Antonio F. Costa

On the connectedness of the branch locus and p-gonal locus in the moduli space and its compactification

Abstract Consider the moduli space \mathcal{M}_g of Riemann surfaces of genus $g \geq 2$ and its Deligne-Munford compactification $\overline{\mathcal{M}_g}$. We are interested in the branch locus \mathcal{B}_g for g > 2, i.e., the subset of \mathcal{M}_g consisting of surfaces with automorphisms. It is well-known that the set of hyperelliptic surfaces (the hyperelliptic locus) is connected in \mathcal{M}_g but the set of (cyclic) trigonal surfaces is not. By contrast, we show that for $g \geq 5$ the set of (cyclic) trigonal surfaces is connected in $\overline{\mathcal{M}_g}$. To do so we exhibit an explicit nodal surface that lies in the completion of every equisymmetric set of 3-gonal Riemann surfaces. For p > 3the connectivity of the *p*-gonal loci becomes more involved. We show that for $p \geq 11$ prime and genus g = p - 1 there are one-dimensional strata of cyclic *p*-gonal surfaces that are completely isolated in the completion $\overline{\mathcal{B}_g}$ of the branch locus in $\overline{\mathcal{M}_g}$. Results in collaboration with G. Bartolini, M. Izquierdo, H. Parlier, A. M. Porto

8