}^2 = 1 - rac{(\mathbf{Y} - \hat{\mathbf{Y}})'(\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_0)'(\mathbf{Y} - \hat{\mathbf{Y}}_0)};$$

Add:

 $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{V}),$

If F_{ρ} is the *F*-statistic testing H_0 : $\beta_1 = 0_{\rho}$,

 $R^{2} = \frac{F_{\rho}\rho/(n-r(\boldsymbol{X}))}{1+F_{\rho}\rho/(n-r(\boldsymbol{X}))}.$

Add:

 $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{V}),$

If F_p is the *F*-statistic testing H_0 : $\beta_1 = 0_p$,

$$R^2 = \frac{F_{\rho}\rho/(n-r(\boldsymbol{X}))}{1+F_{\rho}\rho/(n-r(\boldsymbol{X}))}.$$

Alternatively,

$$R^2 = 1 - \left(rac{L_0(\hateta_0, \hat\sigma_0^2)}{L(\hateta, \hat\sigma^2)}
ight)^{2/n},$$

L(.,..) - denotes the likelihood under the full, and $L_0(.,..)$ under the null model.

Desire to extend the definition of R^2 using the same principle - a measure of distance in the sample space;

- assess a model fit to data;
- express proportion of variability?

Desire to extend the definition of R^2 using the same principle - a measure of distance in the sample space;

- assess a model fit to data;
- express proportion of variability?

Notation:

Desire to extend the definition of R^2 using the same principle - a measure of distance in the sample space;

- assess a model fit to data;
- express proportion of variability?

Notation:

N sampling units, n_i observations on each, $n = \sum_{i=1}^{N} n_i$;

$$\begin{aligned} \mathbf{Y}_{i} &= \mathbf{X}_{i}\boldsymbol{\beta} + \mathbf{Z}_{i}\boldsymbol{\gamma}_{i} + \boldsymbol{\epsilon}_{i}, i = 1, 2, \dots, N; \\ \begin{pmatrix} \boldsymbol{\gamma}_{i} \\ \boldsymbol{\epsilon}_{i} \end{pmatrix} &\sim N_{m+n_{i}} \left(\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{\boldsymbol{\gamma}_{i}}(\tau_{\boldsymbol{\gamma}}) & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}(\tau_{\boldsymbol{\epsilon}}) \end{pmatrix} \right), \end{aligned}$$

Combine all vectors stacking them one below the other, combine the corresponding matrices appropriately:

.

$$\begin{aligned} \mathbf{Y}, \quad \mathbf{X}, \quad \mathbf{Z}, \quad \boldsymbol{\gamma}, \quad \boldsymbol{\epsilon}; \\ \tau &= (\tau_{\boldsymbol{\gamma}}', \tau_{\boldsymbol{\epsilon}}')'; \\ \mathbf{\Sigma}(\tau) &\equiv \operatorname{cov}\left(\mathbf{Y}\right) = \operatorname{Diag}\left\{\mathbf{Z}_{i} \boldsymbol{\Sigma}_{\boldsymbol{\gamma}_{i}}(\tau) \mathbf{Z}_{i}' + \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}(\tau)\right\} \end{aligned}$$

$R^{@}$ in mixed models

A lot of good suggestions...

• Snijders and Bosker (1994), express the proportion of "modeled variance" as opposed to "explained":

 $\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_i}(\tau_{\boldsymbol{\epsilon}}) = \sigma^2 \boldsymbol{I}_{\boldsymbol{n}_i};$

$R^{@}$ in mixed models

A lot of good suggestions...

• Snijders and Bosker (1994), express the proportion of "modeled variance" as opposed to "explained":

$$\Sigma_{\epsilon_i}(\tau_{\epsilon}) = \sigma^2 I_{n_i};$$

Null model:

$$\mathbf{Y}_i = \beta_0 \mathbf{1}_{n_i} + \gamma_{i0} \mathbf{1}_{n_i} + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, N;$$

$R^{@}$ in mixed models

A lot of good suggestions...

• Snijders and Bosker (1994), express the proportion of "modeled variance" as opposed to "explained":

$$\Sigma_{\epsilon_i}(\tau_{\epsilon}) = \sigma^2 I_{n_i};$$

Null model:

$$\mathbf{Y}_i = \beta_0 \mathbf{1}_{n_i} + \gamma_{i0} \mathbf{1}_{n_i} + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, N;$$

$$\operatorname{cov}_{0}(\mathbf{Y}_{i}) = \tau_{\gamma_{i0}} \mathbf{1}_{n_{i}} \mathbf{1}_{n_{i}}' + \sigma^{2} I_{n_{i}}.$$

R[®] in mixed models

A lot of good suggestions...

• Snijders and Bosker (1994), express the proportion of "modeled variance" as opposed to "explained":

$$\Sigma_{\epsilon_i}(\tau_{\epsilon}) = \sigma^2 I_{n_i};$$

Null model:

$$\mathbf{Y}_{i} = \beta_{0} \mathbf{1}_{n_{i}} + \gamma_{i0} \mathbf{1}_{n_{i}} + \boldsymbol{\epsilon}_{i}, \quad i = 1, \dots, N;$$

$$\operatorname{cov}_{0}(\mathbf{Y}_{i}) = \tau_{\gamma_{i0}} \mathbf{1}_{n_{i}} \mathbf{1}_{n_{i}}' + \sigma^{2} I_{n_{i}}.$$

... R² defined, based on comparison of

 $\hat{cov}(\mathbf{Y}_i - \mathbf{X}_i \boldsymbol{\beta})$ in full model and $\hat{cov}(\mathbf{Y}_i - \beta_0 \mathbf{1}_{n_i})$ in null model, averaged across observations on the sampling unit.

$$R_{VC}^2 = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_0)' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_0)},$$

 $\hat{\mathbf{Y}}_0$: predicted \mathbf{Y} under null model; \mathbf{V} some p.d. matrix;

$$R_{VC}^2 = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_0)' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_0)},$$

 $\hat{\mathbf{Y}}_0$: predicted \mathbf{Y} under null model; \mathbf{V} some p.d. matrix;

• What to choose for V?

•
$$V = \Sigma(\hat{\tau})$$
?

•
$$\boldsymbol{V} = \text{Diag} \{ \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_i}(\hat{\tau}_{\boldsymbol{\epsilon}}) \}$$
?

$$R_{VC}^2 = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_0)' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_0)},$$

 $\hat{\mathbf{Y}}_0$: predicted \mathbf{Y} under null model; \mathbf{V} some p.d. matrix;

- What to choose for V?
 - V = I?
 - $\boldsymbol{V} = \boldsymbol{\Sigma}(\hat{\tau})$?
 - $\boldsymbol{V} = \text{Diag} \{ \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_i}(\hat{\tau}_{\boldsymbol{\epsilon}}) \}$?
- What to use for Ŷ?
 - "Conditional model": $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta} + \mathbf{Z}\hat{\gamma};$
 - "Marginal model": $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta}$.

$$R_{VC}^2 = 1 - \frac{(\mathbf{Y} - \hat{\mathbf{Y}})' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}})}{(\mathbf{Y} - \hat{\mathbf{Y}}_0)' \mathbf{V}^{-1} (\mathbf{Y} - \hat{\mathbf{Y}}_0)},$$

 $\hat{\mathbf{Y}}_0$: predicted \mathbf{Y} under null model; \mathbf{V} some p.d. matrix;

- What to choose for V?
 - V = I?
 - $\boldsymbol{V} = \boldsymbol{\Sigma}(\hat{\tau})$?
 - $\boldsymbol{V} = \text{Diag} \{ \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_i}(\hat{\tau}_{\boldsymbol{\epsilon}}) \}$?
- What to use for **Ŷ**?
 - "Conditional model": $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta} + \mathbf{Z}\hat{\gamma};$
 - "Marginal model": $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta}$.
- Null model:

 $\mathbf{Y} = \beta_0 \mathbf{1} + \boldsymbol{\epsilon};$

 If V = Diag {Σ_{εi}(τ̂_ε)}, R²_{VC} identical to R² suggested by Kramer (2005). • Xu (2003): proportional reduction in conditional residual variance explained by the model;

Diag { $\Sigma_{\epsilon_i}(\tau_{\epsilon})$ } = $\sigma^2 I$;

Null models considered

- $\mathbf{Y} = \beta_0 \mathbf{1} + \boldsymbol{\epsilon}$ the same as Vonesh and Chinchilli (1997);
- Y = β₀1 + Diag {1_{ni}}Col {γ_{i0}} + ϵ − the same as Snijders and Bosker (1994);

Compares conditional variances $var(Y_{ij}|\boldsymbol{X}, \boldsymbol{\gamma})$ and $var(Y_{ij})$ (or $var(Y_{ij}|\gamma_{i0})$).

 Edwards et al. (2008): Null model differs from full only in fixed effects:

 $\mathbf{Y} = \beta_0 \mathbf{1} + \mathbf{Z} \boldsymbol{\gamma} + \boldsymbol{\epsilon},$

Let
$$C = (0_p, I_p), \quad H_0 : C\beta \equiv \beta_1 = 0_p.$$

 $F_p = \frac{1}{p} C \hat{\beta}' \left[\hat{cov} C \hat{\beta} \right]^{-1} C \hat{\beta},$

the basis for the approximate F-test of H_0 ;

• Edwards et al. (2008): Null model differs from full only in fixed effects:

 $\mathbf{Y} = \beta_0 \mathbf{1} + \mathbf{Z} \boldsymbol{\gamma} + \boldsymbol{\epsilon},$

Let
$$C = (0_p, I_p), \quad H_0 : C\beta \equiv \beta_1 = 0_p,$$

 $F_p = \frac{1}{p} C \hat{\beta}' \left[\hat{cov} C \hat{\beta} \right]^{-1} C \hat{\beta},$

the basis for the approximate *F*-test of H_0 ; Extension from linear fixed effects model R^2 :

$$R_E^2 = \frac{\rho/\nu F_p}{1 + \rho/\nu F_p}.$$

 ν : denominator degrees of freedom (Satterthwaite, Kenward-Roger, etc.).

Property: $D \leq D^2 \leq 1$

 $0 \leq R_E^2 \leq 1;$

But - ν depends on estimated variance components.

Several others:

- Gelman and Pardoe (2006): Bayesian R²;
- Magee (1990): R² based on log-likelihood, null model contains only fixed intercept;
- Zheng (2000) for generalized linear models based on proportions of deviances;
- etc.

Hodges (1998), Vaida and Blanchard (2005), Arendacká and Puntanen (2014):

Assume:

•
$$\Sigma_{\epsilon_i}(\tau_{\epsilon}) = \sigma^2 I_{n_i}, i = 1, \dots, N;$$

•
$$\Sigma_{\gamma_i}(\tau_{\gamma}) = \sigma^2 \mathbf{G}_i$$
, \mathbf{G}_i known p.d. matrix.

Hodges (1998), Vaida and Blanchard (2005), Arendacká and Puntanen (2014):

Assume:

•
$$\Sigma_{\epsilon_i}(\tau_{\epsilon}) = \sigma^2 I_{n_i}, i = 1, \dots, N;$$

•
$$\Sigma_{\gamma_i}(\tau_{\gamma}) = \sigma^2 \mathbf{G}_i$$
, \mathbf{G}_i known p.d. matrix.

Augmented model:

$$\mathbf{Y}^* \equiv \left(egin{array}{c} \mathbf{Y} \ 0 \end{array}
ight) = \left(egin{array}{c} \mathbf{X} & \mathbf{Z} \ 0 & -I_{Nm} \end{array}
ight) \left(egin{array}{c} eta \ \gamma \end{array}
ight) + \left(egin{array}{c} \epsilon \ \gamma \end{array}
ight),$$

$$\operatorname{cov}\begin{pmatrix}\epsilon\\\gamma\end{pmatrix} = \sigma^2\begin{pmatrix}I_n & 0\\ 0 & \boldsymbol{G}\end{pmatrix};$$

diag { \boldsymbol{G}_i } = $\boldsymbol{G} = (\Delta'\Delta)^{-1}.$
Let

$$\Gamma = \left(\begin{array}{cc} I_n & 0\\ 0 & \Delta \end{array}\right).$$

Following Hodges (1998), Vaida and Blanchard (2005), Arendacká and Puntanen (2014):

$$\Gamma \mathbf{Y}^* = \mathbf{Y}^* = \begin{pmatrix} \mathbf{X} & \mathbf{Z} \\ 0 & -\Delta \end{pmatrix} \begin{pmatrix} \beta \\ \gamma \end{pmatrix} + \begin{pmatrix} \epsilon \\ \Delta \gamma \end{pmatrix},$$

$$\operatorname{cov} \begin{pmatrix} \epsilon \\ \Delta \gamma \end{pmatrix} = \sigma^2 I.$$

LS solutions result in $X\hat{\beta}$ (BLUE) and $Z\hat{\gamma}$ (BLUP) (in the sense of Harville (1977)); Null model:

$$\mathbf{Y}^* = \left(egin{array}{ccc} \mathbf{1} & 0 & 0 \ 0 & 0 & 0 \end{array}
ight) \left(egin{array}{ccc} eta \ \gamma \end{array}
ight) + m{\epsilon}^*, \quad \mathrm{cov}\left(m{\epsilon}^*
ight) = \sigma^2 I;$$

Define R_{aug}^2 as in a fixed effects model:

$$R_{aug}^2 = 1 - \frac{(\mathbf{Y} - \mathbf{X}\hat{\beta} - \mathbf{Z}\hat{\gamma})'(\mathbf{Y} - \mathbf{X}\hat{\beta} - \mathbf{Z}\hat{\gamma}) + \hat{\gamma}'\mathbf{G}^{-1}\hat{\gamma}}{(\mathbf{Y} - \bar{\mathbf{Y}}\mathbf{1})'(\mathbf{Y} - \bar{\mathbf{Y}}\mathbf{1})}.$$

Define R_{aug}^2 as in a fixed effects model:

$$R_{aug}^2 = 1 - \frac{(\mathbf{Y} - \mathbf{X}\hat{\beta} - \mathbf{Z}\hat{\gamma})'(\mathbf{Y} - \mathbf{X}\hat{\beta} - \mathbf{Z}\hat{\gamma}) + \hat{\gamma}'\mathbf{G}^{-1}\hat{\gamma}}{(\mathbf{Y} - \bar{\mathbf{Y}}\mathbf{1})'(\mathbf{Y} - \bar{\mathbf{Y}}\mathbf{1})}.$$

Properties

- Under normality, with estimated *G* coincides with *R*² in Zheng (2000);
- $0 \leq R_{aug}^2 \leq 1$;
- *R*²_{aug} is increasing when adding columns into X or Z matrices;

Define R_{aug}^2 as in a fixed effects model:

$$R_{aug}^2 = 1 - \frac{(\mathbf{Y} - \mathbf{X}\hat{\beta} - \mathbf{Z}\hat{\gamma})'(\mathbf{Y} - \mathbf{X}\hat{\beta} - \mathbf{Z}\hat{\gamma}) + \hat{\gamma}'\mathbf{G}^{-1}\hat{\gamma}}{(\mathbf{Y} - \bar{\mathbf{Y}}\mathbf{1})'(\mathbf{Y} - \bar{\mathbf{Y}}\mathbf{1})}.$$

Properties

- Under normality, with estimated *G* coincides with *R*² in Zheng (2000);
- $0 \leq R_{aug}^2 \leq 1$;
- *R*²_{aug} is increasing when adding columns into X or Z matrices;

Question: is R_{aug}^2 for estimated G also monotone set function?

Fixed effects only

Alternative choice of null model:

$$\mathsf{Y}^* = \left(\begin{array}{cc} \mathsf{1} & 0 & Z \\ 0 & 0 & -\Delta \end{array}\right) \left(\begin{array}{c} \beta \\ \gamma \end{array}\right) + \epsilon^*, \quad \operatorname{cov}\left(\epsilon^*\right) = \sigma^2 \mathsf{I}.$$

Suggested:

$$R_{\text{aug2}}^2 = 1 - \frac{(\mathbf{Y} - \mathbf{X}\hat{\beta} - \mathbf{Z}\hat{\gamma})'(\mathbf{Y} - \mathbf{X}\hat{\beta} - \mathbf{Z}\hat{\gamma}) + \hat{\gamma}'\mathbf{G}^{-1}\hat{\gamma}}{(\mathbf{Y} - \mathbf{1}\hat{\beta}_0 - \mathbf{Z}\hat{\gamma}_0)'(\mathbf{Y} - \mathbf{1}\hat{\beta}_0 - \mathbf{Z}\hat{\gamma}_0) + \hat{\gamma}_0'\mathbf{G}^{-1}\hat{\gamma}_0}.$$

- Monotone set function in X;
- $0 \le R_{aug2}^2 \le 1;$
- Takes into consideration dependencies between observations also in the null model;
- For unknown *G*, we recommend the estimated variance-covariance components from the full model in both, numerator and denominator.

Model fit assessment - Small simulation study

Orelien and Edwards (2008): compare model fit for fixed effects only - only models and sub-models compared;

Model fit assessment - Small simulation study

Orelien and Edwards (2008): compare model fit for fixed effects only - only models and sub-models compared;

- Goal 1:
 - Investigate monotonicity of *R*² with increasing number of fixed effects;
 - Among models with 2 fixed effect variables, identify the "true" model (with the highest *R*²);

Setting:

Data generated from:

- balanced design with respect to sample 2 groups ("trt");
- unequal number of time points per sampling unit (from 2 up to 8);
- random "intercept" and "time" coefficients model;
- "trt" additional dichotomous fixed effects variable;

- $n = 64, \sigma^2 \in \{3, 6, 9, 12, 15, 45\};$
- G matrix unstructured;
- REML used to estimate G and σ^2 in full and null models;
- 10000 simulations for different configurations;
- Important: in all 10000 cases convergence was achieved and the estimated *G* was n.n.d.
- SAS version 9.4 used for all calculations.

Variables unrelated to the response: "genr" (dichotomous), x_5 , and x_6 (transformed uniform);

Compared models:

Differ in fixed effects only:

- "full": time, trt, genr, x₅, x₆
- "true": time, trt;
- "genr": time, genr;
- "x₅": time, x₅;
- "x₆": time, x₆;
- "reduced": time;

Compared R^2 s:

- "VC": Vonesh and Chinchilli (1997), $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta} + \mathbf{Z}\hat{\gamma};$
- "VCm": the same but $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta}$;
- " R_{aug}^2 ": (same as Zheng (2000)): $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta} + \mathbf{Z}\hat{\gamma};$

• "
$$R_{aug}^2$$
m": $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta};$

- "*R*²_{aug2}";
- "*R*²_{aug2}m";

Results - fixed effects - monotonicity

R^2	$\sigma^2 = 3$	$\sigma^{2} = 12$	$\sigma^{2} = 45$
"VC"	0.003	0.12	0.19
"VCm"	0.86	0.92	0.91
" R_{aug}^2 "	0.50	0.64	0.59
" <i>R</i> ² _{aug} m"	0.87	0.93	0.94
"R ² ""	0.40	0.34	0.40
" <i>R</i> ² _{aug2} m"	0.76	0.59	0.63

Table : Proportion of R^2 from "full" higher than all others

Correct model: proportion of times the R^2 for the correct model is the highest among all (except full);

R^2	$\sigma^2 = 3$	$\sigma^{2} = 12$	$\sigma^2 = 45$
"VC"	0.002	0.11	0.34
"VCm"	1.00	1.00	1.00
" R_{aug}^2 "	0.48	0.61	0.69
" <i>R</i> ² _{aug} m"	1.00	1.00	1.00
"R ² aug2"	0.85	0.67	0.72
" R_{aug2}^2 m"	1.00	0.90	0.90

Table : Proportion of R^2 from "true" higher than all others (except "full")

Goal 2:

• Among models with varying random effects identify the "true" model (with the highest *R*²);

Data generated from:

- The same *G*; balanced treatment groups, generated unequal time points as above;
- "intercept" and "time" fixed effects,
- random coefficients "intercept" and of "time";

Compared models:

Differ in random effects only:

- "true": int, *t*;
- "int": int;
- "t2": int, t²;

Compared R²s:

- "VC": $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta} + \mathbf{Z}\hat{\gamma};$
- "VCm": $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta};$
- " R_{aug}^2 ": (same as Zheng (2000)): $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta} + \mathbf{Z}\hat{\gamma};$

• "
$$R_{aug}^2$$
m": $\hat{\mathbf{Y}} = \widehat{\mathbf{X}\beta};$

Results - random effects - true model identification

R^2	$\sigma^2 = 3$	$\sigma^{2} = 12$	$\sigma^2 = 45$
"VC"	1.00	0.83	0.51
"VCm"	0.30	0.30	0.27
"R ² aug"	1.00	0.75	0.52
" <i>R</i> ² _{aug} m"	0.32	0.42	0.32

Table : Proportion of R^2 from "true" higher than all others (except "full")

Results - random effects - true model identification

R^2	$\sigma^2 = 3$	$\sigma^{2} = 12$	$\sigma^{2} = 45$
"VC"	1.00	0.83	0.51
"VCm"	0.30	0.30	0.27
"R ² _{aug} "	1.00	0.75	0.52
" <i>R</i> ² _{aug} m"	0.32	0.42	0.32
"AIČ"	0.76	0.55	0.32

Table : Proportion of R^2 from "true" higher than all others (except "full")

Conclusions

- For identifying model fit in models differing in fixed effects only, "VCmu", "R²_{aug}mu", and "R²_{aug2}" performed better than "VC" and "R²_{aug}";
- On the other hand, to identify model fit with respect to random effects, "VC" and "R²_{aug}" had higher proportion of correct picks;
- In models in which *Xβ* coincides between models, *R*² with *Ŷ* = *Xβ* instead of *Ŷ* = *Xβ* + *Z* γ does not differentiate models.

Still a lot has to be investigated ...

Still a lot has to be investigated ...

Thank you for your attention!