SimSel – a Method for Variablen Selection

Silvelyn Zwanzig

Uppsala University, zwanzig@math.uu.se

LinStat2014, Linköping, August 29, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- The Problem
- Our Answer: SimSel
- The Procedure
- Generalization of SimSel
- Theoretical Background

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outlook

The Problem

Given an $n \times (p+1)$ data matrix

$$(\mathbf{Y}, \mathbf{X}_1, \ldots, \mathbf{X}_p)$$

containing observations of the response \boldsymbol{y} and of the variables $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_p.$

Wanted

A model which explains **y** and only includes relevant variables $\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_m}$: $E(\mathbf{y} | \mathbf{x}_1, \dots, \mathbf{x}_p) = F(\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_m})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► BIG AIM:

$$E(\mathbf{y} | \mathbf{x}_1, \ldots, \mathbf{x}_p) = F(\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_m}).$$

- Essential step for finding a model: Select the relevant variables x_{i1},...,x_{im} from x₁,...,x_p.
- First step: Take one variable x₁ and decide: Is this variable x₁ relevant (important)?

A variable \mathbf{x}_1 is **unimportant** iff for all Δ

$$E(\mathbf{y} \mid \mathbf{x}_1, \dots, \mathbf{x}_p) = E(\mathbf{y} \mid \mathbf{x}_1 + \Delta, \dots, \mathbf{x}_p).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pertubation Methods

Observed data set:

$$(\mathbf{Y}, \mathbf{X}_1, \ldots, \mathbf{X}_p)$$

Disturb the response by random deviations:

 $(\mathbf{Y} + \delta, \mathbf{X}_1, \dots, \mathbf{X}_p)$

Disturb variables by random errors:

$$\left(\mathbf{Y},\mathbf{X}_1\!+\!\sqrt{\lambda}arepsilon,\ldots,\mathbf{X}_{p}
ight), \,\, \lambda\in\{\lambda_1,\ldots,\lambda_K\}$$

Extend the data by a pseudo variable Z, generated independently of (Y, X₁,..., X_p):

$$(\mathbf{Y}, \mathbf{X}_1, \dots, \mathbf{X}_p, \mathbf{Z})$$

Pertubation of Variables

General in iterature:

- STABILIZATION: "well known" method, $\mathbf{X}^T \mathbf{X}$ has no inverse, but $(\mathbf{X} + \delta \mathbf{I})^T (\mathbf{X} + \delta \mathbf{I})$ has.
- SIMEX
- PERTURBATION: huge literature in data engineering, data mining
 - additive data perturbation, each data element is randomized by adding random noise

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

multiplicative data perturbation, multiplicative noise

Aim: keep the statistical properties under preserving the privacy

Dissertation of Wu (2004), Wu et al, JASA (2007),102,235-243

Dissertation of Qi Tang (2010), Dec 2010 (Bayesian approach)

Add a set of independent pseudo variables to the data set.

"Intuitively, a good selection criterion should not include too many of the pseudo variables. If a procedure never selects pseudo variables, then the selection is too "ruthless" ".

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our Method SimSel

SimSel stands for simulation and selection.

no extrapolation step

no splitting of the data set

First Step: Study each variable x_i seperately.

published in

M. Eklund and S. Zwanzig (2012). SimSel - a new simulation method for variable selection, Journal of Statistical Computation & Simulation, 82,515-527.

Martin Eklund Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm.

Embedding

Let \mathbf{x}_1 the feature of interest. We embed the original data set

$$(\mathbf{Y}, \mathbf{X}_1, \dots, \mathbf{X}_p)$$

in

$$(\mathbf{Y},\mathbf{X}_1+\sqrt{\lambda}arepsilon^*,\ldots,\mathbf{X}_{\mathbf{p}},\mathbf{Z}),\ \lambda\in\{\lambda_1,\ldots,\lambda_{\mathcal{K}}\},$$

where

 $\mathbf{Z} = (z_1, \dots, z_n)^T$ is an independent **pseudo variable**, independently generated of $\mathbf{Y}, \mathbf{X}_1, \dots, \mathbf{X}_p$

pseudo errors $\varepsilon^* = (\varepsilon_1^*, \dots, \varepsilon_n^*)^T$, ε_i^* are i.i.d. P^* , with $E\varepsilon_i^* = 0$, $Var(\varepsilon_i^*) = 1$, $E(\varepsilon_i^*)^4 = \mu$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Idea

 $(\mathbf{Y}, \mathbf{X}_1 + \sqrt{\lambda} \varepsilon^*, \dots, \mathbf{X}_n, \mathbf{Z})$

- The pseudo variable Z serves as an untreated control group in a biological experiment.
- The influence of the pseudo errors is controlled by stepwise increasing λ.

MAIN IDEA (due to Martin!) If λ "does not matter" — then x_1 is unimportant.

"does not matter"

Consider the data $(\mathbf{Y}, \mathbf{X}_1)$. Compare!

Model fit for the extended data: $(\mathbf{Y}, \mathbf{X}_1 + \sqrt{\lambda} \varepsilon^*, \mathbf{Z})$

$$RSS_{1}(\lambda) = \min_{\beta_{1},\beta_{2}} \left\| \mathbf{Y} - \beta_{1} \left(\mathbf{X}_{1} + \sqrt{\lambda} \varepsilon^{*} \right) - \beta_{2} \mathbf{Z} \right\|^{2}$$

Model fit for the extended data: $(\mathbf{Y}, \mathbf{X}_1, \mathbf{Z} + \sqrt{\lambda} \boldsymbol{\varepsilon}^*)$

$$RSS_{2}(\lambda) = \min_{\beta_{1},\beta_{2}} \left\| \mathbf{Y} - \beta_{1} \mathbf{X}_{1} - \beta_{2} \left(\mathbf{Z} + \sqrt{\lambda} \varepsilon^{*} \right) \right\|^{2}.$$

Intuitively "does not matter" respects to a constant trend of RSS(.).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Regression Step

- It looks like simple heteroscedastic linear regression.
- ▶ "does not matter" the slope of RSS(.) is zero.

∃⇒

Testing Step

- Determine the distribution of the *F*-statistics by simulation.
- We repeat the regression and generate two samples of Fstatistics of arbitrary size M.

One sample is related to the variable under control \mathbf{x}_i

$$F_{i,1},\ldots,F_{i,M}.$$

The other sample is related to the pseudo variable $z = x_{p+1}$ ("untreated control")

$$F_{p+1,1},\ldots,F_{p+1,M}.$$

- Calculate kernel estimates \hat{f}_i , \hat{f}_{p+1} .
- Compare \hat{f}_i and \hat{f}_{p+1} .

Significance - small overlapping

・ロト ・西ト ・ヨト ・ヨー うらぐ

Graphic output - violin plots

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Graphic output - violin plots

Variable

(日)、(四)、(E)、(E)、(E)

The SimSel - Algorithm

(1) Choose $0 \le \lambda_1 \le \lambda_2 \le ... \le \lambda_K, M, \alpha_1, \alpha_2$ for (m in 1:M) {

 (2) Generate a non relevant pseudo variable z = x_{p+1} for (i in 1:p+1) { for (k in 1:K) {

(3),(4) generate and add pseudo errors to X_i

(5) Compute $RSS_i(\lambda_k)$ }

```
(6) Regression step. Calculate F_{i,m} }
```

(7) Plotting step, violin plot of all \hat{f}_i ,

(8) Ranking step, according to the median of \hat{f}_i

(9) Testing step

}

Simulations linear model

Distributions of F-statistic

Simulations nonlinear model with errors in variables

Distributions of F-statistic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Prostate Data Set

Distributions of F-statistic

Selwood

Theoretical Background

Under the assumption that $(\mathbf{X}^T \mathbf{X})^{-1}$ exists, it holds

$$\frac{1}{n}RSS(\lambda) = \frac{1}{n}RSS + \frac{\lambda}{1+h_{11}\lambda}\left(\widehat{\beta}_{1}\right)^{2} + o_{P^{*}}(1)$$

where h_{11} is the (1,1)-element of $(\frac{1}{n}\mathbf{X}^T\mathbf{X})^{-1}$ and $\hat{\beta}_1$ is the first component of the LSE estimator $\hat{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$.

Thus in case $\hat{\beta}_1 = 0$, it holds $\frac{1}{n}RSS(\lambda) \approx const$.

Idea of the proof

Idea of the proof cont.

$$\frac{1}{n}\mathbf{X}(\lambda)^{T}\mathbf{Y} = \left(\frac{1}{n}\mathbf{X} + \frac{1}{n}\sqrt{\lambda}\Delta\right)^{T}\mathbf{Y},$$

where Δ is the $(n \times p)$ – matrix

$$\Delta = \begin{pmatrix} \varepsilon_1^* & 0 & \cdots & 0 \\ \varepsilon_2^* & 0 & \cdots & 0 \\ \vdots & \vdots & 0 & \vdots \\ \varepsilon_{n-1}^* & 0 & \cdots & \vdots \\ \varepsilon_n^* & 0 & \cdots & 0 \end{pmatrix}.$$

and by the LLN applied to the pseudo errors only

$$\frac{1}{n}\mathbf{X}(\lambda)^{T}\mathbf{Y} = \frac{1}{n}\mathbf{X}^{T}\mathbf{Y} + o_{P^{*}}(1).$$
(3)

Idea of the proof cont.

Consider now $\mathbf{X}(\lambda)^{\mathsf{T}}\mathbf{X}(\lambda)$:

$$= \frac{1}{n} \left(\mathbf{X} + \sqrt{\lambda} \Delta \right)^{T} \left(\mathbf{X} + \sqrt{\lambda} \Delta \right)$$
(4)
$$= \frac{1}{n} \mathbf{X}^{T} \mathbf{X} + \frac{1}{n} \sqrt{\lambda} \mathbf{X}^{T} \Delta + \frac{1}{n} \sqrt{\lambda} \Delta^{T} \mathbf{X} + \frac{1}{n} \lambda \Delta^{T} \Delta$$
(5)

Hence

$$\left(\frac{1}{n}\mathbf{X}(\lambda)^{T}\mathbf{X}(\lambda)\right)^{-1} = \left(\frac{1}{n}\mathbf{X}^{T}\mathbf{X} + \lambda\mathbf{e}_{1}\mathbf{e}_{1}^{T}\right)^{-1} + o_{P^{*}}(1).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remarks

We use in the procedure

$$rac{\lambda}{1+h_{11}\lambda}pprox\lambda.$$

- We have not required any model assumption for this result; only least squares fits are compared.
- In linear errors-in-variable models the naive LSE is inconsistent. But if β₁ is zero, then the naive LSE also converges to zero. This gives the motivation for successful application of SimSel to errors-in-variables models.

Compare the fit of an approximative model.

We have chosen a quadratic model.

We organize the quadratic approximation such that the first terms include x_1 :

$$H(\mathbf{x}_{1},...,\mathbf{x}_{p+1}) = \mathbf{H}\beta$$

= $\beta_{1} \mathbf{x}_{1} + \beta_{2} (\mathbf{x}_{1}\mathbf{x}_{2}) + ... + \beta_{p+2} (\mathbf{x}_{1}\mathbf{x}_{p+1}) + \beta_{p+3} \mathbf{x}_{1}^{2}$
+ $\beta_{p+4} \mathbf{x}_{2} + ... + \beta_{m} \mathbf{x}_{p+1}^{2}$

 $eta \in \mathbb{R}^m$, where $m = rac{1}{2}((p+1)^2 + 3(p+1))$

Theoretical Result

Under the assumption, that $(\frac{1}{p}\mathbf{H}^T\mathbf{H})^{-1}$ exists it holds

$$\frac{1}{n}RSS(\lambda) = \frac{1}{n}RSS + \lambda\widehat{\beta}^{T}\mathbf{D}(\lambda)\widehat{\beta} + o_{P^{*}}(1)$$

where $\widehat{\beta}^T \mathbf{D}(\lambda) \widehat{\beta}$ includes $\widehat{\beta}_1, \ldots, \widehat{\beta}_{\rho+3}$ only. $\mathbf{D}(\lambda) = \ldots$ is positive definite .

Wanted: to study the dependence structure between variables.

- Disturb q variables simultaneously.
- Add k simulated control variables z_1, \ldots, z_k to the data.

- Allow $rank(\mathbf{X}) = r < p$.
- Use the ridge criterion instead of least squares.

Remind Ridge

Here we do not require that \boldsymbol{X} has full rank.

$$\min_{\beta} (\|\mathbf{Y} - \mathbf{X}\beta\|^2 + k \|\beta\|^2) = \left\|\mathbf{Y} - \mathbf{X}\widehat{\beta}_{ridge}\right\|^2 + k \left\|\widehat{\beta}_{ridge}\right\|^2$$

delivers an unique parameter estimator

$$\widehat{\beta}_{ridge} = \left(\mathbf{X}^{T} \mathbf{X} + k \mathbf{I}_{p} \right)^{-1} \mathbf{X}^{T} \mathbf{Y}.$$
(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$RIDGE(k) = \left\| \mathbf{Y} - \widehat{\mathbf{Y}}_{ridge} \right\|^{2} + k \left\| \widehat{\beta}_{ridge} \right\|^{2}$$
$$RIDGE(k) = \mathbf{Y}^{T} \mathbf{Y} - \mathbf{Y}^{T} \mathbf{X} \left(\mathbf{X}^{T} \mathbf{X} + k \mathbf{I}_{p} \right)^{-1} \mathbf{X}^{T} \mathbf{Y}.$$

No projection!

Approximation of the Criterion

Disturb the variables X_{j_1}, \ldots, X_{j_q} simultaneously.

$$X_{j_1}(\lambda)=X_{j_l}+\sqrt{\lambda}arepsilon_{j_l}^*,\ l=1,...,q$$

Thus

$$\mathsf{X}(\lambda) = \mathsf{X} {+} \sqrt{\lambda} \mathsf{E}^{(*)}$$

$$\frac{1}{n} Ridge(\beta, \lambda, k) = \frac{1}{n} \|\mathbf{Y} - \mathbf{X}(\lambda)\beta\|^2 + k \|\beta\|^2$$
$$= \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\beta\|^2 + \lambda\beta^T \Delta\beta + k \|\beta\|^2 + o_{P^*}(1)$$

where $\Delta = diag(0, \dots, 1, \dots, 0, 1, 0, \dots)$

with $\Delta_{j_l j_l} = 1$ for $l = 1, \dots, q$ and zero otherwise.

Ridge Type Estimator

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^{p}}\left(\|\mathbf{Y}-\mathbf{X}\boldsymbol{\beta}\|^{2}+\boldsymbol{\beta}^{T}\boldsymbol{B}^{T}\boldsymbol{B}\boldsymbol{\beta}\right)$$

defined a least squares estimator in the "big" model

$$\left(\begin{array}{c} \mathbf{Y} \\ 0 \end{array}\right) = \left(\begin{array}{c} \mathbf{X} \\ B \end{array}\right) \boldsymbol{\beta} + \left(\begin{array}{c} \boldsymbol{\varepsilon} \\ 0 \end{array}\right)$$

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 = \|\mathbf{y} - \mathbf{P}\mathbf{y}\|^2$$

where

$$\mathbf{P}: \mathbb{R}^{n+p} \to \mathscr{L}(\mathbf{X}), \text{ projection}$$

OBS: The "big" model is misspecified!!!

 $\beta \neq 0, E \mathbf{y} \notin \mathscr{L}(\mathbf{X})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bias Term

Set

$$B = A^{T}(X^{T}X) + A_{2}^{T}, A_{2}^{T}(X^{T}X) = 0$$

Then for $Ey = \mu_0$, $\mu_0 \in \mathscr{L}(X)$ $BIAS = \mu_0^T XA(A^T(X^TX)A + I_p)^{-1}A^TX^T\mu_0$

and for nonlinear relation, $\mu_0 \notin \mathscr{L}(X)$

$$BIAS = const - \mu_0^T XA(A^T(X^T X)A + I_p)^{-1}A^T X^T \mu_0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Note, it is not required that B or X have full rank!

The effect of the perturbation is included in A.

Special Cases

orthogonal design and all variables are disturbed:

$$X^T X = I_p, \ B = \sqrt{\lambda} I_p, \ \mu_0 = X eta_0$$

 $BIAS = rac{\lambda}{1+\lambda} \|eta_0\|^2$

singular design, only nonrelevant variables are disturbed:

$$B(X^T X) = 0$$
 alternatively $B = A_2$
 $BIAS = 0$

(ロ)、(型)、(E)、(E)、 E) の(の)

Special Case

- Estimation procedure: k = 0, $\lambda_{\min}(X^T X) = \lambda_0 > 0$
- ▶ Perturbation: B = √λ diag(1,...,1,0,0,...0) q variables simultaneously
- Model assumption: $Ey = (X_{i_1}, ..., X_{i_m})\beta_0$ all components of β_0 are not zero.

Then

$$rac{\lambda}{1+\lambda\lambda_0^{-1}} \sum_{j\in J}eta_{0,j}^2\,\leq\, {\it Bias}(\lambda)\,\leq\,\lambda\sum_{j\in J}eta_{0,j}^2,$$

where J set of variables which are in the model and which are disturbed.

Variance Term

$$tr(Cov(\mathbf{Y})(I - \mathbf{P})) = n - tr\left(\begin{pmatrix} I_n & 0\\ 0 & 0 \end{pmatrix}\mathbf{P}\right)$$
$$\mathbf{P}: \mathbb{R}^{n+p} \to \mathscr{L}(\begin{pmatrix} \mathbf{X}\\ B \end{pmatrix}) \text{ projection}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

stabilization effect

when
$$dim(\mathscr{L}(\begin{pmatrix} \mathbf{X} \\ B \end{pmatrix}) > dim(\mathscr{L}(\mathbf{X}))$$

Lasso

Study

$$\frac{1}{n}Lasso(\beta,\lambda,k) = \frac{1}{n} \|\mathbf{Y} - \mathbf{X}(\lambda)\beta\|^{2} + k |\beta|$$

$$= \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\beta\|^{2} + \lambda\beta^{T} \Delta\beta + k |\beta| + o_{P^{*}}(1).$$

It is related to the elastic net procedure.

Simultaneous SimSel - Outlook

Wanted: to study the dependence structure between variables.

- Need to study the behavior of bias term for singular design matrices.
- Algorithm for systematic simultaneously disturbiion.

Tack för uppmärksamheten!