Ewa Tyszkowska

On triangular (D_n) -actions on *p*-gonal Riemann surfaces

Abstract A compact Riemann surface X of genus g > 1 which has a conformal automorphism ρ of prime order p such that the orbit space $X/\langle \rho \rangle$ is the Riemann sphere is called *cyclic p-gonal.* The group generated by ρ is unique in the group G of conformal automorphisms of X if $g > (p-1)^2$. We say that the action of G on X is a triangular (D_n) -action if G acts with a triangular signature and the quotient $G/\langle \rho \rangle$ is a dihedral group D_n for some $n \geq 2$. In this case we denote X by $X_{p,n,g}$. If n is the number of fixed points of a p-gonal automorphism ρ , then $X_{p,n,q}$ is a p-sheeted cover of the sphere ramified over the vertices of a regular n-gon and we say that $X_{p,n,g}$ is a (p,n)-Accola-Maclachlan surface. In particular, $X_{2,2g+2,g}$ is the original Accola-Maclachlan surface whose automorphism group has the minimum size 8(g+1). A symmetry of a Riemann surface X of genus g is an antiholomorphic involution and the set of fixed points of X consists of k disjoint Jordan curves called *ovals*, where $0 \le k \le q+1$. We determine, up to topological conjugacy, the full group of conformal and anticorformal automorphisms of $X_{p,n,g}$. We prove that $X_{p,n,g}$ is symmetric and any of its symmetries with fixed points has 1 or p ovals. We find these $X_{p,n,g}$ whose group of automorphisms has the minimum size and these $X_{p,n,g}$ which admit a symmetry with the maximal number of ovals. Finally, we prove that for any prime pthere exists a symmetric Riemann surface whose every symmetry has p ovals, and there exists a Riemann surface with arbitrary even number of symmetries.