Estimation in Multivariate t Nonlinear Mixed-effects Models with Missing Outcomes

Wan-Lun Wang

Department of Statistics, Graduate Institute of Statistics & Actuarial Science Feng Chia University, Taiwan

(Joint work with Professor Tsung-I Lin)

August 24-28, 2014

LinStat 2014 (Sweden)

Introduction	Model	ML Estimation	Application	Conclusion O	Reference	Appendix
Outline	•					

Introduction

Multivariate t Nonlinear Mixed-effects Model with DEC Dependence

Maximum Likelihood Estimation

- Pseudo-data ECM Algorithm
- Estimation for MtNLMM with missing data
- Estimation for random effects and imputation for missing values

Application: Pregnant Women Data

Conclusion

Introduction ●○○○○	Model	ML Estimation	Application	Conclusion O	Reference	Appendix
Motivation						

Multivariate Longitudinal Data

Subject i	Occasions t	Responses j Covariates				es		
1	1	y_{111}	y_{121}		y_{1r1}	x_{111}		x_{1q1}
1	2	y_{112}	y_{122}		y_{1r2}	x_{112}		x_{1q2}
1	3	y_{113}	y_{123}	• • •	y_{1r3}	x_{113}	• • •	x_{1q3}
÷	:	÷	÷	·	÷	:	·	÷
1	s_1	y_{11s_1}	y_{12s_1}		y_{1rs_1}	x_{11s_1}		x_{1qs_1}
2	1	y_{211}	y_{221}	• • •	y_{2r1}	x211	• • •	x_{2q1}
2	2	y_{212}	y_{222}	• • •	y_{2r2}	x_{212}	• • •	x_{2q2}
÷	:	:	÷	·	÷	:	·	÷
2	s_2	y_{21s_2}	y_{22s_2}		y_{2rs_2}	x_{21s_2}		x_{2qs_2}
÷		:	:	:	÷	:	:	:
N	1	y_{N11}	y_{N21}	• • •	y_{Nr1}	x_{N11}	• • •	x_{Nq1}
N	2	y_{N12}	y_{N22}	• • •	y_{Nr2}	x_{N12}	• • •	x_{Nq2}
÷		:	÷	·	÷	:	·	÷
N	s_N	y_{N1s_N}	y_{N2s_N}		y_{Nrs_N}	x_{N1s_N}		x_{Nqs_N}

(ロト (聞) (ヨ) (ヨ) 三日 (つ

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
00000						
Motivation						

Motivating Example: Pregnant Women Data

- The study consists of 124 women diagnosed normal pregnancies and 37 women with abnormal pregnancies over a period of two years in a private fertilization obstetrics clinic in Santiago, Chile (Marshall et al. 2006).
- For N = 161 young women, the beta-subunit human chorionic gonadotropin (β-HCG) and estradiol concentrations were repeatedly measured during the first trimester of pregnancy.
- Estradiol and β-HCG concentrations were measured in order to detect complications or a high risk of losing the foetus.
- The threshold after 50 days of pregnancy change appears to have a non-linear and linear relationship with the mean of $\log_{10} \beta$ -HCG and $\log_{10} \beta$ estradiol, respectively.

W.L. Wang (FCU, Taiwan)

W.L. Wang (FCU, Taiwan)

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
00000						
Motivation						

Preliminary Analysis of Pregnancy Women Data

 Let y_{i1,k} and y_{i2,k} be the β-HCG and estradiol responses in log₁₀ for woman i measured at time (days) t_{ik} (i = 1,...,161, k = 1,...,s_i).

MNLMM (Marshall et al. 2006)

We fit the MNLMM by logistic and linear regression to $y_{i1,k}$ and $y_{i2,k}$:

$$y_{i1,k} = \frac{\beta_1 + b_{i1}}{1 + \exp\{(\beta_2 - t_{ik})/\beta_3\}} + e_{i1,k},$$

$$y_{i2,k} = \beta_4 + \beta_5 t_{ik} + \frac{b_{i2}}{2} + e_{i2,k}.$$

- Fixed effects $(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5)^T$ describe the mean profiles of the bivariate responses.
- Random effects $(b_{i1}, b_{i2})^{T} \sim \mathcal{N}_{2}(\mathbf{0}, \mathbf{D})$ describe how the profile of the *i*th woman deviates from the mean profiles.
- Within-subject errors $(e_{i1,1}, \cdots, e_{i1,s_i}, e_{i2,1}, \cdots, e_{i2,s_i})^{\mathrm{T}} \sim \mathcal{N}_{2s_i}(\mathbf{0}, \mathbf{\Sigma} \otimes \mathbf{I}_{s_i})$ are residuals and uncorrelated with the random effects.

August 24-28, 2014 7 / 37

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
00000	000	0000000	0000		000	00000000
Formulation						

Multivariate t Nonlinear Mixed-effects Model

Notation $(i = 1, ..., N; j = 1, ..., r; t = 1, ..., s_i)$

- $\mathbf{Y}_i = [\mathbf{y}_{i1} : \cdots : \mathbf{y}_{ir}]$: $s_i \times r$ outcome matrix of subject $i, \mathbf{y}_i = \text{vec}(\mathbf{Y}_i)$
- $y_{ij} = (y_{ij1}, \dots, y_{ijs_i})^{\mathrm{T}}$: response variable *j* from subject *i* over time *t*
- $E_i = [e_{i1} : \cdots : e_{ir}]: s_i \times r$ within-subject errors matrix, $e_i = \text{vec}(E_i)$
- X_i: covariates variables

• Write
$$n_i = s_i r$$
, for $i = 1, ..., N$, $p = \sum_{j=1}^r p_j$ and $q = \sum_{j=1}^r q_j$.

MtNLMM for the *i*th subject

$$\boldsymbol{y}_{i} = \boldsymbol{\mu}_{i}(\boldsymbol{\eta}_{i}, \boldsymbol{X}_{i}) + \boldsymbol{e}_{i}, \text{ with } \begin{bmatrix} \boldsymbol{b}_{i} \\ \boldsymbol{e}_{i} \end{bmatrix} \sim t_{q+n_{i}} \begin{pmatrix} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{D} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}_{i} \end{bmatrix}, \boldsymbol{\nu} \end{pmatrix}$$
 (1)

 μ_i is a nonlinear vector-valued and differentiable function.

• The fixed effects β and the random effects b_i can be incorporated into the model through $\eta_i = A_i\beta + B_ib_i$ such that $\mu_i(\eta_i, X_i) = \mu_i(\beta, b_i)$.

A_i and B_i are design matrices of size g × p and g × q for fixed effects and random effects.

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
Formulation	••••					

Multivariate t Nonlinear Mixed-effects Model

Notation $(i = 1, ..., N; j = 1, ..., r; t = 1, ..., s_i)$

- $Y_i = [y_{i1} : \cdots : y_{ir}]: s_i \times r$ outcome matrix of subject $i, y_i = \text{vec}(Y_i)$
- $y_{ij} = (y_{ij1}, \dots, y_{ijs_i})^{\mathrm{T}}$: response variable *j* from subject *i* over time *t*
- $E_i = [e_{i1} : \cdots : e_{ir}]: s_i \times r$ within-subject errors matrix, $e_i = \text{vec}(E_i)$
- X_i: covariates variables

• Write
$$n_i = s_i r$$
, for $i = 1, ..., N$, $p = \sum_{j=1}^r p_j$ and $q = \sum_{j=1}^r q_j$.

MtNLMM for the *i*th subject

$$\boldsymbol{y}_{i} = \boldsymbol{\mu}_{i}(\boldsymbol{\eta}_{i}, \boldsymbol{X}_{i}) + \boldsymbol{e}_{i}, \text{ with } \begin{bmatrix} \boldsymbol{b}_{i} \\ \boldsymbol{e}_{i} \end{bmatrix} \sim t_{q+n_{i}} \left(\begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{D} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}_{i} \end{bmatrix}, \boldsymbol{\nu} \right)$$
 (1)

- μ_i is a nonlinear vector-valued and differentiable function.
- The fixed effects β and the random effects b_i can be incorporated into the model through $\eta_i = A_i\beta + B_ib_i$ such that $\mu_i(\eta_i, X_i) = \mu_i(\beta, b_i)$.
- A_i and B_i are design matrices of size $g \times p$ and $g \times q$ for fixed effects and random effects.

bb T

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
	000					00000000
Formulation						

The model for the *j*th column (outcome) of Y_i

$$oldsymbol{y}_{ij} = oldsymbol{\mu}_{ij}(oldsymbol{\eta}_i,oldsymbol{x}_{ij}) + oldsymbol{e}_{ij}$$

• $\mu_{ij}(\eta_i, x_{ij}) = (\mu_j(\eta_i, x_{ij,1}), \dots, \mu_j(\eta_i, x_{ij,s_i}))^T$ is the vector of a link function relating the *j*th outcome y_{ij} over s_i time-points to the covariates x_{ij} by the mixed effects β and b_i .

•
$$e_{ij} \sim t_{s_i}(\mathbf{0}, \sigma_{jj} \mathbf{C}_i, \nu)$$

The model for the kth row (occasion) of $oldsymbol{Y}_i$

 $oldsymbol{y}_{i,k} = oldsymbol{\mu}_i^k(oldsymbol{\eta}_i,oldsymbol{x}_{ik}) + oldsymbol{e}_{i,k}$

- $\mu_i^k(\eta_i, x_{ik}) = (\mu_1(\eta_i, x_{i1,k}), \dots, \mu_j(\eta_i, x_{ij,k}), \dots, \mu_r(\eta_i, x_{ir,k}))$ is a vector of *r* link functions with each function relating each outcome variable at the same time to the covariates $x_{i,k}$ by the mixed effects β and b_i .
- $e_{i,k} \sim t_r(\mathbf{0}, \mathbf{\Sigma}, \nu)$

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
	000					
Formulation						

The model for the *j*th column (outcome) of Y_i

 $\boldsymbol{y}_{ij} = \boldsymbol{\mu}_{ij}(\boldsymbol{\eta}_i, \boldsymbol{x}_{ij}) + \boldsymbol{e}_{ij}$

• $\mu_{ij}(\eta_i, x_{ij}) = (\mu_j(\eta_i, x_{ij,1}), \dots, \mu_j(\eta_i, x_{ij,s_i}))^T$ is the vector of a link function relating the *j*th outcome y_{ij} over s_i time-points to the covariates x_{ij} by the mixed effects β and b_i .

•
$$e_{ij} \sim t_{s_i}(\mathbf{0}, \sigma_{jj} \mathbf{C}_i, \nu)$$

The model for the kth row (occasion) of $oldsymbol{Y}_i$

$$oldsymbol{y}_{i,k} = oldsymbol{\mu}_i^k(oldsymbol{\eta}_i,oldsymbol{x}_{ik}) + oldsymbol{e}_{i,k}$$

- $\mu_i^k(\eta_i, x_{ik}) = (\mu_1(\eta_i, x_{i1,k}), \dots, \mu_j(\eta_i, x_{ij,k}), \dots, \mu_r(\eta_i, x_{ir,k}))$ is a vector of r link functions with each function relating each outcome variable at the same time to the covariates $x_{i,k}$ by the mixed effects β and b_i .
- $e_{i,k} \sim t_r(\mathbf{0}, \mathbf{\Sigma}, \nu)$

< = > < = > < = > <</pre>

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
	000					
Formulation						

Under the above assumption, we have

 $\operatorname{COV}(\boldsymbol{E}_i) = \boldsymbol{R}_i = \boldsymbol{\Sigma} \otimes \boldsymbol{C}_i$

where a damped exponential correlation (DEC; Muñoz *et al.* 1992) structure is considered:

$$\boldsymbol{C}_{i} = \boldsymbol{C}_{i}(\phi, \gamma; \boldsymbol{t}_{i}) = \begin{bmatrix} \phi^{|t_{ik} - t_{ik'}|^{\gamma}} \end{bmatrix}, \quad 0 \le \phi < 1, \quad 0 \le \gamma.$$

• Let $\theta = \{\beta, D, \Sigma, \phi, \gamma, \nu\}$ be the entire model parameters.

Two-level hierarchy of model (1)

Introducing a set of scaling weight variables $\tau_i \sim \text{Gamma}(\nu/2, \nu/2)$ leads to

$$egin{array}{rcl} m{y}_i | (m{b}_i, au_i) & \sim & \mathcal{N}_{n_i}(m{\mu}_i(m{eta}, m{b}_i), au_i^{-1}m{R}_i), \ m{b}_i | au_i & \sim & \mathcal{N}_q(m{0}, au_i^{-1}m{D}). \end{array}$$

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
		0000000				0000000

MtNLMM with Pseudo Data

Using a Taylor series expansion for model (1) around $\hat{\eta}_i^{(h)} = A_i \hat{\beta}^{(h)} + B_i \hat{b}_i^{(h)}$ and letting $\dot{\mu}_j(\hat{\eta}_i^{(h)}, x_{ij,k})$ be the first partial derivative of $\mu_j(\hat{\eta}_i^{(h)}, x_{ij,k})$ with respect to η_i , model (1) can be rewritten as

$$ilde{m{y}}_i = ilde{m{X}}_im{eta} + ilde{m{Z}}_im{b}_i + m{e}_i$$

• \tilde{y}_i is an $n_i \times 1$ vector composed of r pseudo-response vectors $\tilde{y}_{ij} = (\tilde{y}_{ij,1}, \cdots, \tilde{y}_{ij,s_i})^T$ in which

(2)

$$ilde{y}_{ij,k} = y_{ij,k} - \mu_j(\hat{oldsymbol{\eta}}_i^{(h)}, oldsymbol{x}_{ij,k}) + ilde{oldsymbol{x}}_{ij,k}\hat{oldsymbol{eta}}^{(h)} + ilde{oldsymbol{z}}_{ij,k}\hat{oldsymbol{b}}_i^{(h)}$$

• \tilde{X}_i is an $n_i \times p$ matrix with rows made up of $p \times 1$ vector $\tilde{x}_{ij,k} = \dot{\mu}_j (\hat{\eta}_i^{(h)}, x_{ij,k})^T A_i$

• \tilde{Z}_i is an $n_i \times q$ matrix with rows made up of $q \times 1$ vector $\tilde{z}_{ij,k} = \dot{\mu}_j (\hat{\eta}_i^{(h)}, x_{ij,k})^{\mathrm{T}} B_i$

It follows that

w

$$\begin{split} \tilde{\boldsymbol{y}}_i \sim t_{n_i}(\tilde{\boldsymbol{X}}_i\boldsymbol{\beta},\tilde{\boldsymbol{\Lambda}}_i,\nu) \end{split}$$
Here $\tilde{\boldsymbol{\Lambda}}_i = \tilde{\boldsymbol{Z}}_i \boldsymbol{D} \tilde{\boldsymbol{Z}}_i^{\mathrm{T}} + \boldsymbol{\Sigma} \otimes \boldsymbol{C}_i.$
W. Wang (CUL Taiwan)
LipStat 2014 (Sweden)
August 24-28, 2014

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
		0000000				

Three-level Hierarchy for MtNLMM with Pseudo Data

Treating the random effects $b = \{b_i\}_{i=1}^N$ and scaling weights $\tau = \{\tau_i\}_{i=1}^N$ as latent data, the complete-data log-likelihood function is obtained based on

$$\begin{split} \tilde{\boldsymbol{y}}_i | (\boldsymbol{b}_i, \tau_i) &\sim \quad \mathcal{N}_{n_i} \big(\tilde{\boldsymbol{X}}_i \boldsymbol{\beta} + \tilde{\boldsymbol{Z}}_i \boldsymbol{b}_i, \tau_i^{-1} \boldsymbol{R}_i \big), \\ \boldsymbol{b}_i | \tau_i &\sim \quad \mathcal{N}_q(\boldsymbol{0}, \tau_i^{-1} \boldsymbol{D}), \\ \tau_i &\sim \quad \text{Gamma}(\nu/2, \nu/2). \end{split}$$

Proposition

Using the Bayes' theorem, simple matrix algebra gives

$$\begin{split} \mathbf{b}_{i} | \tilde{\mathbf{y}}_{i} &\sim t_{q} \Big(\mathbf{D} \tilde{\mathbf{Z}}_{i}^{\mathrm{T}} \tilde{\mathbf{\Lambda}}_{i}^{-1} (\tilde{\mathbf{y}}_{i} - \tilde{\mathbf{X}}_{i} \boldsymbol{\beta}), \Big(\frac{\nu + \Delta_{\tilde{\mathbf{y}}_{i}}}{\nu + n_{i}} \Big) (\mathbf{D}^{-1} + \tilde{\mathbf{Z}}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \tilde{\mathbf{Z}}_{i})^{-1}, \nu + n_{i} \Big), \\ \tau_{i} | \tilde{\mathbf{y}}_{i} &\sim \mathsf{Gamma} \Big(\frac{n_{i} + \nu}{2}, \frac{\nu + (\tilde{\mathbf{y}}_{i} - \tilde{\mathbf{X}}_{i} \boldsymbol{\beta})^{\mathrm{T}} \tilde{\mathbf{\Lambda}}_{i}^{-1} (\tilde{\mathbf{y}}_{i} - \tilde{\mathbf{X}}_{i} \boldsymbol{\beta})}{2} \Big). \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨ

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
00000		0000000				0000000

Pseudo-data ECM Algorithm (E-step)

Let
$$\hat{\boldsymbol{\theta}}^{(h)} = \{\hat{\boldsymbol{\beta}}^{(h)}, \hat{\boldsymbol{D}}^{(h)}, \hat{\boldsymbol{\Sigma}}^{(h)}, \hat{\phi}^{(h)}, \hat{\gamma}^{(h)}, \hat{\nu}^{(h)}\}$$
. Evaluate the *Q*-function:

$$Q(\boldsymbol{\theta}|\hat{\boldsymbol{\theta}}^{(h)}) = -\frac{1}{2} \sum_{i=1}^{N} \left\{ \log |\boldsymbol{R}_{i}| + \log |\boldsymbol{D}| + \operatorname{tr}(\boldsymbol{D}^{-1}\hat{\boldsymbol{B}}_{i}^{(h)}) + \operatorname{tr}(\boldsymbol{R}_{i}^{-1}\hat{\boldsymbol{\Psi}}_{i}^{(h)}(\boldsymbol{\beta})) - \nu \left(\log(\frac{\nu}{2}) + \hat{\kappa}_{i}^{(h)} - \hat{\tau}_{i}^{(h)} \right) + 2\log\Gamma(\frac{\nu}{2}) \right\}$$
(3)

where

$$\begin{split} \hat{\tau}_{i}^{(h)} &= E[\tau_{i}|\tilde{y}_{i},\hat{\theta}^{(h)}] = (\hat{\nu}^{(h)} + n_{i})/(\hat{\nu}^{(h)} + \hat{\Delta}_{\tilde{y}_{i}}^{(h)}), \\ \hat{\kappa}_{i}^{(h)} &= E[\log\tau_{i}|\tilde{y}_{i},\hat{\theta}^{(h)}] = \mathcal{D}_{g}\Big(\frac{\hat{\nu}^{(h)} + n_{i}}{2}\Big) - \log\Big(\frac{\hat{\nu}^{(h)} + \hat{\Delta}_{\tilde{y}_{i}}^{(h)}}{2}\Big), \\ \hat{B}_{i}^{(h)} &= E\Big[\tau_{i}b_{i}b_{i}^{\mathrm{T}}|\tilde{y}_{i},\hat{\theta}^{(h)}\Big] = \hat{\tau}_{i}^{(h)}\hat{b}_{i}^{(h)}\hat{b}_{i}^{(h)^{\mathrm{T}}} + \hat{V}_{b_{i}}^{(h)}, \\ \hat{\Psi}_{i}^{(h)} &= E\Big[\tau_{i}e_{i}e_{i}^{\mathrm{T}}|\tilde{y}_{i},\hat{\theta}^{(h)}\Big] = \hat{\tau}_{i}^{(h)}(\tilde{y}_{i} - \tilde{X}_{i}\beta - \tilde{Z}_{i}\hat{b}_{i}^{(h)})(\tilde{y}_{i} - \tilde{X}_{i}\beta - \tilde{Z}_{i}\hat{b}_{i}^{(h)})^{\mathrm{T}} + \tilde{Z}_{i}\hat{V}_{b_{i}}^{(h)}\tilde{Z}_{i}^{\mathrm{T}} \\ \text{with } \hat{b}_{i}^{(h)} &= \hat{D}^{(h)}\tilde{Z}_{i}^{\mathrm{T}}\tilde{\Lambda}_{i}^{(h)^{-1}}(\tilde{y}_{i} - \tilde{X}_{i}\hat{\beta}^{(h)}) \text{ and } \hat{V}_{b_{i}}^{(h)} = (\hat{D}^{(h)^{-1}} + \tilde{Z}_{i}\hat{Z}_{i}\hat{R}_{i}^{(h)^{-1}}, \tilde{Z}_{i})_{\mathbb{R}^{-1}}^{-1}. \end{split}$$

W.L. Wang (FCU, Taiwan)

Introduction Model ML Estimation Application Conclusion Reference Appendix 00000 000 0000 0000 0000 0000 0000 0000 0000 Pseudo-data ECM Algorithm (CM-steps) * $\hat{\tau}_i$

1. Update the current estimates $\hat{\boldsymbol{\beta}}^{(h)}$, $\hat{\boldsymbol{D}}^{(h)}$, and $\hat{\boldsymbol{\Sigma}}^{(h)}$ by

$$\begin{split} \hat{\boldsymbol{\beta}}^{(h+1)} &= \left(\sum_{i=1}^{N} \hat{\tau}_{i}^{(h)} \tilde{\boldsymbol{X}}_{i}^{\mathrm{T}} \hat{\boldsymbol{R}}_{i}^{(h)-1} \tilde{\boldsymbol{X}}_{i}\right)^{-1} \sum_{i=1}^{N} \hat{\tau}_{i}^{(h)} \tilde{\boldsymbol{X}}_{i}^{\mathrm{T}} \hat{\boldsymbol{R}}_{i}^{(h)-1} (\tilde{\boldsymbol{y}}_{i} - \tilde{\boldsymbol{Z}}_{i} \hat{\boldsymbol{b}}_{i}^{(h)}), \\ \hat{\boldsymbol{D}}^{(h+1)} &= N^{-1} \sum_{i=1}^{N} \hat{\boldsymbol{B}}_{i}^{(h)}, \\ \hat{\sigma}_{jl}^{(h+1)} &= \left\{ \begin{array}{c} \left(\sum_{i=1}^{N} s_{i}\right)^{-1} \sum_{i=1}^{N} \operatorname{tr} \left(\hat{\boldsymbol{C}}_{i}^{(h)} \boldsymbol{\psi}_{ijl}^{(h)} (\hat{\boldsymbol{\beta}}^{(h+1)})\right), & \text{for } j = l; \\ \left(2 \sum_{j=1}^{N} s_{i}\right)^{-1} \sum_{i=1}^{N} \operatorname{tr} \left(\hat{\boldsymbol{C}}_{i}^{(h)} \left[\boldsymbol{\psi}_{ijl}^{(h)} (\hat{\boldsymbol{\beta}}^{(h+1)}) + \boldsymbol{\psi}_{ilj}^{(h)} (\hat{\boldsymbol{\beta}}^{(h+1)})\right] \right), & \text{for } j \neq l \end{split} \right. \end{split}$$

2. Use the nlminb routine to update the $(\hat{\phi}^{(h)}, \hat{\gamma}^{(h)})$ and $\hat{\nu}^{(h)}$ sequentially.

$$(\hat{\phi}^{(h+1)}, \hat{\gamma}^{(h+1)}) = \arg\max_{(\phi, \gamma)} \Big\{ \frac{r}{2} \sum_{i=1}^{N} \log |\boldsymbol{C}_{i}^{-1}| - \frac{1}{2} \mathsf{tr} \Big((\hat{\boldsymbol{\Sigma}}^{-1^{(h+1)}} \otimes \boldsymbol{C}_{i}^{-1}) \hat{\boldsymbol{\Psi}}_{i}^{(h+1/2)} (\hat{\boldsymbol{\beta}}^{(h+1)}) \Big) \Big\}$$

and

$$\hat{\nu}^{(h+1)} = \arg \max_{\nu} \Big\{ \frac{\nu}{2} \sum_{i=1}^{N} (\log(\frac{\nu}{2}) + \hat{\kappa}_{i}^{(h)} - \hat{\tau}_{i}^{(h)}) - N \log \Gamma(\frac{\nu}{2}) \Big\}.$$

Incomplete Data E	ramework					
		0000000				
Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix

Multivariate Longitudinal Data with Missing Outcomes

Subject i	Occasions t		Respons	es j		С	ovariat	es
1	1	y_{111}	NA		y_{1r1}	x_{111}		x_{1q1}
1	2	y_{112}	y_{122}	• • •	y_{1r2}	x_{112}		x_{1q2}
1	3	y_{113}	y_{123}	• • •	NA	x_{113}		x_{1q3}
÷	:	:	÷	·	÷	÷	·	÷
1	s_1	NA	NA	• • •	y_{1rs_1}	x_{11s_1}	• • •	x_{1qs_1}
2	1	NA	y_{221}	• • •	y_{2r1}	x_{211}	• • •	x_{2q1}
2	2	y_{212}	y_{222}	• • •	y_{2r2}	x_{212}	• • •	x_{2q2}
÷	:	:	÷	·	÷	÷	•	÷
2	s_2	NA	y_{22s_2}		NA	x_{21s_2}	•••	x_{2qs_2}
:		:	:	:	÷	÷	:	:
N	1	y_{N11}	y_{N21}	• • •	y_{Nr1}	x_{N11}	• • •	x_{Nq1}
N	2	y_{N12}	NA	•••	NA	x_{N12}	•••	x_{Nq2}
÷		:	÷	·	÷	÷	·	÷
N	s_N	y_{N1s_N}	y_{N2s_N}	•••	NA	x_{N1s_N}	•••	x_{Nqs_N}

W.L. Wang (FCU, Taiwan)

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
00000	000	00000000	0000		000	0000000
Incomplete Data	Framework					

Incomplete-data Framework

• We partitioned $\tilde{y}_i \; (n_i \times 1)$ into two components $(\tilde{y}_i^{\mathrm{o}}, \tilde{y}_i^{\mathrm{m}})$ accordingly.

- $\tilde{\boldsymbol{y}}_{i}^{\mathrm{o}}$ $(n_{i}^{\mathrm{o}} \times 1)$: the observed component
- $\tilde{\boldsymbol{y}}_{i}^{\mathrm{m}}$ $((n_{i}-n_{i}^{\mathrm{o}}) imes1)$: the missing component
- Auxiliary permutation matrices

•
$$\boldsymbol{O}_i (n_i^{\mathrm{o}} \times n_i)$$
: $\tilde{\boldsymbol{y}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{y}}_i$; $\tilde{\boldsymbol{X}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{X}}_i$; $\tilde{\boldsymbol{Z}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{Z}}_i$

•
$$\boldsymbol{M}_i \; ((n_i - n_i^{\mathrm{o}}) \times n_i) : \; \tilde{\boldsymbol{y}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{y}}_i; \; \tilde{\boldsymbol{X}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{X}}_i; \; \tilde{\boldsymbol{Z}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{Z}}_i$$

Model (2) can be rewritten as

 $ilde{oldsymbol{y}}_i^{\mathrm{o}} = ilde{oldsymbol{X}}_i^{\mathrm{o}} oldsymbol{eta} + ilde{oldsymbol{Z}}_i^{\mathrm{o}} oldsymbol{b}_i + oldsymbol{e}_i^{\mathrm{o}}.$

• Missing at Random (MAR; Rubin 1976)

$$P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta}) = P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{x},\boldsymbol{\theta})$$

➡ Example

▶ Proposition

Incomplete Data F	ramework					
00000	000	00000000	0000		000	0000000
Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix

Incomplete-data Framework

• We partitioned $\tilde{y}_i \; (n_i \times 1)$ into two components $(\tilde{y}_i^{\mathrm{o}}, \tilde{y}_i^{\mathrm{m}})$ accordingly.

- $\tilde{\boldsymbol{y}}_{i}^{\mathrm{o}}$ $(n_{i}^{\mathrm{o}} \times 1)$: the observed component
- $\tilde{\boldsymbol{y}}_{i}^{\mathrm{m}}$ $((n_{i}-n_{i}^{\mathrm{o}}) imes1)$: the missing component
- Auxiliary permutation matrices

•
$$\boldsymbol{O}_i (n_i^{\mathrm{o}} \times n_i)$$
: $\tilde{\boldsymbol{y}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{y}}_i$; $\tilde{\boldsymbol{X}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{X}}_i$; $\tilde{\boldsymbol{Z}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{Z}}_i$

•
$$\boldsymbol{M}_i \; ((n_i - n_i^{\mathrm{o}}) imes n_i)$$
: $\tilde{\boldsymbol{y}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{y}}_i; \; \tilde{\boldsymbol{X}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{X}}_i; \; \tilde{\boldsymbol{Z}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{Z}}_i$

Model (2) can be rewritten as

$$ilde{oldsymbol{y}}_i^{\mathrm{o}} = ilde{oldsymbol{X}}_i^{\mathrm{o}} oldsymbol{eta} + ilde{oldsymbol{Z}}_i^{\mathrm{o}} oldsymbol{b}_i + oldsymbol{e}_i^{\mathrm{o}}.$$

• Missing at Random (MAR; Rubin 1976)

$$P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{ heta}) = P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{x},\boldsymbol{ heta})$$

➡ Example

▶ Proposition

Incomplete Data F	ramework					
00000	000	00000000	0000		000	0000000
Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix

Incomplete-data Framework

• We partitioned $\tilde{y}_i \; (n_i \times 1)$ into two components $(\tilde{y}_i^{\mathrm{o}}, \tilde{y}_i^{\mathrm{m}})$ accordingly.

- $\tilde{\boldsymbol{y}}_{i}^{\mathrm{o}}$ $(n_{i}^{\mathrm{o}} \times 1)$: the observed component
- $\tilde{\boldsymbol{y}}_{i}^{\mathrm{m}}$ $((n_{i}-n_{i}^{\mathrm{o}}) imes1)$: the missing component
- Auxiliary permutation matrices

•
$$\boldsymbol{O}_i (n_i^{\mathrm{o}} \times n_i)$$
: $\tilde{\boldsymbol{y}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{y}}_i$; $\tilde{\boldsymbol{X}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{X}}_i$; $\tilde{\boldsymbol{Z}}_i^{\mathrm{o}} = \boldsymbol{O}_i \tilde{\boldsymbol{Z}}_i$

•
$$\boldsymbol{M}_i \; ((n_i - n_i^{\mathrm{o}}) imes n_i)$$
: $\tilde{\boldsymbol{y}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{y}}_i$; $\tilde{\boldsymbol{X}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{X}}_i$; $\tilde{\boldsymbol{Z}}_i^{\mathrm{m}} = \boldsymbol{M}_i \tilde{\boldsymbol{Z}}_i$

Model (2) can be rewritten as

$$ilde{oldsymbol{y}}_i^{\mathrm{o}} = ilde{oldsymbol{X}}_i^{\mathrm{o}} oldsymbol{eta} + ilde{oldsymbol{Z}}_i^{\mathrm{o}} oldsymbol{b}_i + oldsymbol{e}_i^{\mathrm{o}}.$$

• Missing at Random (MAR; Rubin 1976)

$$P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta}) = P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{x},\boldsymbol{\theta})$$

Condition

Incomplete Data E	ramework					
00000	000	00000000	0000		000	0000000
Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix

Modified Pseudo-data ECM Algorithm

Impute the missing (pseudo) responses at each iteration of ECM by

$$\hat{\tilde{\boldsymbol{y}}}_{i}^{\mathrm{m}^{(h)}} = E[\tilde{\boldsymbol{y}}_{i}^{\mathrm{m}}|\tilde{\boldsymbol{y}}_{i}^{\mathrm{o}}, \hat{\boldsymbol{\theta}}^{(h)}] = \tilde{\boldsymbol{X}}_{i}^{\mathrm{m}} \hat{\boldsymbol{\beta}}^{(h)} + \boldsymbol{M}_{i} \hat{\tilde{\boldsymbol{\Lambda}}}_{i}^{(h)} \hat{\tilde{\boldsymbol{S}}}_{i}^{\mathrm{oo}^{(h)}} (\tilde{\boldsymbol{y}}_{i} - \tilde{\boldsymbol{X}}_{i} \hat{\boldsymbol{\beta}}^{(h)}).$$

It follows that

$$\hat{\boldsymbol{y}}_{i}^{(h)} = E[\boldsymbol{\tilde{y}}_{i}|\boldsymbol{\tilde{y}}_{i}^{\mathrm{o}}, \boldsymbol{\hat{\theta}}^{(h)}] = \boldsymbol{\tilde{X}}_{i}\boldsymbol{\hat{\beta}}^{(h)} + \hat{\boldsymbol{\tilde{\Lambda}}}_{i}^{(h)}\hat{\boldsymbol{\tilde{S}}}_{i}^{\mathrm{oo}^{(h)-1}}(\boldsymbol{\tilde{y}}_{i} - \boldsymbol{\tilde{X}}_{i}\boldsymbol{\hat{\beta}}^{(h)})$$

The Q-function (3) of ECM are modified by changing

$$\begin{split} \hat{\tau}_{i}^{(h)} &= E\left[\tau_{i}|\tilde{y}_{i}^{o},\hat{\theta}^{(h)}\right] = (\hat{\nu}^{(h)} + n_{i}^{o})/(\hat{\nu}^{(h)} + \hat{\Delta}_{\tilde{y}_{i}^{o}}^{(h)}), \\ \hat{\kappa}_{i}^{(h)} &= E\left[\log\tau_{i}|\tilde{y}_{i}^{o},\hat{\theta}^{(h)}\right] = \mathcal{D}_{\mathcal{G}}\left(\frac{\hat{\nu}^{(h)} + n_{i}^{o}}{2}\right) - \log\left(\frac{\hat{\nu}^{(h)} + \hat{\Delta}_{\tilde{y}_{i}^{o}}^{(h)}}{2}\right), \\ \hat{B}_{i}^{(h)} &= E\left[\tau_{i}b_{i}b_{i}^{\mathrm{T}}|\tilde{y}_{i}^{o},\hat{\theta}^{(h)}\right] = \hat{\tau}_{i}^{(h)}\hat{b}_{i}^{(h)}\hat{b}_{i}^{(h)^{\mathrm{T}}} + (\hat{D}^{(h)^{-1}} + \tilde{Z}_{i}^{o^{\mathrm{T}}}\hat{R}_{i}^{\mathrm{co}^{(h)^{-1}}}\tilde{Z}_{i}^{o})^{-1}, \\ \hat{\Psi}_{i}^{(h)} &= E\left[\tau_{i}\tilde{e}_{i}\tilde{e}_{i}^{\mathrm{T}}|\tilde{y}_{i}^{o},\hat{\theta}^{(h)}\right] = \hat{\tau}_{i}^{(h)}\hat{e}_{i}^{(h)}\hat{e}_{i}^{(h)^{\mathrm{T}}} + (I_{n_{i}} - \hat{R}_{i}^{(h)}\hat{S}_{i}^{\mathrm{co}^{(h)}})\hat{R}_{i}^{(h)}, \\ \end{split}$$
where $\hat{b}_{i}^{(h)} = \hat{D}^{(h)}\tilde{Z}_{i}^{\mathrm{T}}\hat{S}_{i}^{\mathrm{co}^{(h)}}(\hat{y}_{i}^{(h)} - \tilde{X}_{i}\hat{\beta}^{(h)})$ and $\hat{e}_{i}^{(h)} = \hat{y}_{i}^{(h)} - \tilde{X}_{i}\hat{\beta}_{i}^{\mathrm{co}^{-1}}, \tilde{Z}_{i}\hat{b}_{i}^{(h)}, \\ \end{cases}$

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
		0000000				
Estimation and Imputat	tion					

Imputation of Missing Values

The predictor of raw missing values is

$$\hat{\boldsymbol{y}}_i^{\mathrm{m}} = \hat{\tilde{\boldsymbol{y}}}_i^{\mathrm{m}} + \boldsymbol{\mu}_i(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{b}}_i) - \tilde{\boldsymbol{X}}_i \hat{\boldsymbol{\beta}} - \tilde{\boldsymbol{Z}}_i \hat{\boldsymbol{b}}_i.$$

Estimation of Random Effects

Substituting $\hat{\theta}$ into

$$oldsymbol{b}_i(oldsymbol{ heta}) = oldsymbol{D} ilde{oldsymbol{Z}}_i^{ ext{T}} ilde{oldsymbol{S}}_i^{ ext{oo}} (ilde{oldsymbol{y}}_i - ilde{oldsymbol{X}}_i oldsymbol{eta})$$

yields empirical Bayes estimates of random effects, denoted by $\hat{m{b}}_i=m{b}_i(\hat{m{ heta}}).$

Fitted Values of Responses

Substituting the estimates of $\hat{\beta}$ and \hat{b}_i into the nonlinear function μ_i yields

$$\hat{\boldsymbol{y}}_i = \boldsymbol{\mu}_i(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{b}}_i).$$

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
		0000000				
Estimation and Imputat	tion					

Imputation of Missing Values

The predictor of raw missing values is

$$\hat{\boldsymbol{y}}_i^{\mathrm{m}} = \hat{\tilde{\boldsymbol{y}}}_i^{\mathrm{m}} + \boldsymbol{\mu}_i(\hat{\boldsymbol{eta}}, \hat{\boldsymbol{b}}_i) - \tilde{\boldsymbol{X}}_i \hat{\boldsymbol{eta}} - \tilde{\boldsymbol{Z}}_i \hat{\boldsymbol{b}}_i.$$

Estimation of Random Effects

Substituting $\hat{\theta}$ into

$$\boldsymbol{b}_i(\boldsymbol{\theta}) = \boldsymbol{D} \tilde{\boldsymbol{Z}}_i^{\mathrm{T}} \tilde{\boldsymbol{S}}_i^{\mathrm{oo}}(\tilde{\boldsymbol{y}}_i - \tilde{\boldsymbol{X}}_i \boldsymbol{\beta})$$

yields empirical Bayes estimates of random effects, denoted by $\hat{b}_i = b_i(\hat{\theta})$.

Fitted Values of Responses

Substituting the estimates of $\hat{\beta}$ and \hat{b}_i into the nonlinear function μ_i yields

$$\hat{\boldsymbol{y}}_i = \boldsymbol{\mu}_i(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{b}}_i).$$

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
		0000000				
Estimation and Imputat	tion					

Imputation of Missing Values

The predictor of raw missing values is

$$\hat{\boldsymbol{y}}_i^{\mathrm{m}} = \hat{\tilde{\boldsymbol{y}}}_i^{\mathrm{m}} + \boldsymbol{\mu}_i(\hat{\boldsymbol{eta}}, \hat{\boldsymbol{b}}_i) - \tilde{\boldsymbol{X}}_i \hat{\boldsymbol{eta}} - \tilde{\boldsymbol{Z}}_i \hat{\boldsymbol{b}}_i.$$

Estimation of Random Effects

Substituting $\hat{\theta}$ into

$$\boldsymbol{b}_i(\boldsymbol{\theta}) = \boldsymbol{D} \tilde{\boldsymbol{Z}}_i^{\mathrm{T}} \tilde{\boldsymbol{S}}_i^{\mathrm{oo}}(\tilde{\boldsymbol{y}}_i - \tilde{\boldsymbol{X}}_i \boldsymbol{\beta})$$

yields empirical Bayes estimates of random effects, denoted by $\hat{b}_i = b_i(\hat{\theta})$.

Fitted Values of Responses

Substituting the estimates of $\hat{\beta}$ and \hat{b}_i into the nonlinear function μ_i yields

$$\hat{\boldsymbol{y}}_i = \boldsymbol{\mu}_i(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{b}}_i).$$

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
00000	000	0000000			000	00000000

Analysis of Pregnant Women Data

Figure

- Let $y_i = (y_{i1}^T, y_{i2}^T)^T$ for patient *i*, where $y_{i1} = \log_{10} \beta$ -HCG and $y_{i2} = \log_{10} \beta$ -tradiol.
- Employ two distinct curves for the *i*th woman at time t_{ik} = day_{ik}/7 (weeks) in group *l* (*l* = 1 for normal; *l* = 2 for abnormal):

$$y_{i1,k}^{(l)} = \frac{\beta_{1l} + b_{i1}^{(l)}}{1 + \exp\left\{(\beta_{2l} - t_{ik})/\beta_{3l}\right\}} + e_{i1,k}^{(l)};$$

$$y_{i2,k}^{(l)} = \beta_{4l} + \beta_{5l}t_{ik} + b_{i2}^{(l)} + e_{i2,k}^{(l)}.$$

- MNLMM: $(b_{i1}^{(l)}, b_{i2}^{(l)}) \sim N_2(\mathbf{0}, \mathbf{D}_l) \perp (\mathbf{e}_{i1}^{(l)^{\mathrm{T}}}, \mathbf{e}_{i2}^{(l)^{\mathrm{T}}})^{\mathrm{T}} \sim N_{2s_i}(\mathbf{0}, \mathbf{R}_{il})$
- MtNLMM: $(b_{i1}^{(l)}, b_{i2}^{(l)}) \sim t_2(\mathbf{0}, \mathbf{D}_l, \nu_l) \perp (\mathbf{e}_{i1}^{(l)^{\mathrm{T}}}, \mathbf{e}_{i2}^{(l)^{\mathrm{T}}})^{\mathrm{T}} \sim t_{2s_i}(\mathbf{0}, \mathbf{R}_{il}, \nu_l)$
- Since $R_{il} = \Sigma_l \otimes C_{il}$, we adopt the UNC, AR(1), and DEC for C_{il} .
- The mean- and variance-homogeneity model is also considered: $\beta_1 = \beta_2$, $D_1 = D_2$, $\Sigma_1 = \Sigma_2$, $\phi_1 = \phi_2$, $\gamma_1 = \gamma_2$ and $\nu_1 = \nu_2$

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
00000	000	0000000			000	00000000

Analysis of Pregnant Women Data

Figure

- Let $y_i = (y_{i1}^{T}, y_{i2}^{T})^{T}$ for patient *i*, where $y_{i1} = \log_{10} \beta$ -HCG and $y_{i2} = \log_{10} \beta$ -stradiol.
- Employ two distinct curves for the *i*th woman at time t_{ik} = day_{ik}/7 (weeks) in group *l* (*l* = 1 for normal; *l* = 2 for abnormal):

$$y_{i1,k}^{(l)} = \frac{\beta_{1l} + b_{i1}^{(l)}}{1 + \exp\left\{(\beta_{2l} - t_{ik})/\beta_{3l}\right\}} + e_{i1,k}^{(l)};$$

$$y_{i2,k}^{(l)} = \beta_{4l} + \beta_{5l}t_{ik} + b_{i2}^{(l)} + e_{i2,k}^{(l)}.$$

- MNLMM: $(b_{i1}^{(l)}, b_{i2}^{(l)}) \sim N_2(\mathbf{0}, \mathbf{D}_l) \perp (\mathbf{e}_{i1}^{(l)^{\mathrm{T}}}, \mathbf{e}_{i2}^{(l)^{\mathrm{T}}})^{\mathrm{T}} \sim N_{2s_i}(\mathbf{0}, \mathbf{R}_{il})$
- MtNLMM: $(b_{i1}^{(l)}, b_{i2}^{(l)}) \sim t_2(\mathbf{0}, \mathbf{D}_l, \nu_l) \perp (\mathbf{e}_{i1}^{(l)^{\mathrm{T}}}, \mathbf{e}_{i2}^{(l)^{\mathrm{T}}})^{\mathrm{T}} \sim t_{2s_i}(\mathbf{0}, \mathbf{R}_{il}, \nu_l)$
- Since $R_{il} = \Sigma_l \otimes C_{il}$, we adopt the UNC, AR(1), and DEC for C_{il} .
- The mean- and variance-homogeneity model is also considered: $\beta_1 = \beta_2$, $D_1 = D_2$, $\Sigma_1 = \Sigma_2$, $\phi_1 = \phi_2$, $\gamma_1 = \gamma_2$ and $\nu_1 = \nu_2$

Introduction	Moc	lel O	ML Estimation	Application Con ○●○○ ○	clusion	Reference	Appendix 0000000
Curves	3	Model	$oldsymbol{C}_i$	No. of parameters	$-2\ell_{\rm max}$	AIC	BIC
		MNLMM	UNC AR(1) DEC	11 12 13	549.26 534.06 524.61	571.26 558.06 550.61	605.15 595.04 590.66
Homogeneous	MtNLMM	UNC I AR(1) DEC	12 13 14	473.95 457.58 451.63	497.95 483.58 479.63	534.92 523.64 522.77	
		MNLMM	(UNC, UNC) (UNC, AR(1)) (UNC, DEC) (AR(1), UNC) (AR(1), AR(1)) (AR(1), DEC) (DEC, UNC) (DEC, AR(1))* (DEC, DEC)	22 23 24 23 24 25 24 25 26	368.26 366.10 365.32 359.16 358.38 353.06 350.90 350.12	412.26 412.10 413.32 407.32 407.16 408.38 401.06 400.90 402.12	480.05 482.97 487.28 478.19 481.11 485.42 475.02 477.94 482.24
Heteroscec	lastic	MtNLMM	(UNC, UNC) (UNC, AR(1)) (UNC, DEC) (AR(1), UNC) 1 (AR(1), AR(1)) (AR(1), DEC) (DEC, UNC) (DEC, AR(1))	24 25 26 25 26 27 26 27 26 27	347.70 345.48 344.71 342.11 339.89 339.12 335.75 333.53	395.70 395.48 396.71 392.11 391.89 393.12 387.75 387.53	469.66 472.52 476.82 469.15 472.01 476.31 467.87 470.73
			(DEC, DEC)	28	332.75	388.75	475.03

 $AIC = 2m - 2\ell_{max}$, and $BIC = m \log(N) - 2\ell_{max}$, where m is the number of parameters.

W.L. Wang (FCU, Taiwan)

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
			0000			

Model Fitting for Pregnant Women Data

Parameter		Normal Gr	$oup\;(l=1)$	Abnormal Group $(l=2)$		
Para	meter	EST	SE	EST	SE	
	β_{1l}	4.7263	0.0392	3.6164	0.1822	
	β_{2l}	15.6440	0.3181	11.9448	2.3528	
$\boldsymbol{\beta}_l$	β_{3l}	6.9311	0.3808	5.9718	2.2860	
	β_{4l}	2.2842	0.0507	2.4904	0.1329	
	β_{5l}	0.0125	0.0013	-0.0015	0.0033	
	d_{11l}	0.0001	0.0261	0.4875	0.1948	
$oldsymbol{D}_l$	d_{21l}	0.0001	0.0068	0.1779	0.0825	
	d_{22l}	0.0006	0.0146	0.1269	0.0510	
	σ_{11l}	0.0793	0.0221	0.2957	0.0919	
$\mathbf{\Sigma}_l$	σ_{21l}	0.0106	0.0073	0.0444	0.0252	
	σ_{22l}	0.0522	0.0158	0.0310	0.0121	
	ϕ_l	0.5944	0.1500	0.7784	0.1155	
$oldsymbol{C}_{il}$	γ_l	0.4682	0.2096	1	-	
	ν	6.6467	1.9069	165.3484	1475.3042	

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト ― 臣 ― 釣ん(で)

 Introduction
 Model
 ML Estimation
 Application
 Conclusion
 Reference
 Appendix

 00000
 000
 000
 000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</td

Imputed and Fitted Values under the MtNLMM

W.L. Wang (FCU, Taiwan)

Introduction	Model 000	ML Estimation	Application	Conclusion ●	Reference	Appendix
Summa	ary and	d Future F	Research			

- We have proposed a robust extension of the MNLMM by using the multivariate-*t* distributed random effects and within-subject errors.
- We create the pseudo data by using the Taylor approximation and then implement the ECM algorithm for carrying out ML estimation.
- Techniques for imputation of missing values and estimation of random effects are provided for ease of use.
- The methodology is motivated by, and applied to the data from a study of 161 pregnant women in Santiago, Chile.

•

Introduction	Model 000	ML Estimation	Application	Conclusion ●	Reference	Appendix
Summa	ary and	d Future F	Research			

- We have proposed a robust extension of the MNLMM by using the multivariate-*t* distributed random effects and within-subject errors.
- We create the pseudo data by using the Taylor approximation and then implement the ECM algorithm for carrying out ML estimation.
- Techniques for imputation of missing values and estimation of random effects are provided for ease of use.
- The methodology is motivated by, and applied to the data from a study of 161 pregnant women in Santiago, Chile.
- Develop discriminant analysis under the MtNLMM.
- Apply a fully Bayesian approach to inferring the MtNLMM.

Introduction	Model 000	ML Estimation	Application	Conclusion ●	Reference	Appendix
Summa	arv and	d Future F	lesearch			

- We have proposed a robust extension of the MNLMM by using the multivariate-*t* distributed random effects and within-subject errors.
- We create the pseudo data by using the Taylor approximation and then implement the ECM algorithm for carrying out ML estimation.
- Techniques for imputation of missing values and estimation of random effects are provided for ease of use.
- The methodology is motivated by, and applied to the data from a study of 161 pregnant women in Santiago, Chile.
- Develop discriminant analysis under the MtNLMM.
- Apply a fully Bayesian approach to inferring the MtNLMM.

Thanks For Your Attention!

W.L. Wang (FCU, Taiwan)

LinStat 2014 (Sweden)

Introduction	Model 000	ML Estimation	Application	Conclusion O	Reference ●○○	Appendix 00000000
Refere	nce					

- Akaike H. Information theory and an extension of the maximum likelihood principle. In 2nd Int. Symp. on Information Theory, (Edited by B. N. Petrov and F. Csaki). 1973; 267–281. Akademiai Kiado, Budapest.
- Dempster AP, Laird NM, Rubin DB. Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). *Journal of the Royal Statistical Society Series B* 1977; 39:1–38.
 - Fitzmaurice GM, Laird NM, Ware J. Applied Longitudinal Analysis. Wiley: New York, 2004.
- Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. *Biometrika* 1970; 57: 97–109.
 - Hedeker D, Gibbons RD. Longitudinal Data Analysis. John Wiley & Sons: New Jersey, 2006.
 - Kotz S, Nadarajah S. Multivariate *t* Distributions and Their Applications. Cambridge University Press. 2004.
 - Laird NM. Missing data in longitudinal studies. *Statistics in Medicine* 1988; 7:305–315.
 - Laird NM, Ware JH. Random effects models for longitudinal data. *Biometrics* 1982; 38:963–974.
 - Little RJA, Rubin DB. Statistical Analysis with Missing Data (2nd ed.). Wiley: New York, 2002.
 - Little RJ, Rubin DB. Statistical Analysis with Missing Data. Wiley: New York, 1987.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introdu	ction	Model	ML Estimation	Application	Conclusion	Reference ○●○	Appendix
	Marshall G multivariate	, De la Cruz- e responses v	Mesía R, Barón A with missing data.	E, Rutledge JH, 2 Statistics in Med	Zerbe GO. Non-lin <i>icine</i> 2006; 25: 281	ear random effects 7–2830.	s model for
	Marshall G multiple co	, De la Cruz- ntinuous resp	Mesía R, Quintan oonses and possib	a FA, Barón AE. I Iy missing data. I	Discriminant analy Biometrics 2009; 6	sis for longitudina 5 : 69–80.	l data with
	Meng XL, I <i>Biometrika</i>	Rubin DB. Ma 1993; 80: 26	aximum likelihood 7–278.	estimation via the	ECM algorithm: a	a general framewo	ork.
	Muñoz A, C analysis of	Carey V, Scho Iongitudinal (outen JP, Segal M, data. <i>Biometrics</i> 1	, Rosner B. A par 992; 48: 733–742	ametric family of c	orrelation structur	es for the
	Pinheiro J, Linear and	Bates D, Del Nonlinear M	oRoy S, Sarkar D ixed Effects Model	and the R Develo ls. R package ver	pment Core Team sion 3.1-104.	(2012). R nlme p	ackage:
	R Develop	ment Core Te cal Computing	am. <i>R: A Langua</i> g g. Vienna, Austria.	ge and Environme 2011.	ent for Statistical C	Computing, the R I	Foundation
	Roy A. Est effects mod	imating corre del. <i>Biometric</i>	lation coefficient b cal Journal 2006; 4	etween two varia 18: 286–301.	bles with repeated	l observations usi	ng mixed
	Roy J, Lin 2 covariates: 2002; 97: 4	X. Analysis o changes in r 0–52.	f multivariate longi nethadone treatm	itudinal outcomes ent practices. <i>Jou</i>	with nonignorable urnal of the Americ	e dropouts and miscan Statistical Ass	ssing ociation
	Rubin DB. <i>American</i> S	Characterizir Statistical Ass	ng the estimation of sociation 1974; 69	of parameters in i :474–476.	ncomplete-data pr	oblems. <i>Journal o</i>	f the
	Rubin DB.	Inference and	d missing data. <i>Bi</i>	ometrika 1976; 6 :	3: 581–592.		
					< => < d	→ < = > < = >	E

Introdu	ction	Model	ML Estimation	Application	Conclusion	Reference ○○●	Appendix		
	Shah A, La data. <i>Jourr</i>	aird N, Sch nal of the A	oenfeld D. A random American Statistical	n-effects model for A <i>ssociation</i> 1997;	multiple characte 92: 775–779.	ristics with possib	ly missing		
	Schafer JL	. Analysis	of Incomplete Multiv	<i>ariate Data.</i> Chap	man and Hall: Loi	ndon, 1997.			
	Schluchter MD. Analysis of incomplete multivariate data using linear models with structured covariance matrices. <i>Statistics in Medicine</i> 1988; 7: 317–324.								
	Schwarz G	i. Estimatir	ng the dimension of	a model. <i>The Ann</i>	als of Statistics 19	78; 6: 461–464.			
	Song X, Da longitudina	avidian M, I covariate	Tsiatis AA. An estim s measured with err	ator for the propo or. <i>Biostatistics</i> 20	rtional hazards mo 002; 3: 511–528.	odel with multiple			
	Wang WL. missing ou	Multivariat	te t linear mixed motion t iometrical Journal 20	dels for irregularly 013; 55: 554–571	observed multiple	e repeated measu	res with		
	Wang WL, autoregres	Fan TH. E sive errors	CM-based maximur . Computational Sta	n likelihood infere <i>tistics and Data A</i>	nce for multivariate <i>nalysis</i> 2010; 54: 1	e linear mixed mo 1328–1341.	dels with		
	Wang WL, Statistica S	Fan TH. E <i>Sinica</i> 2011	stimation in multivar ; 21: 1857–1880.	iate t linear mixed	d models for multip	ole longitudinal da	ta.		
	Wang WL, and Gibbs	Fan TH. B samplers.	ayesian analysis of Journal of Multivaria	multivariate t linea ate Analysis 2012;	ar mixed models u 105:300–310.	sing a combinatio	n of IBF		
	Yamashita vitro fertiliz β -subunit.	T, Okamot ation and e <i>Fertility an</i>	o S, Thomas A, Mac embryo transfer usin od <i>Sterility</i> 1989; 51 :	cLachlan V, Healy g estradiol, proge 304–309.	DL. Predicting pressure of the sterone and huma	egnancy outcome an chorionic gona	after in dotrophin		
	Zacks S. 7	he Theory	of Statistical Inferer	<i>ice.</i> Wiley: New Yo	ork, 1971. ∢ □ ► ∢ ₫	₽ → < E → < E →	<u>き</u>		

OOOOO Simulation Study	000	0000000	0000	000	0000000
Issues	to be i	nvestigate	ed		

- If the random effects and errors indeed exhibit heavy tails, then how bad can the MNLMM behave?
- 2. When the random effects and errors are generated from the multivariate normal distribution, whether the MtNLMM is over-fitted?

Introduction	Model	ML Estimation	Application	Conclusion O	Reference	Appendix ○●○○○○○				
Simulation Study										
Simulati	ion St	udy								

- Generate bivariate longitudinal data from the MtNLMM with the same mean profiles for the pregnant women data.
- We make the following assumption

$$(b_{i1}, b_{i2}, \boldsymbol{e}_{i1}^{\mathrm{T}}, \boldsymbol{e}_{i2}^{\mathrm{T}})^{\mathrm{T}} \sim t_{22} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{D} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma} \otimes \boldsymbol{I}_{10} \end{bmatrix}, \boldsymbol{\nu} \right).$$

- The time t_k range from 10 to 100 changing by an increment of 10 units.
- The presumed parameters are given as

$$\boldsymbol{\beta} = (5, 17, 7, 2, 0.05)^{\mathrm{T}}, \quad \boldsymbol{D} = \begin{bmatrix} 1 & 0.25 \\ 0.25 & 1 \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.75 \\ 0.75 & 1 \end{bmatrix}.$$

- Degrees of freedom: $\nu = 5$ and $\nu = 50$
- Sample sizes: N = 25 and N = 100

Introduction	Model	ML Estimation	Application	Conclusion O	Reference	Appendix
Simulation Study						
Simulation	on resu	Its based	on 100 r	eplicatior	ns under	
each coi	mbinati	on of cons	sidered N	V and ν .		

		N = 25				N = 100			
Parameter		$\nu = 5$		ν =	$\nu = 50$		= 5	$\nu = 50$	
(True)		MNLMM	MtNLMM	MNLMM	MtNLMM	MNLMM	MtNLMM	MNLMM	MtNLMM
	EST	5.012	4.994	5.002	5.004	4.987	4.991	5.007	5.007
β_1	STD	0.273	0.220	0.206	0.207	0.158	0.131	0.112	0.111
(5)	MSE	0.074	0.048	0.042	0.042	0.025	0.017	0.013	0.012
	EST	17.068	17.073	16.881	16.886	16.997	17.021	17.000	17.007
β_2	STD	0.898	0.798	0.796	0.804	0.600	0.419	0.359	0.364
(17)	MSE	0.803	0.636	0.642	0.653	0.357	0.174	0.128	0.131
	EST	6.732	6.842	6.863	6.869	6.934	6.938	6.960	6.962
β_3	STD	0.797	0.622	0.568	0.554	0.398	0.303	0.293	0.293
(7)	MSE	0.700	0.408	0.338	0.321	0.161	0.095	0.086	0.087
	EST	2.034	1.993	2.010	2.014	1.997	1.990	2.015	2.011
β_4	STD	0.320	0.231	0.227	0.233	0.170	0.121	0.119	0.115
(2)	MSE	0.102	0.053	0.051	0.054	0.028	0.015	0.014	0.013
	$EST(10^{-2})$	5.001	5.028	4.984	4.982	5.004	5.010	5.005	5.006
β_5	$STD(10^{-3})$	2.377	1.792	2.013	2.035	1.425	1.072	0.948	0.948
(0.05)	$MSE(10^{-6})$	5.594	3.255	4.035	4.131	2.012	1.147	0.982	0.893

Introduction	Model		ML Estir	nation	Ap 00	olication	C (onclusion	I	Reference	A	ppendix
Simulation Study												
				N =	= 25			N =	: 100			
	Parameter		ν	= 5	ν =	= 50	ν :	= 5	ν =	= 50		
	(True)		MNLMM	MtNLMM	MNLMM	MtNLMM	MNLMM	MtNLMM	MNLMM	MtNLMM		
	-	EST	1.705	1.013	0.959	0.932	1.698	1.006	1.035	0.996		
	(1)	SID	1 254	0.383	0.313	0.308	0.550	0.174	0.163	0.158		
	(.)	WIGE	1.234	0.145	0.033	0.035	0.700	0.000	0.020	0.025		
		EST	0.517	0.255	0.236	0.232	0.411	0.244	0.283	0.273		
	^d 21 (0.25)	STD	0.725	0.259	0.269	0.263	0.414	0.127	0.122	0.115		
	(0.25)	MSE	0.592	0.066	0.072	0.069	0.195	0.016	0.016	0.014		
		EST	1.792	1.050	0.986	0.953	1.655	1.003	1.010	0.969		
	d_{22}	STD	0.946	0.353	0.320	0.308	0.478	0.179	0.145	0.135		
	(1)	MSE	1.513	0.126	0.102	0.096	0.655	0.032	0.021	0.019		
		EST	1.699	1.027	1.039	0.997	1.680	1.012	1.034	0.992		
	σ_{11}	STD	0.595	0.191	0.099	0.094	0.226	0.082	0.047	0.045		
	(1)	MSE	0.840	0.037	0.011	0.009	0.513	0.007	0.003	0.002		
		EST	1.274	0.769	0.783	0.752	1.268	0.761	0.773	0.741		
	σ_{21}	STD	0.440	0.143	0.095	0.091	0.178	0.064	0.039	0.037		
	(0.75)	MSE	0.466	0.021	0.010	0.008	0.299	0.004	0.002	0.001		
		EST	1.686	1.011	1.047	1.008	1.682	1.015	1.037	0.995		
	σ_{22}	STD	0.581	0.165	0.112	0.108	0.227	0.083	0.051	0.049		
	(1)	MSE	0.805	0.027	0.015	0.012	0.516	0.007	0.004	0.002		
		EST	-	5,245	-	75.095	-	5.154	-	52.623		
	ν	STD	-	2.712	-	31.026	-	0.782	-	23.019		
		MSE	-	8.167	-	1361.317	-	0.623	-	583.639		
		Mean	1601.52	1511.04	1380.13	1380.50	6409.85	6020.21	5482.89	5477.13		
	AIC	Freq	0	100	71	29	0	100	13	87		
		Mean	1614.93	1525.66	1393.53	1395.12	6438.51	6051.47	5511.55	5508.39		
	BIC	Frea	0	100	76	24	0	100	35	65		
			-		-			4 E 1			. =	200

W.L. Wang (FCU, Taiwan)

August 24-28, 2014 30 / 37

Outlier Detection for Pregnancy Women Data

Because $\hat{\tau}_i$ follows $(1 + n_i^o/\nu)\mathcal{B}eta(\nu/2, n_i^o/2)$, under a significance level α , if

$\hat{\tau}_i < (1 + n_i^{\rm o}/\nu) \mathcal{B}_{\alpha}(\nu/2, n_i^{\rm o}/2)$

then the corresponding subject would be identified as an outlier, where $\mathcal{B}_{\alpha}(\cdot, \cdot)$ denotes the α percentile of the Beta distribution such that $P(B \ge \mathcal{B}_{\alpha}) = 1 - \alpha$.

W.L. Wang (FCU, Taiwan)

ECM

Introduction	Model	ML Estimation	Application	Conclusion O	Reference	Appendix

Multivariate t distribution

Let $oldsymbol{y} \sim t_d(oldsymbol{\mu}, \Omega,
u)$, then the density of $oldsymbol{y}$ is

$$f(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\Omega},\nu) = \frac{\Gamma\left(\frac{\nu+d}{2}\right)|\boldsymbol{\Omega}|^{-1/2}}{\Gamma(\frac{\nu}{2})(\pi\nu)^{d/2}} \Big(1 + \frac{(\boldsymbol{y}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Omega}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})}{\nu}\Big)^{-(\nu+d)/2}, \quad \boldsymbol{y} \in \mathcal{R}^{d}.$$

• If
$$\nu > 1$$
, $E(y) = \mu$.

• If
$$\nu > 2$$
, $cov(y) = \nu(\nu - 2)^{-1}\Omega$.

• As
$$\nu \to \infty$$
, $\boldsymbol{y} \stackrel{\mathrm{D}}{\to} \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Omega}).$

• □ ▶ • □ ▶ • □ ▶ •

Introduction	Model	ML Estimation	Application	Conclusion O	Reference	Appendix
F	1					
Examp	DIE					

Take y_i = [1, 2, 3, 4]^T. Regard the elements 2 and 4 as the missing information of y_j.

$$\begin{array}{rcl} \boldsymbol{y}_{i} & = & \boldsymbol{O}_{i}^{\mathrm{T}} \boldsymbol{y}_{i}^{\mathrm{o}} + \boldsymbol{M}_{i}^{\mathrm{T}} \boldsymbol{y}_{i}^{\mathrm{m}} \\ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} & = & \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

W.L. Wang (FCU, Taiwan)

۲

٠

Introduction	Model 000	ML Estimation	Application	Conclusion O	Reference	Appendix

Identifiability under Missing Data

If Y has three variables y_1 , y_2 and y_3 with the following missing data pattern ('NA' represents missing values)

- 1. The y_1 , y_2 and y_3 are never jointly observed.
- 2. The parameters in off-diagonal entries of covariance matrix $\mathbf{R} = \text{Cov}(\mathbf{Y})$ are inestimable.
- 3. Some model parameters are inestimable.

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
						0000000

Missing Data Mechanism (Rubin, 1976)

Let y be the full-data response vector (observed y° and missing y^{m} parts), r be the missingness indicators, and x be covariates of interest.

Missing Completely at Random (MCAR)

 $P(\boldsymbol{r}|\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{\theta}) = P(\boldsymbol{r}|\boldsymbol{x}, \boldsymbol{\theta})$

Missing at Random (MAR)

$$P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta})=P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{x},\boldsymbol{\theta})$$

Missing Not at Random (MNAR)

For some $oldsymbol{y}^{\mathrm{m}}
eq oldsymbol{y}'^{\mathrm{m}}$,

 $P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta}) \neq P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}'^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta})$

イロト イポト イヨト イヨ

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
						0000000

Missing Data Mechanism (Rubin, 1976)

Let y be the full-data response vector (observed y° and missing y^{m} parts), r be the missingness indicators, and x be covariates of interest.

Missing Completely at Random (MCAR)

 $P(\boldsymbol{r}|\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{\theta}) = P(\boldsymbol{r}|\boldsymbol{x}, \boldsymbol{\theta})$

Missing at Random (MAR)

$$P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta}) = P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{x},\boldsymbol{\theta})$$

Missing Not at Random (MNAR)

For some $y^{\mathrm{m}} \neq y'^{\mathrm{m}}$,

 $P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta}) \neq P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}'^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta})$

W.L. Wang (FCU, Taiwan)

A D N A P N A D N A D

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
						0000000

Missing Data Mechanism (Rubin, 1976)

Let y be the full-data response vector (observed y° and missing y^{m} parts), r be the missingness indicators, and x be covariates of interest.

Missing Completely at Random (MCAR)

 $P(\boldsymbol{r}|\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{\theta}) = P(\boldsymbol{r}|\boldsymbol{x}, \boldsymbol{\theta})$

Missing at Random (MAR)

$$P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta})=P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{x},\boldsymbol{\theta})$$

Missing Not at Random (MNAR)

For some $oldsymbol{y}^{\mathrm{m}}
eq oldsymbol{y}^{\mathrm{m}}$,

$$P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta}) \neq P(\boldsymbol{r}|\boldsymbol{y}^{\mathrm{o}},\boldsymbol{y}'^{\mathrm{m}},\boldsymbol{x},\boldsymbol{\theta})$$

• • • • • • • • • • • •

Introduction	Model	ML Estimation	Application	Conclusion	Reference	Appendix
						00000000

Kronecker Product ⊗

If A is an $m \times n$ matrix and B is a $p \times q$ matrix then the kronecker product

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

is a $mp \times nq$ matrix.

$$egin{array}{rcl} m{R}_i &=& m{\Sigma}\otimesm{C}_i \ &=& egin{bmatrix} \sigma_{11}&\sigma_{12}\ \sigma_{21}&\sigma_{22} \end{bmatrix}_{(2 imes 2)}\otimesm{C}_{i(s_i imes s_i)} \ &=& egin{bmatrix} \sigma_{11}m{C}_i&\sigma_{12}m{C}_i \ \sigma_{21}m{C}_i&\sigma_{22}m{C}_i \end{bmatrix}_{(2s_i imes 2s_i)} \end{array}$$

▶ Return

Introduction	Model	ML Estimation	Application	Conclusion O	Reference	Appendix
GLS-S	coring	Iterative F	Procedure	Э		➡ Return

1. Set an initial guess of $\{\tau_i\}_{i=1}^N$ as

$$\hat{\tau}_i^{(h)} = \arg\min_{\tau_i} \left\{ \tau_i \Delta_{\tilde{\boldsymbol{y}}_i} - \nu(\log\tau_i - \tau_i) - n_i \log(\tau_i) \right\}, \quad i = 1, \dots, N.$$

2. Perform a generalized least squares step:

$$\hat{\boldsymbol{\beta}}^{(h+1)} = \left(\sum_{i=1}^{N} \hat{\tau}_{i}^{(h)} \tilde{\boldsymbol{X}}_{i}^{\mathrm{T}} \tilde{\boldsymbol{\Lambda}}_{i}^{(h)} \tilde{\boldsymbol{X}}_{i}^{\mathrm{T}}\right)^{-1} \sum_{i=1}^{N} \hat{\tau}_{i}^{(h)} \tilde{\boldsymbol{X}}_{i}^{\mathrm{T}} \tilde{\boldsymbol{\Lambda}}_{i}^{(h)^{-1}} \tilde{\boldsymbol{y}}_{i},$$

where $\tilde{\mathbf{\Lambda}}_{i}^{(h)}$ is $\tilde{\mathbf{\Lambda}}_{i}$ evaluated at the *h* iteration.

3. Let $\alpha = (\operatorname{vech}(D), \operatorname{vech}(\Sigma), \phi, \gamma, \nu)$, and then update $\hat{\alpha}^{(h)}$ by one iteration of scoring procedure:

$$\hat{\boldsymbol{lpha}}^{(h+1)} = \hat{\boldsymbol{lpha}}^{(h)} + \hat{\mathbf{J}}^{(h+1/2)-1}_{\boldsymbol{lpha}\boldsymbol{lpha}} \hat{\mathbf{s}}^{(h+1/2)}_{\boldsymbol{lpha}}$$

where $\hat{\mathbf{s}}_{\alpha}^{(h+1/2)}$ and $\hat{\mathbf{J}}_{\alpha\alpha}^{(h+1/2)}$ are score vector and Fisher information matrix of α evaluated at $\beta = \hat{\beta}^{(h+1)}$ and $\alpha = \hat{\alpha}_{\alpha}^{(h)}$.

W.L. Wang (FCU, Taiwan)