Generalized R^{2} in Linear Mixed Models

Julia Volaufova, Lynn R. LaMotte, and Ondrej Blaha

Biostatistics Program
LSU Health
New Orleans, Louisiana, USA

LinStat 2014
Linköping, Sweden, August 24 - 28, 2014

Fixed effects Gauss-Markov model

"Full model":
$\left(\boldsymbol{Y}, \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$,

- $\boldsymbol{X}=\left(\mathbf{1}, \boldsymbol{X}_{1}\right)$: known $n \times(p+1)$-model matrix;
- $\boldsymbol{\beta}=\left(\beta_{0}, \boldsymbol{\beta}_{1}^{\prime}\right)^{\prime}$ unknown fixed $p+1$-vector;
- $\sigma^{2}>0$: unknown variance parameter;
$\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}=P_{\boldsymbol{X}} \boldsymbol{Y}$: orthogonal projection of \boldsymbol{Y} onto $R(\boldsymbol{X})$;
$\hat{\sigma^{2}}=\frac{1}{n-r(\boldsymbol{X})}(\boldsymbol{Y}-\widehat{\boldsymbol{X} \boldsymbol{\beta}})^{\prime}(\boldsymbol{Y}-\widehat{\boldsymbol{X} \boldsymbol{\beta}})$.

Fixed effects Gauss-Markov model

"Null model" - intercept only model:
$\left(\boldsymbol{Y}, \beta_{0} \mathbf{1}, \sigma^{2} /\right)$,
$\hat{\boldsymbol{Y}}_{0}=\hat{\beta}_{0} \mathbf{1}=\bar{Y}_{1} ;$
${\hat{\sigma^{2}}}_{0}=\frac{1}{n-1}(\boldsymbol{Y}-\bar{Y} \mathbf{1})^{\prime}(\boldsymbol{Y}-\bar{Y} \mathbf{1})$.

R^{2} in Gauss-Markov model

...measure of proportion of variability explained by the model;
...measure of goodness of fit;
$R^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}$.
Extension for
$\operatorname{cov}(\boldsymbol{Y})=\sigma^{2} \boldsymbol{V}, \boldsymbol{V}$ known p.d. matrix,
transform $\boldsymbol{Y} \rightarrow \boldsymbol{V}^{-1 / 2} \boldsymbol{Y}$ the rest follows...

Linear fixed effects model

General form of R^{2} :

$$
R^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}}) / n}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right) / n} .
$$

Linear fixed effects model

General form of R^{2} :

$$
\begin{aligned}
& R^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}}) / n}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right) / n} . \\
& R_{\mathrm{adj}}^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}}) /(n-r(\boldsymbol{X}))}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right) /(n-1)} .
\end{aligned}
$$

Linear fixed effects model

General form of R^{2} :

$$
R^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}}) / n}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right) / n}
$$

$$
R_{a d j}^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}}) /(n-r(\boldsymbol{X}))}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right) /(n-1)}
$$

Willett-Singer (1988), consider Euclidean distance:

$$
R_{\text {pseudo }}^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}
$$

Add:

$$
\boldsymbol{Y} \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{V}\right)
$$

If F_{p} is the F-statistic testing $H_{0}: \boldsymbol{\beta}_{1}=0_{p}$,

$$
R^{2}=\frac{F_{p} p /(n-r(\boldsymbol{X}))}{1+F_{p} p /(n-r(\boldsymbol{X}))}
$$

Add:
$\boldsymbol{Y} \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{V}\right)$,
If F_{p} is the F-statistic testing $H_{0}: \boldsymbol{\beta}_{1}=0_{p}$,
$R^{2}=\frac{F_{p} p /(n-r(\boldsymbol{X}))}{1+F_{p} p /(n-r(\boldsymbol{X}))}$.
Alternatively,
$R^{2}=1-\left(\frac{L_{0}\left(\hat{\beta}_{0}, \hat{\sigma}_{0}^{2}\right)}{L\left(\hat{\beta}, \hat{\sigma}^{2}\right)}\right)^{2 / n}$,
$L(., .$.$) - denotes the likelihood under the full, and L_{0}(., .$.$) under$ the null model.

Linear mixed model: "full" model

Desire to extend the definition of R^{2} using the same principle a measure of distance in the sample space;

- assess a model fit to data;
- express proportion of variability?

Linear mixed model: "full" model

Desire to extend the definition of R^{2} using the same principle a measure of distance in the sample space;

- assess a model fit to data;
- express proportion of variability?

Notation:

Linear mixed model: "full" model

Desire to extend the definition of R^{2} using the same principle a measure of distance in the sample space;

- assess a model fit to data;
- express proportion of variability?

Notation:

N sampling units, n_{i} observations on each, $n=\sum_{i=1}^{N} n_{i}$;

$$
\begin{aligned}
& \boldsymbol{Y}_{i}=\boldsymbol{X}_{i} \boldsymbol{\beta}+\boldsymbol{Z}_{i} \gamma_{i}+\epsilon_{i}, \boldsymbol{i}=1,2, \ldots, \boldsymbol{N} \\
& \binom{\gamma_{i}}{\epsilon_{i}} \sim N_{m+n_{i}}\left(\binom{0}{0},\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{\gamma_{i}}\left(\tau_{\gamma}\right) & 0 \\
0 & \boldsymbol{\Sigma}_{\epsilon_{i}}\left(\tau_{\epsilon}\right)
\end{array}\right)\right),
\end{aligned}
$$

Combine all vectors stacking them one below the other, combine the corresponding matrices appropriately:
$\boldsymbol{Y}, \quad \boldsymbol{X}, \quad \boldsymbol{Z}, \quad \gamma, \quad \boldsymbol{\epsilon}$;
$\tau=\left(\tau_{\gamma}^{\prime}, \tau_{\epsilon}^{\prime}\right)^{\prime} ;$
$\boldsymbol{\Sigma}(\tau) \equiv \operatorname{cov}(\boldsymbol{Y})=\operatorname{Diag}\left\{\boldsymbol{Z}_{i} \boldsymbol{\Sigma}_{\boldsymbol{\gamma}_{i}}(\tau) \boldsymbol{Z}_{i}^{\prime}+\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}(\tau)\right\}$.

$R^{@}$ in mixed models

A lot of good suggestions...

- Snijders and Bosker (1994), express the proportion of "modeled variance" as opposed to "explained":

$$
\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\tau_{\boldsymbol{\epsilon}}\right)=\sigma^{2} I_{n_{i}} ;
$$

$R^{@}$ in mixed models

A lot of good suggestions...

- Snijders and Bosker (1994), express the proportion of "modeled variance" as opposed to "explained":

$$
\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\tau_{\boldsymbol{\epsilon}}\right)=\sigma^{2} I_{n_{i}}
$$

Null model:

$$
\boldsymbol{Y}_{i}=\beta_{0} \mathbf{1}_{n_{i}}+\gamma_{i 0} \mathbf{1}_{n_{i}}+\boldsymbol{\epsilon}_{i}, \quad i=1, \ldots, N
$$

R^{\circledR} in mixed models

A lot of good suggestions...

- Snijders and Bosker (1994), express the proportion of "modeled variance" as opposed to "explained":

$$
\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\tau_{\epsilon}\right)=\sigma^{2} I_{n_{i}}
$$

Null model:

$$
\begin{aligned}
& \boldsymbol{Y}_{i}=\beta_{0} \mathbf{1}_{n_{i}}+\gamma_{i 0} \mathbf{1}_{n_{i}}+\boldsymbol{\epsilon}_{i}, \quad i=1, \ldots, N ; \\
& \operatorname{cov}_{0}\left(\boldsymbol{Y}_{i}\right)=\tau_{\gamma_{i 0}} \mathbf{1}_{n_{i}} \mathbf{1}_{n_{i}}^{\prime}+\sigma^{2} I_{n_{i}} .
\end{aligned}
$$

R^{\circledR} in mixed models

A lot of good suggestions...

- Snijders and Bosker (1994), express the proportion of "modeled variance" as opposed to "explained":

$$
\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\tau_{\epsilon}\right)=\sigma^{2} I_{n_{i}}
$$

Null model:

$$
\boldsymbol{Y}_{i}=\beta_{0} \mathbf{1}_{n_{i}}+\gamma_{i 0} \mathbf{1}_{n_{i}}+\boldsymbol{\epsilon}_{i}, \quad i=1, \ldots, N
$$

$$
\operatorname{cov}_{0}\left(\boldsymbol{Y}_{i}\right)=\tau_{\gamma_{i 0}} \mathbf{1}_{n_{i}} \mathbf{1}_{n_{i}}^{\prime}+\sigma^{2} I_{n_{i}}
$$

... R^{2} defined, based on comparison of
côv $\left(\boldsymbol{Y}_{i}-\boldsymbol{X}_{i} \boldsymbol{\beta}\right)$ in full model and côv $\left(\boldsymbol{Y}_{i}-\beta_{0} \mathbf{1}_{n_{i}}\right)$ in null model,
averaged across observations on the sampling unit.

- Vonesh and Chinchilli (1997):

$$
R_{V C}^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}
$$

$\hat{\boldsymbol{Y}}_{0}$: predicted \boldsymbol{Y} under null model; \boldsymbol{V} some p.d. matrix;

- Vonesh and Chinchilli (1997):

$$
R_{V C}^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}
$$

$\hat{\boldsymbol{Y}}_{0}$: predicted \boldsymbol{Y} under null model; \boldsymbol{V} some p.d. matrix;

- What to choose for \boldsymbol{V} ?
- $\boldsymbol{V}=1$?
- $\boldsymbol{V}=\boldsymbol{\Sigma}(\hat{\tau})$?
- $\boldsymbol{V}=\operatorname{Diag}\left\{\boldsymbol{\Sigma}_{\epsilon_{i}}\left(\hat{\tau}_{\epsilon}\right)\right\}$?
- Vonesh and Chinchilli (1997):

$$
R_{V C}^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}
$$

$\hat{\boldsymbol{Y}}_{0}$: predicted \boldsymbol{Y} under null model;
\boldsymbol{V} some p.d. matrix;

- What to choose for \boldsymbol{V} ?
- $\boldsymbol{V}=I$?
- $\boldsymbol{V}=\boldsymbol{\Sigma}(\hat{\tau})$?
- $\boldsymbol{V}=\operatorname{Diag}\left\{\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\hat{\tau}_{\epsilon}\right)\right\}$?
- What to use for $\hat{\boldsymbol{Y}}$?
- "Conditional model": $\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}+\boldsymbol{Z} \hat{\gamma}$;
- "Marginal model": $\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}$.
- Vonesh and Chinchilli (1997):

$$
R_{V C}^{2}=1-\frac{(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})}{\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\hat{\boldsymbol{Y}}_{0}\right)}
$$

$\hat{\boldsymbol{Y}}_{0}$: predicted \boldsymbol{Y} under null model;
\boldsymbol{V} some p.d. matrix;

- What to choose for \boldsymbol{V} ?
- $\boldsymbol{V}=I$?
- $\boldsymbol{V}=\boldsymbol{\Sigma}(\hat{\tau})$?
- $\boldsymbol{V}=\operatorname{Diag}\left\{\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\hat{\tau}_{\epsilon}\right)\right\}$?
- What to use for $\hat{\boldsymbol{Y}}$?
- "Conditional model": $\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}+\boldsymbol{Z} \hat{\gamma}$;
- "Marginal model": $\hat{\boldsymbol{\gamma}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}$.
- Null model:

$$
\boldsymbol{Y}=\beta_{0} \mathbf{1}+\boldsymbol{\epsilon} ;
$$

- If $\boldsymbol{V}=\operatorname{Diag}\left\{\boldsymbol{\Sigma}_{\epsilon_{i}}\left(\hat{\tau}_{\epsilon}\right)\right\}, R_{V C}^{2}$ identical to R^{2} suggested by Kramer (2005).
- Xu (2003): proportional reduction in conditional residual variance explained by the model;
$\operatorname{Diag}\left\{\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\tau_{\boldsymbol{\epsilon}}\right)\right\}=\sigma^{2} \boldsymbol{I} ;$
Null models considered
- $\boldsymbol{Y}=\beta_{0} \mathbf{1}+\boldsymbol{\epsilon}$ - the same as Vonesh and Chinchilli (1997);
- $\boldsymbol{Y}=\beta_{0} \mathbf{1}+\operatorname{Diag}\left\{\mathbf{1}_{n_{i}}\right\} \operatorname{Col}\left\{\gamma_{i 0}\right\}+\boldsymbol{\epsilon}$ - the same as Snijders and Bosker (1994);
Compares conditional variances $\operatorname{var}\left(Y_{i j} \mid \boldsymbol{X}, \gamma\right)$ and $\operatorname{var}\left(Y_{i j}\right)\left(\operatorname{or} \operatorname{var}\left(Y_{i j} \mid \gamma_{i 0}\right)\right)$.
- Edwards et al. (2008): Null model differs from full only in fixed effects:

$$
\begin{aligned}
& \boldsymbol{Y}=\beta_{0} \mathbf{1}+\boldsymbol{Z} \boldsymbol{\gamma}+\boldsymbol{\epsilon} \\
& \text { Let } \boldsymbol{C}=\left(0_{p}, I_{p}\right), \quad H_{0}: \boldsymbol{C} \boldsymbol{\beta} \equiv \boldsymbol{\beta}_{1}=0_{p} \\
& F_{p}=\frac{1}{p} \boldsymbol{C} \hat{\boldsymbol{\beta}}^{\prime}[\operatorname{cov} \boldsymbol{C} \hat{\boldsymbol{\beta}}]^{-1} \boldsymbol{C} \hat{\boldsymbol{\beta}}
\end{aligned}
$$

the basis for the approximate F-test of H_{0};

- Edwards et al. (2008): Null model differs from full only in fixed effects:

$$
\boldsymbol{Y}=\beta_{0} \mathbf{1}+\boldsymbol{Z} \gamma+\boldsymbol{\epsilon}
$$

$$
\text { Let } C=\left(0_{p}, I_{p}\right), \quad H_{0}: C \boldsymbol{\beta} \equiv \boldsymbol{\beta}_{1}=0_{p}
$$

$$
F_{p}=\frac{1}{p} C \hat{\boldsymbol{\beta}}^{\prime}[\operatorname{côv} C \hat{\boldsymbol{\beta}}]^{-1} C \hat{\boldsymbol{\beta}}
$$

the basis for the approximate F-test of H_{0}; Extension from linear fixed effects model R^{2} :

$$
R_{E}^{2}=\frac{p / \nu F_{p}}{1+p / \nu F_{p}}
$$

ν : denominator degrees of freedom (Satterthwaite, Kenward-Roger, etc.).

Property:
$0 \leq R_{E}^{2} \leq 1$;
But - ν depends on estimated variance components.
Several others:

- Gelman and Pardoe (2006): Bayesian R^{2};
- Magee (1990): R^{2} based on log-likelihood, null model contains only fixed intercept;
- Zheng (2000) for generalized linear models based on proportions of deviances;
- etc.

Augmented linear model

Hodges (1998), Vaida and Blanchard (2005), Arendacká and Puntanen (2014):

Assume:

- $\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\tau_{\epsilon}\right)=\sigma^{2} I_{n_{i}}, i=1, \ldots, N$;
- $\boldsymbol{\Sigma}_{\gamma_{i}}\left(\tau_{\gamma}\right)=\sigma^{2} \boldsymbol{G}_{i}, \boldsymbol{G}_{i}$ known p.d. matrix.

Augmented linear model

Hodges (1998), Vaida and Blanchard (2005), Arendacká and Puntanen (2014):
Assume:

- $\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}_{i}}\left(\tau_{\epsilon}\right)=\sigma^{2} I_{n_{i}}, i=1, \ldots, N$;
- $\boldsymbol{\Sigma}_{\boldsymbol{\gamma}_{i}}\left(\tau_{\gamma}\right)=\sigma^{2} \boldsymbol{G}_{i}, \boldsymbol{G}_{i}$ known p.d. matrix.

Augmented model:

$$
\boldsymbol{Y}^{*} \equiv\binom{\boldsymbol{Y}}{0}=\left(\begin{array}{cc}
\boldsymbol{X} & \boldsymbol{Z} \\
0 & -I_{N m}
\end{array}\right)\binom{\boldsymbol{\beta}}{\gamma}+\binom{\boldsymbol{\epsilon}}{\gamma},
$$

$$
\operatorname{cov}\binom{\boldsymbol{\epsilon}}{\gamma}=\sigma^{2}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \boldsymbol{G}
\end{array}\right)
$$

$\operatorname{diag}\left\{\boldsymbol{G}_{i}\right\}=\boldsymbol{G}=\left(\Delta^{\prime} \Delta\right)^{-1}$.
Let
$\Gamma=\left(\begin{array}{cc}I_{n} & 0 \\ 0 & \Delta\end{array}\right)$.

R^{2} in augmented model

Following Hodges (1998), Vaida and Blanchard (2005),
Arendacká and Puntanen (2014):
$\Gamma \boldsymbol{Y}^{*}=\boldsymbol{Y}^{*}=\left(\begin{array}{cc}\boldsymbol{X} & \boldsymbol{Z} \\ 0 & -\Delta\end{array}\right)\binom{\boldsymbol{\beta}}{\boldsymbol{\gamma}}+\binom{\boldsymbol{\epsilon}}{\Delta \boldsymbol{\gamma}}$,
$\operatorname{cov}\binom{\epsilon}{\Delta \gamma}=\sigma^{2} \Omega$.
LS solutions result in $\boldsymbol{X} \hat{\boldsymbol{\beta}}$ (BLUE) and $\boldsymbol{Z} \hat{\boldsymbol{\gamma}}$ (BLUP) (in the sense of Harville (1977));
Null model:
$\boldsymbol{Y}^{*}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\binom{\boldsymbol{\beta}}{\boldsymbol{\gamma}}+\epsilon^{*}, \quad \operatorname{cov}\left(\epsilon^{*}\right)=\sigma^{2} \boldsymbol{I} ;$

Define $R_{\text {aug }}^{2}$ as in a fixed effects model:

$$
R_{\text {aug }}^{2}=1-\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{Z} \hat{\boldsymbol{\gamma}})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{Z} \hat{\boldsymbol{\gamma}})+\hat{\gamma}^{\prime} \boldsymbol{G}^{-1} \hat{\boldsymbol{\gamma}}}{(\boldsymbol{Y}-\bar{Y} \mathbf{1})^{\prime}(\boldsymbol{Y}-\bar{Y} \mathbf{1})}
$$

Define $R_{\text {aug }}^{2}$ as in a fixed effects model:
$R_{\text {aug }}^{2}=1-\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{Z} \hat{\gamma})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{Z} \hat{\boldsymbol{\gamma}})+\hat{\boldsymbol{\gamma}}^{\prime} \boldsymbol{G}^{-1} \hat{\boldsymbol{\gamma}}}{(\boldsymbol{Y}-\bar{Y} \mathbf{1})^{\prime}(\boldsymbol{Y}-\bar{Y} \mathbf{1})}$.
Properties

- Under normality, with estimated G coincides with R^{2} in Zheng (2000);
- $0 \leq R_{\text {aug }}^{2} \leq 1$;
- $R_{\text {aug }}^{2}$ is increasing when adding columns into X or Z matrices;

Define $R_{\text {aug }}^{2}$ as in a fixed effects model:
$R_{\text {aug }}^{2}=1-\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{Z} \hat{\boldsymbol{\gamma}})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{Z} \hat{\boldsymbol{\gamma}})+\hat{\gamma}^{\prime} \boldsymbol{G}^{-1} \hat{\boldsymbol{\gamma}}}{(\boldsymbol{Y}-\bar{Y} \mathbf{1})^{\prime}(\boldsymbol{Y}-\bar{Y} \mathbf{1})}$.
Properties

- Under normality, with estimated G coincides with R^{2} in Zheng (2000);
- $0 \leq R_{\text {aug }}^{2} \leq 1$;
- $R_{\text {aug }}^{2}$ is increasing when adding columns into X or Z matrices;

Question: is $R_{\text {aug }}^{2}$ for estimated G also monotone set function?

Fixed effects only
Alternative choice of null model:
$Y^{*}=\left(\begin{array}{ccc}1 & 0 & Z \\ 0 & 0 & -\Delta\end{array}\right)\binom{\boldsymbol{\beta}}{\gamma}+\epsilon^{*}, \quad \operatorname{cov}\left(\epsilon^{*}\right)=\sigma^{2} \boldsymbol{I}$.
Suggested:

$$
R_{\text {aug2 }}^{2}=1-\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{Z} \hat{\gamma})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{Z} \hat{\gamma})+\hat{\gamma}^{\prime} \boldsymbol{G}^{-1} \hat{\boldsymbol{\gamma}}}{\left(\boldsymbol{Y}-\mathbf{1} \hat{\beta}_{0}-\boldsymbol{Z} \hat{\gamma}_{0}\right)^{\prime}\left(\boldsymbol{Y}-\mathbf{1} \hat{\beta}_{0}-\boldsymbol{Z} \hat{\gamma}_{0}\right)+\hat{\gamma}_{0}^{\prime} \boldsymbol{G}^{-1} \hat{\gamma}_{0}} .
$$

- Monotone set function in X;
- $0 \leq R_{\text {aug } 2}^{2} \leq 1$;
- Takes into consideration dependencies between observations also in the null model;
- For unknown G, we recommend the estimated variance-covariance components from the full model in both, numerator and denominator.

Model fit assessment - Small simulation study
Orelien and Edwards (2008): compare model fit for fixed effects only - only models and sub-models compared;

Model fit assessment - Small simulation study

Orelien and Edwards (2008): compare model fit for fixed effects only - only models and sub-models compared;

Goal 1:

- Investigate monotonicity of R^{2} with increasing number of fixed effects;
- Among models with 2 fixed effect variables, identify the "true" model (with the highest R^{2});

Setting:

Data generated from:

- balanced design with respect to sample 2 groups ("trt");
- unequal number of time points per sampling unit (from 2 up to 8);
- random "intercept" and "time" coefficients model;
- "trt" additional dichotomous fixed effects variable;
- $n=64, \sigma^{2} \in\{3,6,9,12,15,45\}$;
- G matrix unstructured;
- REML used to estimate G and σ^{2} in full and null models;
- 10000 simulations for different configurations;
- Important: in all 10000 cases convergence was achieved and the estimated G was n.n.d.
- SAS version 9.4 used for all calculations.

Variables unrelated to the response: "genr" (dichotomous), x_{5}, and x_{6} (transformed uniform);
Compared models:
Differ in fixed effects only:

- "full": time, trt, genr, x_{5}, x_{6}
- "true": time, trt;
- "genr": time, genr;
- " x_{5} ": time, x_{5};
- " x_{6} ": time, x_{6};
- "reduced": time;

Compared $R^{2} \mathbf{s}$:

- "VC": Vonesh and Chinchilli (1997), $\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}+\boldsymbol{Z} \hat{\gamma}$;
- "VCm": the same but $\hat{\boldsymbol{\gamma}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}$;
- " $R_{\text {aug }}^{2}$ ": (same as Zheng (2000)): $\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}+\boldsymbol{Z} \hat{\gamma}$;
- " $R_{\text {aug }}^{2} \mathrm{~m} ": \hat{\boldsymbol{\gamma}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}$;
- " $R_{\text {aug2 } 2}^{2}$ ";
- " $R_{\text {aug } 2}^{2} \mathrm{~m}$ ";

Results - fixed effects - monotonicity

R^{2}	$\sigma^{2}=3$	$\sigma^{2}=12$	$\sigma^{2}=45$
"VC"	0.003	0.12	0.19
"VCm"	0.86	0.92	0.91
" $R_{\text {aug" }}^{2}$	0.50	0.64	0.59
" $R_{\text {aug }}^{2} \mathrm{~m} "$	0.87	0.93	0.94
" $R_{\text {aug2" }}^{2}$	0.40	0.34	0.40
" $R_{\text {aug2 } 2}^{2} \mathrm{~m} "$	0.76	0.59	0.63

Table : Proportion of R^{2} from "full" higher than all others

Results - fixed effects - true model identification

Correct model: proportion of times the R^{2} for the correct model is the highest among all (except full);

R^{2}	$\sigma^{2}=3$	$\sigma^{2}=12$	$\sigma^{2}=45$
"VC"	0.002	0.11	0.34
"VCm"	1.00	1.00	1.00
" $R_{\text {aug }}^{2}$ "	0.48	0.61	0.69
" $R_{\text {aug }}^{2} \mathrm{~m}$ "	1.00	1.00	1.00
" $R_{\text {aug2 }}^{2}$ "	0.85	0.67	0.72
" $\mathrm{a}_{\text {aug } 2 \mathrm{~m}}^{2} \mathrm{~m}$ "	1.00	0.90	0.90

Table : Proportion of R^{2} from "true" higher than all others (except "full")

Goal 2:

- Among models with varying random effects identify the "true" model (with the highest R^{2});

Data generated from:

- The same G; balanced treatment groups, generated unequal time points as above;
- "intercept" and "time" fixed effects,
- random coefficients "intercept" and of "time";

Compared models:

Differ in random effects only:

- "true": int, t;
- "int": int;
- "t2": int, t^{2};

Compared $R^{2} \mathbf{s}$:

- "VC": $\hat{\boldsymbol{\gamma}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}+\boldsymbol{Z} \hat{\gamma}$;
- "VCm": $\widehat{\boldsymbol{\gamma}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}$;
- " $R_{\text {aug }}^{2}$ ": (same as Zheng (2000)): $\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}+\boldsymbol{Z} \hat{\gamma}$;
- " $R_{\text {aug }}^{2} \mathrm{~m}$ ": $\hat{\boldsymbol{\gamma}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}$;

Results - random effects - true model identification

R^{2}	$\sigma^{2}=3$	$\sigma^{2}=12$	$\sigma^{2}=45$
"VC"	1.00	0.83	0.51
"VCm"	0.30	0.30	0.27
" $R_{\text {aug" }}^{2}$	1.00	0.75	0.52
" $R_{\text {aug }}^{2}$ m"	0.32	0.42	0.32

Table : Proportion of R^{2} from "true" higher than all others (except "full")

Results - random effects - true model identification

R^{2}	$\sigma^{2}=3$	$\sigma^{2}=12$	$\sigma^{2}=45$
"VC"	1.00	0.83	0.51
"VCm"	0.30	0.30	0.27
" $R_{\text {aug }}^{2}$	1.00	0.75	0.52
" $R_{\text {aug }}^{2} \mathrm{~m} "$	0.32	0.42	0.32
"AlC"	0.76	0.55	0.32

Table : Proportion of R^{2} from "true" higher than all others (except "full")

Conclusions

- For identifying model fit in models differing in fixed effects only, "VCmu", " $R_{\text {aug }}^{2} \mathrm{mu}$ ", and " $R_{\text {aug2 }}^{2}$ " performed better than "VC" and " $R_{\text {aug"; }}^{2}$
- On the other hand, to identify model fit with respect to random effects, "VC" and " $R_{\text {aug }}^{2}$ " had higher proportion of correct picks;
- In models in which $\widehat{\boldsymbol{X} \boldsymbol{\beta}}$ coincides between models, R^{2} with $\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}$ instead of $\hat{\boldsymbol{Y}}=\widehat{\boldsymbol{X} \boldsymbol{\beta}}+\boldsymbol{Z} \hat{\gamma}$ does not differentiate models.

Still a lot has to be investigated ...

Still a lot has to be investigated ...
Thank you for your attention!

