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The Problem

Given an n× (p+ 1) data matrix

(Y,X1, . . . ,Xp)

containing observations of the response y and of the variables
x1, . . . ,xp.

Wanted

A model which explains y and only includes relevant variables
xi1 , . . . ,xim :

E (y | x1, . . . ,xp) = F (xi1 , . . . ,xim)



I BIG AIM:

E (y | x1, . . . ,xp) = F (xi1 , . . . ,xim) .

I Essential step for finding a model: Select the relevant
variables xi1 , . . . ,xim from x1, . . . ,xp.

I First step: Take one variable x1 and decide: Is this variable x1
relevant (important)?

A variable x1 is unimportant iff for all ∆

E (y | x1, . . . ,xp) = E (y | x1 + ∆, . . . ,xp) .



Pertubation Methods

Observed data set:
(Y,X1, . . . ,Xp)

I Disturb the response by random deviations:

(Y+ δ ,X1, . . . ,Xp)

I Disturb variables by random errors:(
Y,X1 +

√
λε, . . . ,Xp

)
, λ ∈ {λ1, . . . ,λK}

I Extend the data by a pseudo variable Z, generated
independently of (Y,X1, . . . ,Xp):

(Y,X1, . . . ,Xp,Z)



Pertubation of Variables

General in iterature:

I STABILIZATION: ”well known” method, XTX has no inverse,
but (X+ δ I)T (X+ δ I) has.

I SIMEX

I PERTURBATION: huge literature in data engineering, data
mining

I additive data perturbation, each data element is randomized
by adding random noise

I multiplicative data perturbation, multiplicative noise

Aim: keep the statistical properties under preserving the
privacy



Add Variables

Dissertation of Wu (2004), Wu et al, JASA
(2007),102,235-243

Dissertation of Qi Tang (2010), Dec 2010 (Bayesian approach)

Add a set of independent pseudo variables to the data set.

”Intuitively, a good selection criterion should not include too
many of the pseudo variables. If a procedure never selects
pseudo variables, then the selection is too ”ruthless” ”.



Our Method SimSel

SimSel stands for simulation and selection.

no extrapolation step

no splitting of the data set

First Step: Study each variable xi seperately.

published in

M. Eklund and S. Zwanzig (2012). SimSel - a new simulation
method for variable selection, Journal of Statistical
Computation & Simulation, 82,515-527.

Martin Eklund Department of Medical Epidemiology and
Biostatistics, Karolinska Institute, Stockholm.



Embedding

Let x1 the feature of interest. We embed the original data set

(Y,X1, . . . ,Xp)

in
(Y,X1 +

√
λε
∗, . . . ,Xp,Z), λ ∈ {λ1, . . . ,λK},

where

Z = (z1, . . . ,zn)T is an independent pseudo variable,
independently generated of Y,X1, . . . ,Xp

pseudo errors ε∗ = (ε∗1 , . . . ,ε
∗
n)T , ε∗i are i.i.d. P∗, with

Eε∗i = 0, Var (ε∗i ) = 1, E (ε∗i )4 = µ.



The Idea

(Y,X1 +
√

λε
∗, . . . ,Xp,Z)

I The pseudo variable Z serves as an untreated control group in
a biological experiment.

I The influence of the pseudo errors is controlled by stepwise
increasing λ .

MAIN IDEA ( due to Martin!)
If λ ”does not matter” — then x1 is unimportant.



”does not matter”

Consider the data (Y,X1). Compare!

Model fit for the extended data: (Y,X1 +
√

λε∗,Z)

RSS1 (λ ) = min
β1,β2

∥∥∥Y−β1

(
X1 +

√
λε
∗
)
−β2Z

∥∥∥2 .
Model fit for the extended data: (Y,X1,Z+

√
λε∗)

RSS2 (λ ) = min
β1,β2

∥∥∥Y−β1X1−β2

(
Z+
√

λε
∗
)∥∥∥2 .

Intuitively ”does not matter” respects to a constant trend of
RSS (.).



Regression Step
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I It looks like simple heteroscedastic linear regression.

I ”does not matter” — the slope of RSS(.) is zero.



Testing Step

I Determine the distribution of the F -statistics by simulation.

I We repeat the regression and generate two samples of F -
statistics of arbitrary size M.

One sample is related to the variable under control xi

Fi ,1, . . . ,Fi ,M .

The other sample is related to the pseudo variable
z = xp+1 (”untreated control”)

Fp+1,1, . . . ,Fp+1,M .

I Calculate kernel estimates f̂i , f̂p+1.

I Compare f̂i and f̂p+1.



Significance - small overlapping
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Graphic output - violin plots



Graphic output - violin plots
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The SimSel - Algorithm

(1) Choose 0≤ λ1 ≤ λ2 ≤ ...≤ λK ,M,α1,α2 for (m in 1 : M) {
(2) Generate a non relevant pseudo variable z = xp+1 for (i in

1 : p+ 1) {
for (k in 1 : K ) {

(3),(4) generate and add pseudo errors to Xi

(5) Compute RSSi (λk) }

(6) Regression step. Calculate Fi ,m }

}
(7) Plotting step, violin plot of all f̂i ,

(8) Ranking step, according to the median of f̂i

(9) Testing step



Simulations linear model
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Simulations nonlinear model with errors in variables
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Prostate Data Set
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Selwood
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Theoretical Background

Under the assumption that
(
XTX

)−1
exists, it holds

1

n
RSS (λ ) =

1

n
RSS +

λ

1 +h11λ

(
β̂1

)2
+oP∗(1)

where h11 is the (1,1)−element of
(
1
nX

TX
)−1

and β̂1 is the first

component of the LSE estimator β̂ =
(
XTX

)−1
XTY.

Thus in case β̂1 = 0, it holds 1
nRSS (λ )≈ const.



Idea of the proof

It holds
1

n
RSS (λ ) =

1

n
YTY−1

n
YTP(λ )Y (1)

with

P(λ ) = X(λ )
(
X(λ )TX(λ )

)−1
X(λ )T . (2)



Idea of the proof cont.

1

n
X(λ )TY =

(
1

n
X+

1

n

√
λ ∆

)T

Y,

where ∆ is the (n×p)− matrix

∆ =


ε∗1 0 · · · 0
ε∗2 0 · · · 0
...

... 0
...

ε∗n−1 0 · · · ...
ε∗n 0 · · · 0

 .

and by the LLN applied to the pseudo errors only

1

n
X(λ )TY =

1

n
XTY+oP∗(1). (3)



Idea of the proof cont.

Consider now X(λ )TX(λ ) :

=
1

n

(
X+
√

λ ∆
)T (

X+
√

λ ∆
)

(4)

=
1

n
XTX+

1

n

√
λXT∆ +

1

n

√
λ ∆TX+

1

n
λ ∆T∆ (5)

Hence(
1

n
X(λ )TX(λ )

)−1
=

(
1

n
XTX+ λe1e

T
1

)−1
+oP∗(1).



Remarks

I We use in the procedure

λ

1 +h11λ
≈ λ .

I We have not required any model assumption for this result;
only least squares fits are compared.

I In linear errors-in-variable models the naive LSE is
inconsistent. But if β1 is zero, then the naive LSE also
converges to zero. This gives the motivation for successful
application of SimSel to errors-in-variables models.



Approximative Model

Compare the fit of an approximative model.
We have chosen a quadratic model.
We organize the quadratic approximation such that the first terms
include x1:

H (x1, . . . ,xp+1) = Hβ

= β1 x1 + β2 (x1x2) + ...+ βp+2 (x1xp+1) + βp+3 x
2
1

+βp+4 x2 + . . .+ βm x2p+1

β ∈ Rm, where m = 1
2((p+ 1)2 + 3(p+ 1))



Theoretical Result

Under the assumption, that ( 1nH
TH)−1 exists it holds

1

n
RSS(λ ) =

1

n
RSS + λβ̂

TD(λ )β̂ +oP∗(1)

where β̂TD(λ )β̂ includes β̂1, . . . , β̂p+3 only. D(λ ) = . . . is positive
definite .



Generalization of SimSel

Wanted: to study the dependence structure between variables.

I Disturb q variables simultaneously.

I Add k simulated control variables z1, . . . ,zk to the data.

I Allow rank(X) = r < p.

I Use the ridge criterion instead of least squares.



Remind Ridge

Here we do not require that X has full rank.

min
β

(‖Y−Xβ‖2 +k ‖β‖2) =
∥∥∥Y−Xβ̂ridge

∥∥∥2 +k
∥∥∥β̂ridge

∥∥∥2
delivers an unique parameter estimator

β̂ridge =
(
XTX+kIp

)−1
XTY. (6)

RIDGE (k) =
∥∥∥Y− Ŷridge

∥∥∥2 +k
∥∥∥β̂ridge

∥∥∥2
RIDGE (k) = YTY−YTX

(
XTX+kIp

)−1
XTY.

No projection!



Approximation of the Criterion

Disturb the variables Xj1 , ....,Xjq simultaneously.

Xj1(λ ) = Xjl +
√

λε
∗
jl
, l = 1, ...,q

Thus
X(λ ) = X+

√
λE(∗)

.

1

n
Ridge(β ,λ ,k) =

1

n
‖Y−X(λ )β‖2 +k ‖β‖2

=
1

n
‖Y−Xβ‖2 + λβ

T∆β +k ‖β‖2 +oP∗(1)

where ∆ = diag(0, . . . ,1, . . . ,0,1,0, . . .)

with ∆jl jl = 1 for l = 1, . . . ,q and zero otherwise.



Ridge Type Estimator

min
β∈Rp

(
‖Y−Xβ‖2 + β

TBTBβ

)
defined a least squares estimator in the ”big” model(

Y
0

)
=

(
X
B

)
β +

(
ε

0

)

y = Xβ +e

min
β∈Rp
‖y−Xβ‖2 = ‖y−Py‖2

where
P : Rn+p→L (X), projection

OBS: The ”big” model is misspecified!!!

β 6= 0, Ey /∈L (X)



Bias Term

Set
B = AT (XTX ) +AT

2 , AT
2 (XTX ) = 0

Then for Ey = µ0, µ0 ∈L (X )

BIAS = µ
T
0 XA(AT (XTX )A+ Ip)−1ATXT

µ0

and for nonlinear relation, µ0 /∈L (X )

BIAS = const−µ
T
0 XA(AT (XTX )A+ Ip)−1ATXT

µ0

Note, it is not required that B or X have full rank!

The effect of the perturbation is included in A.



Special Cases

I orthogonal design and all variables are disturbed:

XTX = Ip, B =
√

λ Ip, µ0 = Xβ0

BIAS =
λ

1 + λ
‖β0‖2

I singular design, only nonrelevant variables are disturbed:

B(XTX ) = 0 alternatively B = A2

BIAS = 0



Special Case

I Estimation procedure: k = 0, λmin(XTX ) = λ0 > 0

I Perturbation: B =
√

λ diag(1, ...,1,0,0, ...0) q variables
simultaneously

I Model assumption: Ey = (Xi1 , ...,Xim)β0 all components of β0

are not zero.

I Then
λ

1 + λλ
−1
0

∑
j∈J

β
2
0,j ≤ Bias (λ ) ≤ λ ∑

j∈J
β
2
0,j ,

where J set of variables which are in the model and which are
disturbed.



Variance Term

tr(Cov(Y)(I −P)) = n− tr

((
In 0
0 0

)
P

)

P : Rn+p→L (

(
X
B

)
) projection

stabilization effect

when dim(L (

(
X
B

)
) > dim(L (X))



Lasso

Study
1

n
Lasso(β ,λ ,k) =

1

n
‖Y−X(λ )β‖2 +k |β |

=
1

n
‖Y−Xβ‖2 + λβ

T∆β +k |β |+oP∗(1).

It is related to the elastic net procedure.



Simultaneous SimSel - Outlook

I Wanted: to study the dependence structure between variables.

I Need to study the behavior of bias term for singular design
matrices.

I Algorithm for systematic simultaneously disturbtion.



Tack för uppmärksamheten!
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